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Abstract: With the rapid development of object detection technology for unmanned aerial vehicles
(UAVs), it is convenient to collect data from UAV aerial photographs. They have a wide range of
applications in several fields, such as monitoring, geological exploration, precision agriculture, and
disaster early warning. In recent years, many methods based on artificial intelligence have been
proposed for UAV object detection, and deep learning is a key area in this field. Significant progress
has been achieved in the area of deep-learning-based UAV object detection. Thus, this paper presents
a review of recent research on deep-learning-based UAV object detection. This survey provides
an overview of the development of UAVs and summarizes the deep-learning-based methods in
object detection for UAVs. In addition, the key issues in UAV object detection are analyzed, such as
small object detection, object detection under complex backgrounds, object rotation, scale change,
and category imbalance problems. Then, some representative solutions based on deep learning for
these issues are summarized. Finally, future research directions in the field of UAV object detection
are discussed.

Keywords: object detection; unmanned aerial vehicles; deep learning; computer vision

1. Introduction

Object detection is an important research topic in the field of remote sensing, which
has been widely applied to military and civil tasks, such as geological environment surveys,
traffic monitoring, urban planning, precision agriculture, and disaster relief [1–4]. Tradi-
tional methods of obtaining objects mainly rely on satellites and manned aircraft. In recent
years, since unmanned aerial vehicles (UAVs) have the advantages of being small, flexible,
and easy to control, they have become more and more popular in various domains, such
as civilian, military, and research. Some examples are inspecting power lines in difficult
conditions, detecting air quality, rescuing people in danger, spying on the enemy, tracking
enemy targets, and searching for information on the battlefield. All these tasks strongly
depend on the detection of one or more domain-specific objects. Since the emergence of
computer vision, object detection has been extensively researched.

Historically, detecting objects in images captured by cameras is one of the earliest
computer vision tasks, dating back to the 1960s. Detecting and recognizing object categories
has been viewed as the key element of any artificial intelligence system ever since. Many
computer vision methods have been used for this task.

As one of the basic problems for computer vision, traditional object detection adopted
statistical-based methods [5]. However, the massive amount of data has affected the
performance of these traditional methods in recent years. Problems such as feature size
explosion, requiring larger storage space and time costs, are difficult to solve. With the
emergence of deep neural network (deep learning) technology [6–8], high-level features of
images can be extracted through multiple convolutions and pooling layers, thus achieving
object detection. Since 2015, deep neural networks have become the main framework for
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UAV object detection [9,10]. Classical deep neural networks for object detection are divided
into two categories: two-stage networks and one-stage networks. Two-stage networks,
such as RCNN [11] and Faster RCNN [12,13], first need to generate proposal regions
and then classify and locate the proposal regions. Numerous studies have demonstrated
that two-stage networks are appropriate for applications with higher detection accuracy
requirements [14,15]. One-stage networks, such as SSD [16,17] and Yolo [18,19], directly
generate class probabilities and coordinate positions and are faster than two-stage networks.
Therefore, one-stage networks have great advantages in UAV practical applications with
high-speed requirements. Similarly, there are also some faster lightweight networks, such
as MobileNet SSD [20], Yolov3 [21], ESPNetv2 [22], etc.

Object detection for UAVs based on deep learning can acquire and analyze information
about the ground scene in real time during flight, thus improving the perception and
intelligence of UAVs. However, there are many new challenges regarding UAV object
detection compared to ground object detection, such as the low-quality image problem
and the complex background problem. Therefore, this paper provides a survey on object
detection for UAVs based on deep learning. Firstly, we analyze the types and sensors
of UAVs. Then, we point out the main differences between UAV object detection and
common object detection, and the main challenges in UAV object detection. On this basis,
we focus on the applications of deep learning for UAV object detection from the view of the
challenges. Other relevant surveys in the field of object detection based on deep learning
can be used as a supplement to this paper (see, e.g., [23–26]).

The main contributions of this paper are summarized as follows: (1) the development
of UAV object detection is thoroughly analyzed and reviewed. In addition, the differences
between UAV object detection and common object detection are analyzed and the challenges
in UAV object detection are enumerated. (2) A survey on the applications of deep learning
methods in UAV object detection is provided, which focuses on the main challenges in
UAV object detection. (3) Some representative methods in the field of UAV object detection
based on deep learning are analyzed. At last, some possible future study directions in this
field are discussed.

The rest of this paper is organized as follows: Section 2 briefly outlines the develop-
ment history of UAV object detection. Section 3 describes the deep-learning-based object
detection algorithms for UAV aerial images. Section 4 surveys the main public datasets
used for UAV object detection. Section 5 combines the current research status to look
forward to the follow-up research direction, and Section 6 is a conclusion.

2. The Development of UAV Object Detection

The increase in remote sensing systems enables people to collect data regarding any
objects on Earth’s surface extensively. With the emergence of UAVs, aerial imaging has
become a common method of data acquisition.

2.1. Classification of UAVs

Different criteria can be used to categorize UAVs, such as lift system, payload weight,
size, maximum takeoff weight, operational range, operational altitude (above ground
level), endurance, operational conditions, or autonomy level [27]. Based on the lift system,
they can be divided into several types, such as lighter-than-air UAVs, fixed-wing UAVs,
rotary-wing UAVs, flapping-wing UAVs, etc. [28]. Fixed-wing UAVs and rotary-wing
UAVs are the most common ones. Fixed-wing UAVs have the advantages of fast speed,
long range, and large payload, but they require large landing sites and auxiliary equipment.
Rotary-wing UAVs have the ability to hover and take off vertically. They are suitable for
low-altitude and complex terrain flight but have shorter range and endurance. Rotary-wing
UAVs are the widely used type of UAVs in military and civilian applications, and the
common types include helicopter-type and multi-rotor-type [29]. Helicopter-type UAVs
have large payloads and high flexibility, but the disadvantages are that the mechanical
structure is more complex than multi-rotor, the operation difficulty is high, and the mainte-
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nance cost is high. Multi-rotor UAVs, capable of vertical takeoff, landing, and hovering,
are particularly suited for missions requiring low-altitude operations and stationary flight.
At present, multi-rotor UAVs have become the main type of object detection research and
are widely used in environmental protection, precision agriculture, and disaster rescue.

These UAVs develop fast because they are relatively cheap and have the ability to take
pictures simply. UAVs can carry high-resolution cameras or other sensors, obtaining clearer
and richer object information. Compared with orbital and other aerial sensing acquisition
methods, UAV platforms can perform object detection in high-altitude or hazardous areas,
avoiding the risk of casualties and cost expenditure. Therefore, UAV-based image acquisi-
tion systems are very popular in commercial and scientific exploration. However, visual
inspection of objects by UAVs is still biased, inaccurate, and time-consuming. Currently,
the real challenge regarding remote sensing methods is to automate the process of obtaining
fast and accurate information from data, where detecting objects from UAV images is one
of the key tasks.

UAV images for object detection are classified based on flight altitude and application
areas at different altitudes: (1) eye-level view: this category, at altitudes between 0 and
5 m, is optimal for ground-level observations. (2) Low and medium height: 5–120 m.
It represents the gap between most commercial and industrial applications. (3) Aerial
imaging: higher than 120 m, this category is synonymous with high-altitude data capture
and often requires special permissions.

2.2. UAV Sensors for Object Detection

UAV sensors are various devices that can measure the motion state, position infor-
mation, and environmental parameters of UAVs. They are important components for
achieving autonomous flight and mission execution. The use of UAVs depends on various
factors, such as payload capacity, size, cost, safety, environment, redundancy level, and
autonomy level. According to different measurement principles and functions, we will
only introduce four sensor technologies that are important for UAV object detection:

Visual sensors: A visual sensor is a device that uses photoelectric sensors to obtain
images of objects. From the image, state information such as location and speed of the
object can be calculated. The more important thing for visual sensors is the processing
algorithm. Recently, the development of deep learning algorithms has brought more
extensive applications to visual sensors.

Ultrasonic sensor: Ultrasonic waves are sound waves that exceed the upper limit of
human hearing frequency. Due to their good directivity and strong penetration, they are
widely used for distance and speed measurement. The ultrasonic sensor emits a signal
that is reflected by the object and then received by another ultrasonic sensor. An ultrasonic
sensor is generally cheap, but its drawbacks include a low data update rate and a limited
measurement range.

Laser sensor: The principle of the laser sensor is basically the same as the ultrasonic
sensor, except for the different emitted signal. A laser source is emitted by the laser ranging
sensor at the speed of light, which makes the signal frequency much higher than the
ultrasonic sensor [30]. Its disadvantages are high price, small measurement range, and the
ability to scan.

Ground-penetrating radar: Ground-penetrating radar (GPR) is a popular nondestruc-
tive testing technique for object detection and imaging in geological surveys [31]. Fast and
accurate object detection on the surface can reduce computation time and hardware re-
quirements.

Thermal imager: A thermal imager is a device that can convert invisible infrared
radiation into visible images. It can detect the temperature distribution and thermal
anomalies of objects in dark or harsh environments [32].
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2.3. The Difference between UAV Object Detection and Common Object Detection

In normal view, the datasets used for object detection algorithms are mostly taken by
handheld cameras or fixed positions, so most of the images are side views. However, UAV
aerial images have different characteristics from ordinary view images because they are
taken from a top-down view. This means that the object detection algorithms in normal
view cannot be directly applied to UAV aerial view.

Firstly, the quality of UAV aerial images is affected by many factors, such as the
instability of equipment causing jitter, blur, low resolution, light change, image distortion,
etc. These problems need to be preprocessed for the video to improve the detection effect
of methods [33].

Secondly, the object density in the aerial view is inconsistent and the size is very small.
For example, pedestrians and cars may occupy many pixels in normal view but only a
few pixels in aerial view, and they are distributed irregularly, causing object deformation,
increasing the difficulty of multi-object detection, and requiring special network modules
to extract features [34].

Finally, the occlusion in aerial view is also different from that in normal view. In normal
view, the object may be occluded by other objects, such as a person in front of a car.
However, in an aerial view, the object may be occluded by the environment, such as
buildings and trees [35]. Therefore, it is not possible to directly apply the multi-object
detection algorithms trained on normal view video datasets to UAV aerial images. It is
necessary to design corresponding algorithms, which can meet the UAV object detection
task requirements according to the features of UAV images.

2.4. Challenges in UAV Object Detection

The object detection task in UAV remote sensing images faces many challenges, such
as object rotation, complex background, an increase in small object issues, low detection
efficiency caused by scale changes, and sparse and uneven distribution of object categories.
Detailed explanations of the different challenges are as follows:

Small objects increasing problem: The scale range of objects in UAV images is large.
Buildings, pedestrians, mountains, and animals often appear in the same image. Small
objects have a very small proportion in the image, which makes detection difficult [36,37].
The multiscale feature fusion method can effectively solve the problem of small objects
increasing by detecting objects of different sizes through different levels of features.

Background complexity problem: The dense object areas in UAV images contain many
identical items, which increases the probability of false detection. In addition, a large
amount of noise information in the background of UAV images can also weaken or obscure
the object, making it difficult to detect continuously and completely [38]. In order to im-
prove detection accuracy and robustness in the complex background, attention mechanisms
and graph neural networks can be used to enhance the relationships between objects.

Category imbalance problem: The objects in the images captured by UAVs may have
category imbalance problems, such as having a large number of objects in one category
and a small number of objects in the other category, resulting in the detector leaning
towards predicting categories with a large number [39]. Generative adversarial networks
or autoencoders can be used to enhance data diversity and quality, which will alleviate
issues regarding data imbalance and noise.

Object rotation problem: In UAV images, objects can appear in any position and
direction [40]. Traditional object detection algorithms usually assume that the object is
horizontal, but, in UAV images, the object may be rotated at any angle. In addition, rotating
objects may change their shape and appearance in the image, which makes the object
detection algorithm based on shape and appearance not work accurately [41]. Use a
rotation box or polygon box to represent the object that can adapt to any angle of the object.
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3. UAV Object Detection Method Based on Deep Learning

With the development of UAV technology, UAVs equipped with cameras and embed-
ded systems have been widely used in various fields, including agriculture [42], power
inspection [43], aerial photography [44], and mapping [45]. These applications require
the UAV platform to have the ability to perceive the environment, understand scenes,
and make corresponding reactions. The most basic function is automatic and efficient
object detection. Object detectors based on deep networks [46,47] extract image features
automatically through convolutional neural networks, greatly improving the performance
of object detection.

In this paper, we focused on researching papers about deep-learning-based UAV object
detection that were published in the past five years. Firstly, all papers were classified based
on one-stage and two-stage object detection, and then four common problems in UAV object
detection were summarized. In addition, research has been conducted on applications such
as geological environment surveys, traffic monitoring, and precision agriculture. Finally,
classic UAV object detection algorithms based on deep learning targeting these common
problems were selected [48]. In this section, we will describe the improvement methods
proposed by various scholars based on the selection criteria above.

3.1. Object Detection Development Process

The development of object detection algorithms can be divided into two stages: tra-
ditional object detection algorithms and deep-learning-based object detection algorithms.
Deep-learning-based object detection algorithms are further divided into two main technical
routes: one-stage and two-stage algorithms [49]. Figure 1 shows the development of object
detection from 2001 to 2023. Traditional object detection algorithms are mainly based on slid-
ing window and artificial feature extraction methods, which generally consist of three steps:
region proposal, feature extraction, and classification regression. The region proposal is to
obtain the regions of interest where the object may be located. In the feature extraction process,
artificial feature extraction methods are utilized to transform images in candidate regions
into feature vectors. Finally, the classifier classifies objects according to the extracted features.
These algorithms have the disadvantages of high computational complexity, weak feature
representation ability, and difficulty in optimization. Representative algorithms include the
Viola–Jones detector [50], the HOG pedestrian detector [51], etc.

One-stage

Two-stage

2018 2020 2022

2019 2021 2023

2001 2006 2008

VJ Det

HOG Det

DPM
SGMFNet

NQSACPNet

MS-Faster R-CNN

Yolov4

Yolov3

Yolov7

2018 2020 2022

2019 2021 2023

RSODCascade R-CNN GDFNet

RoI Fusion R-CNN

Figure 1. The development of object detection from 2001 to 2023.

In 2012, with the rise of neural networks (convolutional neural network, CNN), object
detection developed fast. Deep neural networks are mainly used in deep-learning-based
object detection algorithms to automatically extract high-level features from input images
and classify objects. These algorithms have the advantages of fast speed, high accuracy, and
strong robustness. In addition, the two-stage detector only processes the content of region
proposals in the second stage, which results in the loss of position information of the object
in the entire image. As shown in Figure 2, the two-stage object detection framework solves
the problems of boundary object detection, inaccurate localization, and multiscale object.
These algorithms generate proposal regions in the first stage and perform classification and
regression on the contents in the regions of interest in the second stage. These algorithms
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usually have high accuracy but low speed. Representative algorithms include R-CNN
(Region-based CNN), SPP-Net [52], Fast R-CNN [53], Faster R-CNN, etc.

Input image

CNN 

Stage 1

Proposal 

boxes

Stage 2

Output image

Figure 2. Two-stage object detection framework.

Due to the fact that two-stage detectors need two stages to perform detection, the first
stage generates many proposal regions, resulting in large computation and low speed,
which is not suitable for real-time scenarios. One-stage detectors solve these problems,
and their framework is shown in Figure 3. One-stage object detection algorithms directly
generate location and category from the image, removing the process of proposal region,
thus having faster speed. However, one-stage object detection algorithms are susceptible
to incorrect detection in localizing and detecting small objects due to the high number of
densely generated region proposals. In addition, the classification and regression branches
of one-stage methods are usually simple and difficult to capture the detailed features of the
target, leading to unstable detection performance. Representative algorithms include SSD,
Yolo series, etc.

Input image Output image
Feature 

extraction

Multi-scale

boxes

Object 

detection

Figure 3. One-stage object detection framework.

3.2. One-Stage UAV Object Detection Algorithm

One-stage UAV object detection is a method that uses deep learning techniques to
directly predict the location and category of UAVs from images. One-stage object detection
algorithms only need to process the image once to obtain the classification and location
information of the object. Thus, one-stage object detection algorithms have fast speed,
which can be applied to scenarios with high real-time requirements. In 2015, Redmonn et al.
proposed the Yolo algorithm. It divides the input image into fixed-size grids, and each grid
predicts a certain number of bounding boxes, confidence scores, and probabilities for the
category of objects. In 2016, Liu et al. proposed the SSD algorithm. SSD algorithm generates
a set of default bounding boxes by using convolutional filters on different scales of feature
maps and predicts the category and position offset of the object in the box. Figure 4 shows
the comparison of Yolo and SSD algorithm structures.
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CNN

Output image

Input image

Multi-scale boxes

Input image CNN

Output image

YOLO

SSD

Figure 4. The comparison between Yolo and SSD algorithm.

Due to their fast running speed and high detection accuracy, one-stage detectors Yolo
and SSD are widely applied. For example, Hossain et al. [54] transferred Yolo and SSD to
the embedded device GPU JetsonTX2 to achieve UAV ground object detection and tracking.
Lu et al. [55] integrated Yolov5 with shallow feature information, effectively improving
the efficiency of UAV marine fishery law enforcement. Marta [56] proposed a method
using dense point clouds to estimate obstacle heights and used the Yolo algorithm to detect
atypical aviation obstacles. This method achieved the identification and classification of
atypical aviation obstacles. Li et al. [57] integrated SSD with a convolutional block attention
mechanism (SSD-CBAM) for earthquake disaster building detection.

In addition to directly applying the original one-stage detectors to multi-object detec-
tion under the UAV perspective, many scholars have improved them from various aspects
such as network structure optimization, multi-task learning, introducing region-specific
contextual information, and integrating multiple networks. Table 1 shows the comparison
of object detection algorithms based on one-stage. The following will mainly introduce the
object rotation problem, complex background problem, small object problem, and class
imbalance problem in UAV one-stage detection.

Table 1. Comparison of main object detection algorithms based on one-stage method.

Problems Models Dataset Used Published Year Category

Small objects

Sommer et al. [58] DLR 3K [59] 2017 Vehicle
UAV-Yolo [9] UAV-viewed 2020 Pedestrian

SGMFNet [60] VISDRONE2019 2023 Multicategory

Complex background

Segment-before-detect [61] VEDAI [62] 2017 Vehicle
Li et al. [63] DOTA-v1.5 [64] 2020 Multicategory
NQSA [65] IR-UAV 2022 Infrared image

Category imbalance
CPNet [66] xView [66] 2020 Pedestrian

DS Yolov3 [67] UAVDT [68] 2021 Multicategory

Object rotation
FS-SSD [69] PASCAL VOC [70] 2020 Multicategory
RSSO [71] RSSO 2022 Multicategory
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3.2.1. Aiming at Small Object Problems

The scale range of objects in UAV images is large. Buildings, pedestrians, mountains,
and animals often appear in the same image. Small objects occupy a very small proportion
of the image with limited resolution, which makes detection difficult.

In the early research of UAV object detection, Sevo and Avramovic [72] proved that
CNNs can be effectively integrated into the object detection algorithm of aerial images.
Sommer et al. [58] applied Fast R-CNN and Faster R-CNN to solve the problem of vehicle
detection from aerial images. Although CNNs have a certain generalization ability, small
objects occupy very few pixels in the image and it is difficult to extract effective features.
In addition, CNNs are not robust enough to the rotation, occlusion, illumination, and other
changes regarding small objects, which can easily cause false positives or false negatives.

To improve the performance of small object detection, Liu et al. [9] proposed UAV-
Yolo, which optimized the Resblock in darknet by connecting two ResNet units with the
same width and height. Zeng et al. [73] integrated a hybrid attention mechanism with
coordinate-related attention and a multi-layer feature structure fusion, which can effectively
distinguish the foreground and background features of aerial images and enrich the seman-
tic information of shallow features. The algorithm performed well on the VisDrone2020
dataset, improving accuracy while ensuring detection speed. Qian et al. [74] combined
Haar-Like features and MobileNet-SSD algorithm, using a top-down and horizontal connec-
tion method to construct a feature pyramid with high resolution and strong semantics, thus
achieving multiscale UAV feature representation and detection. Tian et al. [75] proposed a
DNOD method that used the VGG network to extract feature maps of UAV images and
combined them with the location information of suspected regions for secondary iden-
tification, reducing the false negative rate of small objects. They combined Yolov4 and
EfficientDet-D7, respectively, to verify the reliability and effectiveness of the algorithm.

Although these methods can detect small objects, their detection performance is poor
when dealing with images containing a large number of dense small objects. To solve these
problems, Zhang et al. [60] proposed SGMFNet, a network for identifying objects in aerial
images captured by UAVs. SGMFNet uses self-attention guidance and multiscale feature
fusion to improve detection accuracy. The network structure of SGMFNet is shown in
Figure 5.

CSPDarkNet53

GLFG

CBS

PUS

Concat

CBS

3*C3

PUS

Concat

3*C3

CBS

PUS

Concat

3*C3

IFE

Concat

3*C3

PDS

3*C3

Concat

PDS

3*C3

Concat

PDS

Prediction

IFE PredictionIFE Prediction

IFE PredictionIFE Prediction

IFE Prediction

CBS Conv BN SiLU

C3 3*CBS BottleNeck

SPPF 2*CBS 3*MaxPool

Input

BackBone

Neck

Head

（Output）

Figure 5. The network structure of SGMFNet.

The object detection process of SGMFNet has three steps. First, SGMFNet uses CSP-
DarkNet53 to obtain features from the image. Then, it adds a GLFG module to the backbone
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network. This module helps to combine local and global information. By applying self-
attention, the GLFG module can measure the global resemblance of feature maps and thus
obtain global information. Self-attention mechanism uses three matrices to calculate the
attention weights of each element to other elements in the sequence and generates a new
sequence representation according to these weights. Self-attention calculation is as follows:

Q = XWq, K = XWk, V = XWv (1)

where X denotes the input sequence. Wq, Wk, and Wv are three random initialization
matrices, which can be adjusted by attention dynamically:

Attention(Q, K, V) = Softmax(
Q · KT
√

dk
)V (2)

where the global similarity is calculated by Q · KT ; dk is the number of channels in the
hidden layer; Softmax normalizes the result of the calculation to obtain a weight coefficient
of V. Attention mechanism can be obtained by multiplying the results of the computation.

Next, the neck is composed of the PSFF module, which fuses multiscale features from
different sampling branches that run in parallel and capture various features.

Finally, in the head, the shallow feature map is enhanced by the IFE module to boost
the detection accuracy of small objects.

SGMFNet’s experimental effects for small objects were evaluated on the VISDRONE2019
dataset. The experimental results are shown in Table 2 and the qualitative results are shown
in Figure 6.

(a)

(b)

(c)

Figure 6. The qualitative results of SGMFNet: (a) Yolov7; (b) mSODANet; (c) SGMFNet. Yellow
wireframes highlight the areas that exhibit the superiority of SGMFNet approach.

Table 2. The results of SGMFNet.

Method mAP50 (%) mAP75 (%) mAP (%) AP-Small (%) AP-Mid (%) AP-Large (%)

SGMFNet-m 62.3 40.2 39.5 31.9 49.4 52.1

Note: mAP denotes the mean average precision; AP means the average precision.
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As shown in Figure 6, in the first column of images, complex backgrounds occupy
an important part of the image. The second column of images was captured from a low
altitude angle by a UAV, and there are significant differences in the scale of the objects
due to distance. The third column image contains a large number of dense small objects.
The observation results indicate that the SGMFNet method exhibits significant advantages
over other methods. The experimental results of Table 2 and Figure 6 show that SGMFNet
has significant advantages over the other methods in processing images containing a large
number of dense small objects.

3.2.2. Aiming at Complex Background Problems

In UAV images, target-dense areas and background noise information can interfere
with object detection and lead to false alarms. This not only reduces the performance and
safety of UAVs but also endangers the stability and development of society.

Although CNNs have generalization ability, convolution and pooling operations will
lose details of feature maps, which is not conducive to complex background object detec-
tion. To solve these problems, some effective improvement algorithms have been proposed.
Using a deep fully convolutional network, Audebert et al. [61] segmented vehicles in aerial
images with high accuracy and detected them by finding connected components. By com-
bining semantic segmentation and object detection in aerial images, they demonstrated
that detection performance can be enhanced, especially in obtaining object boundary infor-
mation. Li et al. [63] constructed a semantic segmentation-guided RPN (sRPN) module to
suppress background clutter in aerial images. This module integrates multi-layer pyramid
features into a new feature after performing Atrous spatial pyramid pooling (ASPP) and
convolution operations. Inspired by this, Chen et al. [76] combined a spatial pyramid
pooling network with a probabilistic pooling method, enhancing the robustness of the
aerial image recognition algorithm. They solved the problem of invalid features of complex
backgrounds having a negative impact on recognition accuracy and achieved higher aerial
image recognition accuracy.

The attention mechanism is a technique inspired by human perception that can fil-
ter out useful information for tasks. For example, Zhang [65] transformed local contrast
measurement into non-local orthogonal contrast measurement in deep feature space. In ad-
dition, they regarded feature points that disrupt semantic continuity as potential object
locations by the self-attention method. On this basis, they designed a multiscale one-stage
detector by effective receptive field calculation. The network structure is shown in Figure 7.
By using a bidirectional serial feature modulation method, they can fully retain the multi-
scale features of the object. This method ensures the accuracy of object detection in complex
backgrounds and meets the real-time requirements. Figure 8 shows the representative
results based on NQSA from the MWIR-UAV dataset.

The results show that the detection layer can learn with the bidirectional high-level
feature modulation guided by low-level features, and better object detection performance
can be achieved.

In UAV images, contextual information can help the attention mechanism distinguish
between object and background, thus improving the quality of object features. For example,
Chen et al. [77] proposed a context-based feature fusion method based on deep CNN, which
used different levels of feature maps for fusion, improving the matching degree between
region proposal and object features. Yue et al. [78] proposed a global–local context collector,
which extracted global and local contextual information and enhanced low-quality objects
in complex backgrounds.

The existing deep-learning-based UAV object detection methods in complex back-
grounds still have defects. The attention mechanism can effectively filter out useless
information in the background, but, in the specific scenario of UAV object detection, it
needs to reasonably allocate weights to avoid false detection of small objects. Contex-
tual information can improve the model’s understanding of background and foreground,
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but contextual information needs to be filtered. Therefore, it is of great significance to study
how to detect objects in complex backgrounds.
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Figure 7. The structure of NQSA model.

Figure 8. The results of NQSA from the MWIR-UAV dataset. Green wireframes represent schematic
of typical objects.

3.2.3. Aiming at Category Imbalance Problems

UAVs can cover a wide area without being limited by terrain, so the images of UAVs
have a large field of view. In these images, some categories of objects rarely appear, while
some categories of objects appear frequently, resulting in low efficiency and accuracy in
object detection.

To deal with this problem, Li et al. [67] proposed DS Yolov3, which detects objects of
different scales through a multiscale perception decision discrimination network, and de-
signed a multiscale fusion channel attention model. However, directly using convolutional
detectors to process these images is too costly. Although the sliding window method can
crop the images, it is not efficient. So, many algorithms improve efficiency by reducing the
search area. Yang et al. [79] proposed an aerial image object detection algorithm based on
object clustering for the problem of imbalanced object distribution in aerial images. The al-
gorithm unified object clustering and detection in an end-to-end framework. Ju et al. [80]
proposed an aerial image object detection algorithm based on the density map of the object
center point, which mainly consists of three modules: density map generation module,
region segmentation module, and detection fusion module. The distribution of pixel inten-
sity in the whole image can be well-reflected by the density map. The region segmentation
module crops out candidate detection regions based on the information from the density
map. Finally, the region detection results and original images are fused.
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Considering the shortcomings of candidate region generation algorithms, some studies
apply reinforcement learning to object search in large field-of-view images. For example,
Burak [66] proposed an efficient object detection framework for large field-of-view visible
light remote sensing images, consisting of two modules called coarse-level search and
fine-level search, as shown in Figure 9. Both searches are cascaded algorithms that combine
reinforcement learning with CNN.

Sampled

HR Patch

Sample

HR?
Fine Detector Action

Coarse Detector 

Action

Label Reward
Agent

Action

LR

Image

YesNo

Input High Resolution (HR) image

Figure 9. Bayesian decision influence diagram. At training time, HR (high-resolution) images are
downsampled to LR (low-resolution) images. Detector uses LR/HR image to output bounding boxes.

In Figure 9, circles represent random variables, squares/rectangles represent actions,
and diamonds represent utilities. In the coarse search, the low-resolution image is divided
into sub-images of the same size and their respective rewards after magnification are
calculated. In the fine search, the sub-images selected by the coarse search module are
further optimized in the search space to finally determine which sub-images to magnify.
Detection results are shown in Figure 10 and Table 3.

Original

CPNet

FPNet

Original

Figure 10. The learned policies by the coarse- and fine-level policy. The top row shows the initial LR
images provided to the coarse policy network. The second row shows the patches selected by the
coarse policy network, while the last two rows represent the policy learned by the fine-level policy
network. The regions for using LR images are shown in gray.
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Table 3. The detection results of CPNet method.

Model Coarse Level Fine Level Coarse+Fine Level

AP AR R-HR AP AR R-HR AP AR R-HR
CPNet 38.2 59.8 40.6 38.3 59.6 35.5 38.1 59.7 31.5

Note: AR denotes average recall. R-HR means the ratio of sampled HR image.

Tests conducted on the xView dataset demonstrate that the CPNet retains nearly the
same accuracy as the object detector that exclusively uses HR images with a running time
of only 30% of HR images.

There are other improved methods based on deep learning used in the UAV object
detection for category imbalance problems. For example, Wang et al. [81] proposed a
reinforcement-learning-based method for UAV object searching and tracking, which enables
UAVs to autonomously search and track moving objects in complex environments while
considering UAV motion constraints and energy consumption. Yudin et al. [82] presented
an object detection algorithm in aerial images based on the density map of the object center
point, which can quickly and accurately identify the position and direction of all vehicles in
the intersection. Then, the results of object detection are used as additional features input
to two modern efficient reinforcement learning methods (Soft Actor–Critic and Rainbow),
which can accelerate the learning process of agents.

In summary, UAVs need to monitor and collect large areas of space or scenes in fields
such as pedestrian detection, remote sensing mapping, agricultural monitoring, etc. Fast
and accurate searching and detection of objects in large field-of-view images can effectively
save computing time, reduce hardware requirements, and improve UAV work efficiency.

3.2.4. Aiming at Object Rotation Problems

Objects in UAV images may appear at any position and orientation, and the angular
variation in objects of the same class is also different. Rotating objects can lead to a high
percentage of false or missed detections due to erroneous and unstable locations.

To solve this problem, some researchers have proposed rotation-based object detection
methods, which represent the position and orientation of objects by predicting their center
point, width, height, and rotation angle. This method can better adapt to the rotation
variation in objects and improve the detection accuracy and robustness. For example,
to address the issue of rotating object recognition accuracy in UAV optical remote sensing
images, Wang et al. [71] developed a rotating object detection technique for remote sensing
images that is based on feature alignment of candidate areas (RSSO). The paradigm for
RSSO object detection is displayed in Figure 11.
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Figure 11. The pipelines of the RSSO model.

The RSSO network uses ResNet-101 [83] as the backbone for feature extraction. Then,
the network adjusts the relationship between feature maps through the AFA-FPN module,
solving the problem of inaccurate feature alignment between adjacent layers and ensuring
the deep semantic features of small objects can be effectively transferred to the shallow
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feature map. The PHDA module combines parallel channel domain attention and spatial
domain attention, identifies the local regions in the feature map tensor that contain small
object features, and assigns larger weights to these regions to suppress the influence of
background noise. The rotation branch uses rotation regression, obtains rotation-invariant
area features, minimizes the mismatch between region features and objects, and reduces
the regression difficulty of the rotation candidate boxes. The results of the experiments are
shown in Figure 12 and Table 4.

(a)

(b)

Figure 12. The experimental results of the RSSO method: (a) original images; (b) detection results.
The first column shows the detection results of a single type of object in the simple background.
The second column shows the detection results for multiscale objects on high-resolution remote
sensing images of large scenes. The third column shows the detection results of densely distributed
small objects with different angles.

Table 4. The results of RSSO method.

Method PL BD ST SH TC BR RA HC mAP

RSSO 82.43 79.46 82.21 79.02 89.94 77.63 88.31 84.81 82.04
Note: PL, BD, ST, SH, TC, BR, RA, HC are the object categories for Plane, Baseball diamond, Storage tank, Ship,
Tennis court, Bridge, Roundabout, and Helicopter, respectively.

The results in Figure 12 and Table 4 show that the method has high accuracy and recall
rate in UAV remote sensing image object detection. However, rotation-based methods also
have some drawbacks, such as large computational cost, high training difficulty, unstable
angle regression, etc. Therefore, how to effectively deal with rotating objects in UAV images
is still a worthy research problem.

In this field, there are some other important pursuits. For example, to detect rotating
objects in UAV images, Liang et al. [69] developed a one-stage detector with spatial context
analysis based on feature fusion and scale modification. Xiao et al. [40] first used CNN and
rotation anchor mechanism to generate candidate rotation regions, which represent the
position and orientation of objects. Then, using bilinear interpolation and rotation pooling
operations, the irregular rotation regions are transformed into regular rectangular regions,
which are used to extract the features of objects. Finally, using a fully connected layer and
Softmax layer, each rotation region is classified and regressed, outputting the category and
position of the object.

3.3. The Two-Stage Object Detection Algorithm

Two-stage UAV object detection is a method that performs classification to determine
categories after proposing the regions of interest (ROI). The two-stage method has higher
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accuracy than the one-stage method because the region of interest is located and classified
by the two-stage detector from the first stage. However, the two-stage method takes more
time to infer than the one-stage method due to extra regions and stage processing.

In 2014, Girshick et al. [11] tried to combine the Region Proposal and CNN based on
AlexNet and proposed R-CNN algorithm with greatly improved detection performance.
He et al. [52] used the Spatial Pyramid Pooling (SPP) module in CNN, which solves the
limitation of fixed-size images and avoids repeated extraction of image features.

To solve the problem that the R-CNN algorithm has a great deal of redundancy and
runs slowly in the feature extraction operation, Grishick [53] proposed a Fast R-CNN
using region of interest (ROI) pooling based on R-CNN and SPP-Net algorithm structure
to achieve end-to-end detection. Ren et al. [12] presented the Faster R-CNN method
that replaces the selective search algorithm with the region proposal network (RPN) for
generating candidate regions more efficiently. The network further improves the detection
speed by sharing the convolutional features.

Table 5 shows the comparison of object detection algorithms based on two-stage.
The following will mainly introduce the object rotation problem, complex background prob-
lem, small object problem, and category imbalance problem in UAV two-stage detection.

Table 5. Comparison of main object detection algorithms based on two-stage detection.

Problems Reference Dataset Used Published Year Category

Small objects
R-DFPN [84] Google Earth 2018 Ship

RSOD [85] UAVDT [68] 2022 Traffic

Complex
background

SCRDet [86] DOTA [64] 2019 Multicategory
Shao et al. [87] UAV-head [87] 2021 Pedestrian

FR-Transformer [88] UWHD [88] 2022 Agriculture

Category imbalance
Deng et al. [14] NWPU VHR-10 [89] 2018 Multicategory

MLD [90] Leaf [90] 2022 Agriculture

Object rotation
RoI Transformer [91] DOTA [64] 2019 Multicategory

TS4Net [92] UAV-ROD [92] 2022 Vehicle

3.3.1. Aiming at Small Object Problems

The object scale in UAV images varies greatly and the proportion of small objects is
high. Therefore, to perform a fast and accurate object detection, the cost of object detection
search needs to be reduced first. Avola et al. [93] constructed a multi-stream structure to
simulate multiscale image analysis. This structure limits the number of region proposals
at the expense of the precision and reduces the number of parameters, which can detect
objects in UAV video sequences in real time.

To improve the detection of small objects at different scales, Lin et al. [94] presented a
feature pyramid network (FPN) that combines low-level features with high-level semantics
to enhance the detection. The FPN builds a pyramid of features using different levels of
CNN feature maps, and then predicts independently on each layer of the pyramid. This
model can greatly reduce the computational cost and solve the problem of inconsistency
between training time and testing time.

Using the FPN algorithm, Yang et al. [95] incorporated the dense connection from
DenseNet to obtain features with higher resolution. They used lateral and dense connec-
tions in the top-down network to combine features from different levels. These algorithms
improved the effect of small object detection to some extent, but new modules increased the
computational cost, and the speed of the algorithm was difficult to guarantee. Liu et al. [96]
proposed a high-resolution detection network HRDNet, which used multi-resolution input
and had multiple depth backbones. At the same time, they designed a Multi-Depth Image
Pyramid Network (MD-IPN) and a Multi-Scale Feature Pyramid Network (MS-FPN). MD-
IPN used multiple depth backbones to maintain multiple position information, extracting
various features from high resolution to low resolution, solving the problem of small object
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context information loss, and significantly improving the detection speed compared with
FPN. A high-resolution feature extractor that assigned features to different levels was
designed in [97]. In [97], the authors applied a coarse-to-fine region proposal network to
gradually raise the IoU threshold intersection, and maintained sufficient positive anchors
at each stage. To more accurately estimate the mask, they scored the mask head with both
classification score and location score.

However, during CNN downsampling, important features of an object are degraded.
In addition, the object observed by UAV has the characteristics of small size and high den-
sity, which increase the difficulty of object detection. To solve above problems, Sun et al. [85]
proposed a real-time small object detection algorithm for identifying small objects in the
air called RSOD. This algorithm is specifically designed for monitoring traffic with UAVs.
The algorithm is based on the Faster R-CNN framework, and introduces a multiscale fea-
ture fusion module and an adaptive anchor box generation module to improve the feature
expression and localization ability of small objects. The structure of the RSOD model is
shown in Figure 13. First, the image is input into the backbone network. Then, information
fusion is performed on four feature layers with different depths. After that, the adaptive
weighted feature fused four features. Finally, the object classes are predicted by the Yolo
Head module. The experimental results are listed in Table 6, and some detection results
based on the RSOD network are shown in Figure 14.

Improved

SPP

Input 

image

Darknet53+Attentional 

mechanism

Top-down 

pathway of FPN

Adaptive 

weighted fusion
Yolo Head

Figure 13. The overall structure of the RSOD model.

Figure 14. Thedetection results of the RSOD model.

Table 6. The object detection results (mAP50 (%)) based on the RSOD model.

Method Input Size Car Bus Truck All

RSOD
416 41.5 41.5 43.2 43.9
608 57.3 49.8 51.1 52.7

The results of the RSOD model achieved 29.8% mAP on the VisDrone-2019 dataset
while maintaining a high detection speed.

Small object detection algorithms have a wide range of application needs in the fields
of face detection, military reconnaissance, and traffic security. In the autonomous flight of
UAVs, the identification and spatial localization of ground landing points at higher flight
altitudes and also has high requirements for the accuracy of small object detection.
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3.3.2. Aiming at Complex Background Problems

Object detection has made significant progress, but it still faces difficulties with ob-
jects that have arbitrary orientation and dense distribution. These problems are especially
prominent for aerial images with complex backgrounds. For UAV object detection in
arbitrary orientations, Xu et al. [98] added four sliding offset variables to the classic hori-
zontal bounding box representation to achieve horizontal detection of objects in complex
backgrounds and oriented detection of other objects. Zhang et al. [99] proposed a GDFNet
(Global Density Fused Convolutional Network) model, which enabled object detection in
crowded scenes with high distribution density.

Attention mechanism is a common technique for object detection as it helps to re-
duce the noise from complex backgrounds. For example, Yang et al. [86] introduced
attention mechanism into object detection and proposed SCRDet, where a supervised
Multi-Dimensional Attention Leaner (MDA-NET) was used to emphasize the features
of the objects and reduce the features of the background, which can successfully detect
the objects in complex scenes. Liu et al. [100] designed a center–boundary dual hybrid
attention module that can boost ship detection accuracy. Shao et al. [87] presented an
enhanced spatial attention module, which increased the precision of pedestrian detection
in UAV images.

However, traditional attention mechanisms are typically built on CNN architectures
and only calculate the weights of certain regions. To better capture more global context
information and improve the accuracy of UAV image object detection, Zhu et al. [88]
combined transformer with convolutional kernel attention mechanism and proposed the
FR-transformer method to achieve the requirement of accurate and fast detection for wheat
heads by UAVs. Figure 15 shows the network structure of FR-transformer. In this FR-
transformer model, the traditional CNNs treat images as matrices or grids, combining
neighborhood pixels or feature pixels through sliding windows; visual transformers divide
the input image into multiple image blocks to form sequences and process sequential
relationships using fully connected layers or attention mechanisms.
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Figure 15. The structure of the FR-transformer method.

From the transformer architecture, the image (H, W) is first input to the Patch Partition
for block operation and then sent to the linear embedding module to adjust the channel
number. Finally, through multi-stage feature extraction and downsampling, the final
prediction result is obtained. After each stage, the size shrinks to half of the initial size,
and the channel grows to double of the initial channel, which resembles the ResNet network.
Block in Swin transformer is used by the transformer block in each stage.

Figure 16 shows the qualitative results of the method in [88] and Table 7 shows the
detection performance of the FR-transformer method. According to the results of the wheat
detection task, the FR-transformer method can detect wheat heads with high accuracy
in the real field environment. These research results show that UAV object detection is
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very useful for agriculture. For example, UAV can be applied to agricultural inspections,
providing high-resolution aerial images to help farmers accurately observe the condition of
farmland. UAVs can also be used to help farmers monitor the environmental conditions of
the land and better manage agriculture.

Table 7. The detection performance of the FR-transformer method.

Method mAP50 mAP75 mAP AP-Small AP-Mid AP-Large

FR-
transformer 88.3 38.5 43.7 6.4 44 54.1

(a) (b) (c) (d)

(I)

(II)

Figure 16. The detection results of FR-transformer: (I) RGB image; (II) FR-transformer. The challenges
are (a) different growth stages; (b) brightness changes; (c) image blur; (d) overlap. The green bounding
box represents the ground truth of the wheat, and the red bounding box represents the predicted area
of the wheat.

As introduced above, the attention mechanism strengthens the feature extraction
ability by distributing the feature information among the learning channels with different
weights. However, it is still worth studying how to use the attention mechanism reasonably
and control the size of the model.

3.3.3. Aiming at Category Imbalance Problems

In UAV images, the objects are generally sparse and non-uniform distribution, which
makes the detection efficiency very inefficient. In addition, the two-stage detector only
processes the content of the candidate region in the second stage, and the position infor-
mation of a small number of categories in the whole image is missing. To address these
problems, Deng et al. [14] proposed a detection method that is effective for multi-class
objects in variable remote sensing images of large scale. Firstly, the feature extractor has
the Relu and inception modules to make the receptive field size more diverse. Then, an
accurate object detection network and a multiscale object proposal network are combined,
which contain several feature maps, enabling small and densely packed objects to produce
stronger response. Cores et al. [101] presented a two-stage spatiotemporal object detection
approach that addresses the imbalance problem by considering temporal information. First,
a short-term proposal linking and aggregation method was used to improve features. Then,
a long-term attention module was designed to improve the short-term aggregated fea-
tures with long-term spatiotemporal information. This module uses long-term connections
between proposals in frames to deal with the imbalance of categories.



Remote Sens. 2024, 16, 149 19 of 29

It is essential to estimate seed performance and yield by computing the amount of
maize leaves from UAV images. However, detecting and counting maize leaves is difficult
because of a variety of plant disturbances and the cross-covering of the adjacent seedling
leaves. Thus, Xu et al. [90] proposed a method of detecting and counting maize leaves
based on UAV images. To reduce the effect of weeds on leaf counting, maize seedlings
were separated from the complex background by R-CNN technique. A new R-CNN loss
function SmoothLR is proposed. Then, Yolov5 was used to detect and count the segmented
leaves of maize seedlings. The flowchart of maize leaves method (MLD) presented in [90]
is shown in Figure 17. The results of MLD method on the detection of maize leaves are
shown in Figure 18 and Table 8.

Mask

R-CNN
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Object

Detection

Crop

Segmentation Results Foreground Map

Bitwise

Detection resultsUAV+RGB Original image

Stage 1 Stage 2

Figure 17. Flowchart of maize seedlings and leaves detection.

(a) (b) (c)

Figure 18. Visualization results of leaf detection: (a) original; (b) foreground map; (c) MLD results.
Newly appeared leaves are in the red rectangular boxes. The blue circle is the multi-inspection
of leaves. The blue and yellow rectangles are missing fully unfolded leaf and newly appeared
leaf inspection.

From Table 8, we can see that the MLD method exhibited higher recall and AP than
Faster R-CNN. The MLD method can accurately detect both fully unfolded leaves and
newly appeared leaves in the image (see Figure 18).

Methods that introduce other networks are able to select different structures for dif-
ferent scene characteristics of object detection in UAV images. However, such methods
have poor migration ability and generalization when dealing with tasks containing multi-
ple scenes.
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Table 8. Test results of Fully Unfolded Leaf (FUL) and Newly Appeared Leaf (NAL) detection.

Model
Precision (%) Recall (%) AP (%)

mAP (%)FUL NAL FUL NAL FUL NAL

Faster
R-CNN 40.7 18.2 79.9 48.1 67.3 17.3 42.3

MLD 92 68.8 84.4 50 89.6 54 71.8

3.3.4. Aiming at Object Rotation Problems

The rotation of the object makes its position in the image become uncertain, which
increases the complexity of position regression, especially for high-resolution aerial images.
Thus, Ding et al. [91] proposed a module called RoI Transformer to address the problem
of detection interference caused by changes in the angle of view and rotation of the object
from the UAV perspective, with the aim of achieving the detection of oriented and dense
objects through supervised RRoI learning and location-sensitive alignment-based feature
extraction through two-phase frameworks. It consists of two parts. The first is the RRoI
Learner, which learns the transition from Hroi to RRoI. The second is Rotated Position
Sensitive RoI Align, which extracts rotated invariant features from RRoI for subsequent
object classification and position regression.

Horizontal object detection has many limitations due to the arbitrary direction of
the object. To solve this problem, Zhou et al. [92] presented the TS4, a rotating object
detector with a two-stage selection method and an anchor refinement module (ARM).
The architecture of the TS4Net is shown in Figure 19.
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Figure 19. The architecture of the TS4Net.

TS4Net consists of a ResNet backbone, an FPN, an ARM cascade network with a
rotated IoU prediction branch, and the two-stage sample selective strategy. In rotation
detection, the angle causes a decrease in IoU value between the horizontal anchor and
the ground truth. The rotation angle has a great effect on the IoU value, which makes the
quality of the positive sample worse. To solve this problem, TS4Net sets a single sample at
each anchor point, greatly reducing calculations and increasing performance. Considering
the ground truth contains the angle information of the object, TS4Net utilizes the angle
information between the sample and the ground truth to further select the high-quality
candidate positive samples. The horizontal anchor is refined into a superior rotary anchor
during the detection process by the first stage of ARM, and the rotary anchor is then
adjusted into a more accurate prediction frame by the second stage.

The predicted results of car orientation are shown in Figure 20, where the red line
indicates the head direction. Table 9 shows the quantity results with other state-of-the-art
methods on UAV-ROD dataset. The results show that TS4Net can achieve better accuracy
in localization.

Object rotation is a major bottleneck in object detection for UAV images, and the real-
ization of high-precision rotating object detection greatly expands the application scenarios
of UAVs, especially the localization of targets in dense areas of a city in aerial images, such
as vehicles in a parking lot, ships berthed in a harbor, and aircrafts in an airport.
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Figure 20. Visualization results of the TS4Net.

Table 9. Detection results on UAV-ROD dataset.

Method Backbone AP (%) AP75 (%) AP50 (%)

R-RetinaNet [102] ResNet-50 71.46 85.88 97.68
R-Faster R-CNN ResNet-50 75.79 86.38 98.07

TS4Net ResNet-50 75.74 86.9 97.82
TS4Net ResNet-101 76.57 88.17 98.1

4. Public Datasets for UAV Object Detection

Data-driven deep learning methods have been rapidly developed in recent years,
providing powerful tools for object detection (images and videos) in the UAV remote
sensing domain. To facilitate the research progress and performance evaluation of these
tasks, many researchers have contributed various open-source and classic UAV-based
remote sensing datasets. These datasets have a large scale and good generalization ability,
which can reduce the characteristics of the dataset itself. In this section, we will introduce
some of the most commonly used and influential datasets for UAV object detection.

Stanford Drone dataset [103]: This dataset was released by Stanford University’s Com-
puter Vision and Geometry Laboratory (CVGL) for studying human trajectory prediction
and multi-object tracking in crowded scenes. The dataset contains eight different outdoor
scenes, such as bookstores, cafes, campus squares, etc., each with multiple videos, totaling
about 20,000 object trajectories. Each object’s trajectory is annotated with a unique ID,
containing 10 types of objects, more than 19,000 objects. Although this dataset only collects
videos from a university campus, it can be applied to different application scenarios due to
the diversity of scenes and the complexity of objects.

UAV123 dataset [104]: This dataset contains 123 video sequences captured from low-
altitude UAVs, totaling more than 110,000 frames. These video sequences cover a variety of
different scenes, such as urban areas, parks, beaches, and campuses, as well as different
types of objects, such as pedestrians, bicycles, cars, and boats. Each video sequence has a
corresponding bounding box annotation file that records the position and size of the object
in each frame. In addition, each video sequence also has an attribute file that describes the
features of the sequence.

Car Parking Lot dataset (CARPK) dataset [105]: The CARPK dataset is a dataset for
vehicle detection and counting on UAV platforms. It was designated as a public dataset by
National Taiwan University in 2017. Specifically, it is the largest and first parking dataset
that UAV view has collected. The dataset was acquired by a UAV flying at an altitude of
40 m and includes images of nearly 90,000 vehicles taken from four different parking lots.
The maximum number of vehicles in a single scene is 188. The label information of each
vehicle is a horizontal bounding box.

UAV-ROD dataset [64]: In this dataset, 2806 aerial images were gathered using various
platforms and sensors. Each image has items with sizes, shapes, and orientations and is
roughly 4000 × 4000 pixels. These DOTA images are then annotated by aerial image
interpretation experts using 15 common object categories. The fully annotated DOTA
image contains 188,282 instances, each marked with an arbitrary (8d.o.F) quadrilateral.
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Okutama-Action dataset [106]: The Okutama-Action Dataset is a video dataset for
concurrent human action detection from a UAV perspective. It consists of 43 fully annotated
sequences with a duration of one minute and contains 12 action categories. This dataset has
many challenges that are lacking in current datasets, such as dynamic action transitions,
significant scale and aspect ratio changes, sudden camera movements, and multi-label
actors1. Therefore, this dataset is more challenging than existing datasets and will help
advance the field and achieve real-world applications.

UAV Detection and Tracking (UAVDT) dataset [68]: The UAVDT dataset is a bench-
mark test for object detection and tracking on UAV platforms. It contains about 80,000 frames
extracted from 10 h of videos involving three basic tasks, namely object detection (DET),
single-object tracking (SOT), and multi-object tracking (MOT). The images in this dataset
are taken by UAVs in various complex environments, with the main focus on vehicles.
These images are manually annotated, including bounding boxes and some attributes that
help analysis, such as vehicle category and occlusion. The UAVDT dataset consists of
100 video sequences that are filtered out from more than 10 h of videos taken at different
locations in urban areas covering various common scenarios, such as square road toll
stations, highway intersections, and T-junctions. The framerate of these videos is 30 frames
per second (fps), and the resolution of the JPEG images is 1080 × 540 pixels.

DAC-SDC dataset [107]: The DAC-SDC dataset is a video dataset for object detection
and classification on UAV platforms. It is provided by the System Design Contest (SDC)
hosted by the IEEE/ACM Design Automation Conference (DAC) in 2019. The dataset is
provided by Baidu and contains 95 categories and 150,000 images. These images are taken
by UAVs in various complex scenarios, and each extracted frame contains 640 × 360 pixels.

Moving Object Recognition (MOR-UAV) dataset [108]: The Moving Object Recognition
(MOR-UAV) dataset is a benchmark dataset for moving object recognition in UAV videos.
The dataset contains 89,783 cars or heavy vehicle instances collected from 30 UAV videos,
covering 10,948 frames. These videos are taken in different scenarios, such as occlusion,
weather conditions, flying altitude changes, and multiple camera angles. The feature of
this dataset is to use axis-aligned bounding boxes to annotate moving objects, which saves
more computational resources than generating pixel-level estimates.

DroneVehicle dataset [108]: The DroneVehicle dataset is a benchmark dataset for
vehicle detection and counting in UAV aerial images. The shooting environment covers
from day to night, with real environment occlusion and scale changes. The dataset contains
15,532 pairs (31,064 images), half of which are RGB images and the other half are infrared
images. It contains 441,642 annotated instances, divided into five categories: car, truck,
bus, van, and cargo truck. Tilted bounding boxes are used to annotate vehicles to adapt to
different angles and directions.

AU-AIR dataset [109]: The AU-AIR dataset is a large-scale object detection dataset of
multimodal sensors captured by UAVs. It has 32,823 extracted frames from eight video
sequences with different lighting and weather situations. The dataset contains eight types
of objects, including people, cars, buses, vans, trucks, bicycles, motorcycles, and trailers.
Each frame contains 1920 × 1080 pixels.

UVSD dataset [110]: The UVSD dataset is a large-scale benchmark dataset for vehicle
detection, counting, and segmentation in UAV aerial images. The dataset consists of 5874
images with resolutions ranging from 960 × 540 to 5280 × 2970 pixels. The 98,600 vehicle
instances in this dataset have accurate instance-level semantic annotations including three
formats: pixel-level semantics, horizontal bounding boxes, and tilted bounding boxes.
The dataset covers various complex scenarios, such as viewpoint changes, scale changes,
occlusion dense distribution, and lighting changes, which result in great challenges for
UAV vision tasks.

The above dataset is mainly used for urban environmental object detection. In recent
years, natural disasters have had a profound impact on various regions around the world.
The use of UAV geological object detection can make a significant contribution to accurate
damage assessment. Here are some datasets for geological post-disaster object detection:
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Maduo dataset [111]: Firstly, a UAV was used to capture the entire scene of the Maduo
earthquake disaster area, and then photogrammetry technology was used to process
individual images into a large digital orthophoto map (DOM) for further use. Finally, all
cracks in the DOM are depicted through extensive manual annotations. Seismologists
use these cracks to evaluate the stability of faults in the area and serve as samples for
supervised deep learning methods. This dataset contains 382 DOMs, covering the entire
area affected by the Maduo earthquake.

UNFSI dataset [112]: UNFSI is a dataset of road crack images captured by UAVs.
Considering the effectiveness of the input image, the collected images were cleaned as
follows: (1) they do not belong to common crack types. (2) They have severe interference
crack features. (3) They have indistinguishable pixels. (4) They do not contain cracks.
The total number of images is 5705, with a size of 4000 × 2250 pixels. To ensure the original
size of crack feature values and facilitate the adaptation of target detection algorithms to
actual UAV detection processes, all the original images were cropped into 640 × 640.

RescueNet dataset [113]: RescueNet is a high-resolution post-disaster dataset that
includes detailed classification and semantic segmentation annotations. This dataset aims to
facilitate comprehensive scene understanding after natural disasters. RescueNet comprises
post-disaster images collected after Hurricane Michael, obtained using UAVs from multiple
impacted regions.

In the past few years, with the development of precision agriculture, accurate counting
and measurement can improve the accuracy of activities such as crop monitoring, pre-
cision fertilization, and yield prediction. However, manual counting in the field is both
labor-intensive and time-consuming. UAVs equipped with RGB cameras can quickly and
accurately facilitate this task. The datasets used for UAV agricultural object detection are
as follows:

Zenodo dataset [114]: The Zenodo dataset was recorded using the UAV platform
DJI Matrice 210 at a flight altitude of 3 m above the vineyard. Every flight records one
side of the vineyard row. Grape berries are in the pea size (BBCH75) and string closure
(BBCH79) stages. Two annotation types were used: MOTS to detect and track grape
bunches, and COCO to detect berries. All the annotations were labeled using CVAT
software. This dataset can be used for object detection and tracking on UAV RGB videos
for early extraction of grape phenotypic traits.

Grape-Internet dataset [115]: The grape images in the Grape-Internet dataset are all from
the network, including various red grape varieties, totaling 787 grape images. After data
cleaning, all images are randomly cropped to different resolutions (from 514 × 460 pixels to
4160 × 3120 pixels) and manually annotated using LabelImg. The images have differences
in shooting angle and shooting distance, as well as varying degrees of occlusion and
overlap. The above differences greatly increase the difficulty of detection and bring greater
challenges to the detection network.

MangoYOLO dataset [116]: The MangoYOLO dataset consists of 1730 images for
mango object detection. The size of each image is 612 × 512 pixels, and each image contains
at least one annotated mango. The annotation file contains the bounding box coordinates
and mango variety names for each mango in XML format.

5. Future Directions

At present, the interest in UAV object detection algorithms is increasing, and the
existing algorithms have achieved good detection results, but there are still issues that
need to be addressed. The interference caused by complex backgrounds to the object
detection task has been effectively suppressed, but the existing algorithms still have false
alarms and missed detection problems in a dense environment or an environment with a
large number of similar objects. The object detection algorithms based on the two-stage
method have advantages in the accuracy of classification and regression. However, on the
UAV platform, in order to meet the real-time requirements of image processing, the object
detection algorithm needs to have a high processing speed, which places higher demands
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on the parameter size and computational complexity of the network. Shadow appears when
the object is disturbed by direct light from the light source. This increases the difficulty
of object recognition and limits object detection. Due to differences in shape and position,
objects may move differently or exhibit multiple postures based on their real-world rules.
For example, pedestrians can walk, run, stand, or sit. At the same time, the height variation
in UAVs can easily cause changes in the scale of the same object in the visual image, which
can interfere with object detection.

Aiming at the above problems and the research in recent years, this paper undertakes
the following discussions on the future research directions of UAV object detection based
on deep learning.

(1) Rely on unsupervised or semi-supervised training. The existing multi-object detection
datasets for UAVs are small, and the labeling cost is high. Unsupervised learning and
semi-supervised deep learning network training methods can learn useful features
and knowledge from unlabeled or a small amount of labeled data to achieve UAV
object detection. In addition, pre-trained models from other fields or tasks can be
used, such as image classification or object detection in natural scenes, to initialize or
fine-tune UAV object detection models, thereby utilizing knowledge from the source
domain or task to improve model performance.

(2) Data preprocessing algorithm. The effect of the deep learning method depends on the
quality of the input data but cannot distinguish the data. The computational efficiency
of the deep learning model can be improved by starting with data enhancement
and reducing redundant features. Due to the limitations of UAV flight altitude and
payload, problems such as object overlap, coverage, and displacement are inevitable.
Generative adversarial networks and instance segmentation can effectively address
these issues before object detection.

(3) Multimodal data. Multimodal data refers to data obtained from different sensors, such
as visible light, infrared, and radar. Multimodal data can provide richer and more
complete information, which helps to overcome the limitations and deficiencies of
single-modal data. The application of multimodal data fusion is very wide, and there
are some challenges in the data fusion process. Firstly, there are various problems
with the data source: data quality issues, errors, formatting errors, incompleteness,
etc. Secondly, there is also the problem of noise. Noise is not unique to multimodal
data, but it creates new problems as each method can generate noise and potentially
affect each other. There are also problems such as large data volume and inconsistent
data. To address these issues, it is necessary to convert data from different sources
into a unified format and resolution, thus promoting data fusion and processing.

(4) Introducing models with lower computational power requirements. Deep learning
can achieve adaptive optimization by adjusting the learning rate, but, when the
data or sample size is large, or when there are high requirements for convergence,
a suitable algorithm can be chosen to optimize the structure and parameters of the net
to improve the detection effect. As a data-driven approach, deep learning is not the
best solution to solve a particular problem. A more targeted algorithm and reasonably
allocated weights can be selected to accomplish the task flexibly and efficiently.

(5) Phenotype analysis. With the development of UAV technology in precision agricul-
ture [114], high-precision real-time detection of crops is of great significance. Here,
phenotype analysis refers to the use of UAVs, deep learning, and object detection to
measure and evaluate the morphological, structural, physiological, and biochemical
characteristics of crops, which can optimize planting management and improve crop
quality [115]. Traditional yield estimation relies on manual experience, with low
efficiency and accuracy, and cannot meet the fast and accurate prediction needs of
large-scale planting enterprises. Considering the significant differences in shape and
size among crop varieties, designing an end-to-end lightweight UAV object detection
algorithm can improve the speed, accuracy, and reliability of phenotype analysis
while reducing costs and errors.
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6. Conclusions

UAV technology is currently in a period of rapid development, and UAV object
detection has a broad research prospect. This paper reviews the development history of
deep-learning-based UAV object detection methods from the two main technical approaches
to UAV object detection: one-stage and two-stage methods. We sort out the research results
in the field of deep-learning-based object detection regarding UAV considering the relevant
perspectives in recent years. We summarize the advantages and shortcomings of the
current methods in solving the problems in UAV object detection, such as the increase in
small objects, complex background, object rotation, scale change, and category imbalance.
Datasets in this field are also introduced. Through the above summarization and analysis,
the subsequent development trend and further research direction are prospected. It is
expected to provide valuable references. Looking forward, there is potential to design an
increased number of end-to-end UAV object detection systems. This can be achieved by
integrating the capabilities of UAV flight and mission planning. Such integration will not
only enhance the intelligence of UAV object detection but also meet different application
requirements and scenario conditions.
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