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Abstract: The ground is typically hidden by cloud and snow in satellite images, which have a similar
visible spectrum and complex spatial distribution characteristics. The detection of cloud and snow is
important for increasing image availability and studying climate change. To address the issues of the
low classification accuracy and poor generalization effect by the traditional threshold method, as well
as the problems of the misdetection of overlapping regions, rough segmentation results, and a loss
of boundary details in existing algorithms, this paper designed a Multi-level Attention Interaction
Network (MAINet). The MAINet uses a modified ResNet50 to extract features and introduces a
Detail Feature Extraction module to extract multi-level information and reduce the loss of details. In
the last down-sampling, the Deep Multi-head Information Enhancement module combines a CNN
and a Transformer structure to make deep semantic features more distinct and reduce redundant
information. Then, the Feature Interactive and Fusion Up-sampling module enhances the information
extraction of deep and shallow information and, then, guides and aggregates each to make the
learned semantic features more comprehensive, which can better recover remote sensing images
and increase the prediction accuracy. The MAINet model we propose performed satisfactorily in
handling cloud and snow detection and segmentation tasks in multiple scenarios. Experiments on
related data sets also showed that the MAINet algorithm exhibited the best performance.

Keywords: satellite image; cloud and snow detection; semantic segmentation

1. Introduction

Remote sensing satellites conduct long-term observations of the Earth, capturing and
characterizing surface information [1,2]. Clouds cover more than half of the Earth’s sur-
face [3], and nearly half of the Northern Hemisphere is covered by snow in winter [4]. Cloud
and snow are present in many satellite images, blurring surface objects and reducing the
utilization of the observed data [5]. However, in the study of climate–human–environment
interactions [6], they play a crucial role in researching climate change, investigating hy-
drological resources, and issuing snow disaster warnings [7]. Due to the close radiation
temperatures and similar properties in the optical wavelengths of snow and clouds, distin-
guishing between the two during detection tasks is challenging [8].

Researchers have carried out a variety of recognition studies for different satellite
image data. Traditional methods primarily detect clouds or both clouds and snow by
analyzing variations in the electromagnetic wave reflection or radiation properties between
targets [9]. Gladkova et al. [10] proposed an enhanced method for cloud and snow identifi-
cation and briefly analyzed the classification problem with clouds and snow. Ding et al. [11]
proposed an automated discrimination approach for cloud and snow in full-color images
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using fractal dimensions. Zhu et al. [12] improved the Fmask algorithm using a threshold-
detection method based on multispectral bands. After testing the data collected from
Landsat8, it was found that the wavelength information in the data could be effectively
utilized to identify cloud bands. Wang et al. [13] also used the normalized difference index
to extract the features of snow regions in satellite images to realize the identification of
each region. The threshold methods used in the above methods all require professionals
to perform threshold calibration in advance, and these methods basically extract single
features of clouds and snow. Additionally, some machine learning algorithms use trained
classifiers to detect clouds and snow [14–17]. Sun et al. [18] suggested a recognition ap-
proach based on various texture features of images, using an SVM classifier with an RBF
kernel for detection after extracting texture features. Ghasemian et al. [19] fused multiple
features for detection based on two random forest algorithms. Kang et al. [20] suggested
a coarse-to-fine approach that extracted the statistical features and performed an SVM
operation on the superposition features to produce the initial cloud-detection map, then
honed the limits using guided filtering. Detection accuracy can be improved as greater-level
features including texture, shape, and contours are used in these methods. However, due to
limitations in trainable parameter capacity, some machine learning techniques have proven
inferior to Fmask in complex tasks [21].

Deep learning, as a subfield of machine learning, has achieved significant advances
in image processing [22–24]. The fact that all characteristics are automatically learned
from enormous data sets distinguishes deep learning from conventional algorithms the
most. Artificial feature extraction relies on experts and is unable to effectively utilize the
benefits of large data, while deep learning can swiftly learn efficient representations to
extract features from images, improving accuracy, reasoning speed, and generalization abil-
ity [25]. Meanwhile, CNNs have been used in numerous detection studies with successful
results [26,27]. Zhan et al. [28] suggested the method based on the FCN framework [29]
employing satellite images in three visible wavelengths for recognition. Xie et al. [30]
proposed a method that combines clustering and a CNN. First, superpixels are obtained
by improving SLIC clustering, and then, the CNN extracts features from the superpixels,
which can obtain relatively accurate cloud boundary information, but cannot achieve end-
to-end cloud detection. Chai et al. [21] proposed SegNet for detection in Landsat images
with an encoder–decoder structure, but the problem of misjudgment caused by the lack of
understanding of global semantic information exists. Zhang et al. [31] proposed CSD-Net
with multi-scale feature fusion for the detection inpictures from different sensors.

There are currently many types of remote sensing images, among which the increasing
number of medium- and high-spatial resolution images at the visible and near-infrared
wavelengths has greatly promoted research in the field of snow and cloud discrimination.
Although there are many ways to achieve this task, the detection results still have certain
shortcomings. First of all, due to the limited feature extraction capabilities, traditional
methods cannot automatically extract the high-order semantic features of cloud and snow
areas and ignore some valuable features, resulting in poor generalization capabilities and
robustness. Secondly, existing deep learning methods cannot detect the tiny areas covered
by powder snow and thin clouds in some scenes well, resulting in overlapping objects and
the incorrect detection of junctions. Therefore, it is necessary to improve boundary detail
prediction and small-scale object recognition. Finally, the development of satellite images
towards high resolution increases the demand for high-resolution image detection and
requires the application of enhanced methods to high-resolution images.

Our research leveraged deep learning techniques to develop a powerful algorithm
specifically designed to differentiate between snow and clouds in medium- and high-
resolution visible light remote sensing images. As a novel method, this model solves the
above-mentioned problems to a certain extent, helps to improve image analysis capabilities
in rapidly growing data sets, and increases the development prospects of visible spec-
trum image classification. This research proposes an encoder–decoder network structure
approach based on ResNet [32] to overcome the issues while boosting the accuracy and reli-
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ability of cloud and snow categorization, which is suitable for medium- and high-resolution
pictures in the visible light wavelengths and was tested on the CSWV dataset. This model
improved the network structure in the feature fusion stage, introduced channel spatial
attention, added a Transformer module and other operations to strengthen the detection of
edges and small areas of thin cloud and fine snow, and added an auxiliary loss function
and other methods to accelerate the training convergence.

The test results demonstrated that MAINet outperformed the current CNN model,
effectively fulfilling the cloud and snow segmentation task and enhancing recognition accu-
racy. Furthermore, our model exhibits significant applicability and universality. Compared
with previous detection methods, it can better use image features for segmentation and
can be applied to multiple types of images. In summary, the following are the primary
contributions of the proposed approach:

• A new cloud and snow detection network, a Multi-level Attention Interactive Network
(MAINet), is proposed to strengthen the attention to the details of cloud and snow,
which only uses visible channel remote sensing images to achieve higher detection
accuracy and faster detection speed.

• Detail Feature Extraction (DFE) is supplied to extract the sameness and difference
between the information in the down-sampling stage, reduce the information loss,
strengthen the detail information, and realize the refinement of the edge;

• Deep Multi-head Information Enhancement (DMIE) is created in the last step of down-
sampling. The CNN and Transformer structures were combined by bridging units to
accomplish the purpose of retaining local and global features, which can more deeply
mine the relationship between deep features and enhance the network’s capacity
for representation;

• Feature Interaction and Fusion Up-sampling modules (FIFU) is also proposed in the
up-sampling process to restore remote sensing images more effectively and improve
prediction accuracy, which consists of three small blocks. The MSBC block extracts
multi-scale information and captures edge feature. The SCA block uses a spatial and
channel feature attention mechanism to enhance the spatial relationship information
and important channel information. The SFIF block aggregates the two types of
information and guides them to make the semantic features of the cloud and snow
more complete and boost the effectiveness of feature extraction.

2. Methodology

Because of the similarities between cloud and snow, as well as the spatial distribution
characteristics being complex and changeable, many traditional networks cannot achieve
the accuracy of segmentation and have various issues including false detections of cloud
and snow overlap area and rough segmentation boundaries. Meanwhile, the improvement
of image resolution brings more-precise information and localization information. This
paper introduces MAINet to accurately segment clouds and snow. MAINet strengthens the
extraction ability, enhances the recovery of details, and effectively uses context information
for information aggregation optimization, so as to achieve more-accurate predictions.

In this part, the MAINet architecture proposed is firstly introduced, which uses ResNet
as the backbone for cloud and snow segmentation, and then, focuses on three modules:
DFE, DMIE, and FIFU.

2.1. Network Architecture

The overall structure of MAINet is represented in Figure 1. We adopted an encoder–
decoder structure and used ResNet50 [32] as the backbone, which solves the issue of
traditional methods struggling to automatically extract high-order semantic information
from cloud and snow regions in images. The reason for selecting ResNet lied in the concept
of residual learning, which, to some extent, solves issues such as gradient disappearance,
explosion, and degradation. This reduces the difficulty of network learning. Additionally,
each layer of the network contains various degrees of semantic characteristics, facilitating
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the rapid extraction of multi-scale data. It is beneficial to retain more original semantic
information. However, the computational load for the segmentation task is substantial.
Lin et al. [33] demonstrated that a 1 × 1 convolution may alter the number of channels,
reducing or increasing the dimension of the information. Therefore, a 1 × 1 convolution
was employed at decoder stage to reduce the overall parameters of MAINet.

FIFU

DFE

FIFU FIFU FIFU

DFE DFEDFE

Layer-1 Layer-2 Layer-3 Layer-4stem

DMIE

Upsample

1/2 1/4 1/8 1/16 1/32

AUX
Train&Test

TrainAUX

Figure 1. The architecture of MAINet consists of a backbone and three modules. ResNet50 preliminary
extracts the features, and the deep semantic features are further extracted by DMIE. Then, DFE is
used to establish the skip connections and extract guidance information, and FIFU is used to complete
the up-sampling feature fusion and position recovery. Finally, bilinear up-sampling operation is used
to output the prediction results. During training, the AUX is added as extra output to speed up the
training efficiency.

Due to the difficult of extracting the complex features of cloud and snow in the visible
spectrum, we propose the DMIE module as the deepest part of the backbone network to
improve the representation capacity. Its function is to use the Transformer [34] concept
at the end of the down-sampling to enhance the global perception ability on the channel,
extract accurate dense features, and combine local features with global features, which
can weaken or remove interference information and deeply mine high-order semantic
information. Secondly, due to the issues with inaccurate segmentation results and the loss
of boundary details in the current algorithm, the DFE module is proposed to establish
skip connections between the features of the encoder and decoder, which can transmit
the low-level information to the network’s deep layers. This operation can enhance high-
frequency spatial feature information and achieve edge refinement while recovering lost
details in the encoder stage. Finally, due to the simple merging operation of high-level and
low-level features, the lost details cannot be effectively recovered, and the false detection in
the overlapping area and the misdetection of tiny regions cannot be alleviated. We propose
the FIFU module to address this issue. FIFU enhances the feature information extraction
at different levels through the attention mechanism, aggregates the information between
different scales, connects them with each other, and fuses the element representations,
which provides more-effective features for the up-sampling process. This operation can
reduce false detection in the overlapping area, strengthen detail detection of small areas,
and improve prediction accuracy.

In addition, in the training phase of the MAINet model, as shown in Figure 2, we
introduce two Auxiliary branches (AUX). These branches are included as the additional
prediction outputs in the computation of the loss function. The purpose of the AUX is to
increase prediction accuracy while speeding up the training processes. The first is a 3 × 3
convolutional layer with a Batch Normalization (BN) layer [35] and a Rectified Linear Unit
(ReLU) activation layer. Then, unnecessary information is removed through the dropout
layer. Finally, the prediction information is output through the 1 × 1 convolutional layer
and enlarged to the original size through the up-sampling layer.
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dropout conv1x1
Bn+Relu

upsampleconv3x3

Figure 2. The structure of the AUX.

2.2. Deep Multi-Headed Information Enhancement

In visual descriptors, crucial correspondences exist between local characteristics and
global representations [36]. Compact vectors called local features represent local image
neighborhoods, while global representations encompass aspects such as contour repre-
sentations, shape descriptors, long-distance object types, and more. Most CNN models
excel at gathering local characteristics, but struggle to identify global features. Identifying
characteristics in the segmented objects in space and spectrum is difficult in the cloud- and
snow-segmentation tasks, requiring the effective extraction of deep global features across
channels. In Visual Transformer (ViT) [37], the feasibility of the pure Transformer archi-
tecture in computer vision tasks was verified. ViT aggregates and compresses the global
representation in patches in a soft way through the self-attention module, and the Trans-
former block is used as an independent architecture or introduced into the CNNs [38–40].

We designed the DMIE module shown in Figure 3 by drawing inspiration from ViT and
used the Transformer attention mechanism to promote global perception across channels.
This module can shuffle channels, gathers context information by filtering redundant data,
properly extracts deep global features, and outputs them after interacting with the input
fusion. However, if the input information is not properly fused with the Transformer, the
quality of local details may suffer. Therefore, the Bridge-Conversion Module (BCM) is used
to fuse local details from the CNN and global perceptionfrom the Transformer. This process
involves the interaction of the two for a better feature-extraction result.

Bridge 

conversion 

module

DOWN

UP

Conv1×1

reshape

BN+RELU

Conv3×3

BN+RELU

C

Transform

Block

Ct×HW

LN+ReLu

Ct×HWC×H×W

Ct×H×W

Ct×H×W

(a) (b) (c)

C/2×H×W

Conv1×1

reshape

Figure 3. (a) The overall structure of Deep Multi-head Information Enhancement. (b) The bottompart
of the BCM. (c) The toppart of the BCM.
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The final output of the backbone is fed into DMIE. Since the Transformer and CNN
have different feature sizes, we needed fuse the feature in the CNN with the patch em-
beddings in the Transformer. Therefore, we used the BCM to accomplish the interactive
coupling of the local and global features. The first step is to pass through the BCM_DOWN
part in Figure 3b. The number of input channels C was compressed into the Transformer
using the number of channels Ct of the Transformer using patch embeddings through a
1 × 1 convolution. Then, the CNN feature from B × Ct × H × W is converted to the shape
of the patch embeddings in Transformer B × HW × Ct, and the LayerNorm [41] is used to
normalize the features. After ReLU activation, the feature enters the Transformer block, as
illustrated in Figure 4.

The Multi-head self-attention block provides multiple representation subspaces for
the attention layer of the model. Three independent, randomly initialized weight matrices
are utilized. Then, the vectors are translated into different subspaces, enriching the feature
expression and enabling the model to focus on multiple key regions. To reduce the effects of
drastic changes in the model parameters during training and make the network learn more
stably, the LayerNorm is applied before the Multi-head self-attention block and MLP block.

Multi-Head

Attention
Normlayer Normlayer MLP

Figure 4. The structure of Transformer block.

Next, the feature received from the Transformer is input into the BCM_UP to restore
the form of the patch embeddings in the Transformer from B × HW × Ct to the form of the
CNN feature map B × Ct × H × W, and passes a 1 × 1 convolution with BN and ReLU to
convert the channel dimension to be mapped to C/2, as shown in Figure 3c. Finally, the CNN
feature information and the Transformer feature information outputs are concatenated by
the backbone network. A 3 × 3 convolution is used to encode and fuse the local and global
features, obtaining the enhanced feature.

The DMIE module realizes the combination of the CNN and Transformer in the
deep layer by the BCM. This means that the module can naturally inherit the advantages
of the CNN and Transformer structure and retain the extraction ability of the local and
global features to the greatest extent, which significantly improves the network’s ability to
represent the features.

2.3. Detail Feature Extraction

In the encoding process, the semantic branches of the classical network UNet [42] come
from each layer, and it is merged from the same layers of the encoder and decoder by a layer
hopping and splicing operation to combine the shallow geographical information with the
deep semantics, which makes the network obtain good results. Meanwhile, considering
that the basic model of deep learning usually adopts the down-sampling operation to
reduce the information dimension, some details are inevitably lost [43]. To address this
loss of information, we designed DFE as the intermediate bridging information, and its
structure is shown in Figure 5.

Its input comes from two parts, Fx from the shallow layer of the backbone and Fy from the
deep layer of the backbone. We initially performed convolution and up-sampling operations
to make the deep feature map the same size as the shallow feature map before combining
the shallow layer with the deep layer. Then, the difference detail information branch is
obtained by subtracting the two parts, with a learnable parameter set to enable the network to
independently adjust and focus on the important difference areas. Meanwhile, the two parts
are added and extract the information by convolution to obtain the same information branch.
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Finally, we added the two branches to output the superposition of the features. The expression
formula of the above steps is:

F̂y = up( fBR1×1(Fy)), Fy ∈ Rc/2×h/2×w/2, F̂y ∈ Rc×h×w (1)

Fd = λ ×
(

Fx − F̂y
)
, Fx ∈ Rc×h×w, Fd ∈ Rc×h×w (2)

Fs = fBR1×1(Fx + F̂y), Fs ∈ Rc×h×w (3)

Fout = Fs + Fd, (4)

where Fx is the shallow input; Fy is the deep input; fBR1×1() is a 1 × 1 convolution with BN
and ReLU. up() represents the up-sampling operation. F̂y represents the deep input after
up-sampling. Fd represents the difference detail feature obtained by subtracting Fx and F̂y
and multiplied by weight λ. Fs represents the same detailed feature gained by adding Fx
and F̂y. Fout is the final detailed feature after stacking.

Through this design, we output the features at two scales, achieving a good compro-
mise between location information and semantic information. The shallow feature and
location information are propagated to the deep layer, which makes up for the details
missed in the recovery stage of the encoder. This is extremely important for the recovery of
image positioning.

BN+RELU

BN+RELU

upsample

Conv1×1

Conv1×1

dF

yF̂

sF

out
F

xF
yF

Figure 5. The structure of Detail Feature Extraction

2.4. Feature Interaction and Fusion Up-Sampling

In the feature fusion stage, this paper designed an up-sampling module based on the
encoder–decoder segmentation network. The up-sampling process is crucial for forming
clear high-resolution images. Using a simple basic decoder to directly fuse information
will lead to semantic dilution, resulting in information redundancy, which affects the
segmentation effect of the network. Therefore, we designed a FIFU module, shown in
Figure 6, to complete the up-sampling feature fusion and restoration. This module mainly
has two inputs: one is the high-resolution shallow feature generated by the branches of the
shallow adjacent backbone layer through DFE, and the other is the low-resolution deep
feature generated by the output of the last FIFU module or MIDE module. The model can
rapidly and efficiently gather input due to this module. It pays attention to both the shallow
features with spatial information and the deep features with context information. Features
from different levels are fused to enhance the prediction precision, thereby improving the
segmentation performance of MAINet.
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The module is mainly divided into two stages and comprises three parts: Multi-scale
and Strip Boundary Convolution (MSBC) block, Spatial Channel Attention (SCA) block
and Spatial Feature Interactive Fusion (SFIF) block, and is mainly separated into two stages.
The first stage is mainly to enhance the interaction process of the two pieces of input feature
information. In this stage, the MSBC block interaction is used for shallow feature map input,
and various scales of convolutional kernels are used to obtain multi-scale receptive fields,
while strip convolution is used to enhance boundary detection. The SCA block is used for
deep features to enhance the spatial and channel attention for the deep information. In
the second stage, the two branches interact with the semantic information before entering
the SFIF block, and then, new features are generated by using addition between high-level
and low-level features to guide each other. This approach allows high-resolution and
low-resolution representations in each layer to repeatedly receive information, reducing
semantic information loss and obtaining abundant features. Finally, the SFIF block is used
to combine the new features obtained after enhancing the two features.

SFIF

Deep featuresShallow features

MSCB GAM

SFIF

Deep featuresShallow features

MSCB GAM

Figure 6. The structure of Feature Interaction and Fusion Up-sampling.

2.4.1. Multi-Scale and Strip Boundary Convolution

While the shallow feature map extracts high-frequency detail information through
DFE, the noise of the shallow feature will also be introduced, so we intended to further filter
the data using the convolution layer. We designed MSBC to filter the shallow feature map,
further extracting multi-scale features and enhancing segmentation boundary features.

The MSBC shown in Figure 7 consists of a 1 × 1, 3 × 3 convolution and strip convo-
lution. Each convolution, except the strip convolution, is followed by BN and ReLU. The
input low-level feature initially undergoes a 1 × 1 convolution to compress the channels to
half of their initial count. This operation can reduce the network parameters to prevent
memory overflow. Afterwards, the boundary feature information is extracted from the
right branch, while the multi-scale feature is fused and extracted from the left branch.

For the left branch, since expressing features at various sizes is crucial for many vision
applications, we enabled the block to aggregate the receptive fields of 3 × 3, 5 × 5, and
7 × 7 by combining different numbers of 3 × 3 convolutional structures. In addition, all of
the 3 × 3 convolutions perform grouped convolution operations, which further reduces
the amount of network parameters. The feature data from various receptive field sizes are
concatenated together to form a convolution combination, the combination of which helps
to tackle the object detection at different scales and represents features more specifically.
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Conv3×3

Conv3×3
Conv9×1

Conv9×1 Conv1×9

conv1×1 conv1×1

Conv1×1

C

Conv3×3

Conv1×9

C
C

BN+ReLU

BN+ReLU BN+ReLU

Conv1×1

BN+ReLU

BN+ReLU

BN+ReLU

BN+ReLU

Figure 7. The structure of multi-scale and strip boundary convolution.

For the right branch, since cloud and snow can vary in size and shape and be closely
connected to each other, the boundary between cloud and snow is difficult to determine,
and the segmentation boundary is rough and lacks detail. To address this problem, we
employed strip convolution to forecast the border and decrease interference in unrelated
areas. Specifically, a 9 × 9 convolution was designed as a parallel cascade by using the
splitting method. The two branches are the convolution operation, which consists of
9 × 1 and 1 × 9. After that, the channel information of both branches is compressed by
a 1 × 1 convolution, and the channel number is halved again to concat the two branches
together. The horizontal strip convolution learns the horizontal features, and the vertical
strip convolution has similar effects, which effectively capture the edge feature, where
cloud and snow converge.

Finally, we concatenated each branch along the channel, then passed through a 1 × 1
convolution to compress the channels to the original number and used a residual structure
to introduce a skip connection represented by the rightmost black dotted line. The desired
feature is formed by adding the initial input to the output of the aforementioned process.

2.4.2. Spatial Channel Attention

The receptive field of the convolutional kernel is local [44], which is only associated
with different separate parts in the image after multi-layer accumulation, and the pixels
in the center of the receptive field have a greater impact on the output. It is important to
focus on the pixels that have a significant influence on a pixel’s local feature aggregation,
so we propose the SCA block, as shown in Figure 8. This block connects the cloud and
snow with the surrounding feature information and enhances the spatial channel attention
information to better distinguish the difference between ground objects.



Remote Sens. 2024, 16, 112 10 of 24

Conv 1×1

Conv 1×1

Conv 1×1 Conv 1×1 Conv 1×1

(H*W)×(C/8) (C/8)×(H*W)

(H*W)×(H*W)

C×(H*W)

C×H×W

(a) (b)

softmax

ChannelAttentionSpatialAttention

1F̂

1F 2F 3F

2F̂

3F̂

SF

reshape reshape

S

reshape

MaxPool AvgPool

Mlp_0 Mlp_1

Share_mlp_2

Sigmoid

C

(c)

F

cF

F

Bn+ReLU

Figure 8. (a) Spatial channel attention (b) SpatialAttention block (c) ChannelAttention block.

The input F ∈ Rc×h×w is the deep feature information branch shown in Figure 8b.
First, the SpatialAttention block can capture long-range dependency information and
solve the problem of local receptive fields. F is passed through three 1 × 1 convolutional
blocks, which produce three feature maps F1 ∈ Rc′×h×w, F2 ∈ Rc′×h×w, and F3 ∈ Rc×h×w

(c′ is c/8). Afterwards, F1 is reconstructed as F̂1 ∈ R(h×w)×c′ , and F2 is reconstructed
in the same way and, then, transposed to obtain F̂2 ∈ Rc′×(h×w). The spatial attention
S ∈ R(h×w)×(h×w) is created by multiplying the two maps (F̂1, F̂2) together and, then,
applying a softmax to the resulting matrix. Finally, the third branch feature is reshaped
as F̂3 ∈ Rc×h×w like the other branches. The output FS ∈ Rc×h×w is generated after FS
is multiplied by S, and the calculation result is reconstructed to the original scale. The
following is the calculating formula:

F̂1 = θ( f1×1(F1)), F̂2 = φ( f1×1(F2)), F̂3 = g( f1×1(F3)), (5)

S = σ
(

F̂1 ⊗ F̂2
)
, (6)

FS = S ⊗ F̂3, (7)

where f1×1 represents a 1 × 1 convolution; θ(), φ(), g() represent different reconstruction
methods;

⊗
represents matrix multiplication; σ() is the softmax operator.

The ChannelAttention block shown in Figure 8c can capture the dependencies existing
between channels and enhance the specific semantic feature representation. We compressed
the input features by two methods: average pooling and max pooling, and aggregated
the features obtained from the two compressions. The feature maps Fadd ∈ Rc×1×1 and
Fcat ∈ R2c×1×1 are obtained by the add and concat operation, respectively. They are input
into a two-layer fully connected layer (MLP). The number of neurons in the first layer is
C/r; r was set to 16 considering efficiency. The shared second MLP layer was set to C
number of neurons. After that, the output is summed and activated by the sigmoid function
to provide the channel attention features. The calculation formula is as follows:

Favg = AvgPool(F), Fmax = MaxPool(F), (8)

Fadd = Favg + Fmax, Fcat = (Favg, Fmax), (9)

Fc = δ(W2(W0(Fadd)) + W2(W1(Fcat))), (10)

where W0 and W1, respectively, represent the weights of Fadd and Fcat in the first MLP layer;
W2 represents the shared weight of Fadd and Fcat in the second MLP layer. δ() is the sigmoid
function, and Fc represents the channel attention feature.
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Finally, CSA multiplies the input features with the spatial attention features and
channel attention features and performs an elementwise sum operation to generate the
final output synthetic attention features, which is described as follows:

Fsc = f1×1(F ⊗ Fs) + F ⊗ Fc, (11)

Fout = δ(BN(Fsc ⊗ F)), (12)

where
⊗

represents matrix multiplication, Fsc represents the features obtained by combin-
ing the spatial attention features and channel attention features, BN is Batch Normalization,
δ(·) is the ReLU activation, and Fout is the final output of the block.

The CSAM block increases the spatial channel information of the deep features by
merging two feature attention techniques, allowing the model to concentrate on the crucial
information over the entire image while suppressing or even ignoring certain unimportant
noise information.

2.4.3. Spatial Feature Interactive Fusion

The shallow and deep feature branches each possess distinct advantages in terms of
their characteristics. These two branches interact with the semantic information through
addition before fusion, resulting in rich feature representations. To better aggregate the
features of two branches into a multi-level/multi-scale feature map, we designed SFIF to
make both branches able to mentor one another during learning. In the feature-fusion step,
this block employs a parallel spatial attention mechanism, allowing the model to swiftly
gather pertinent information and increase prediction precision. In addition, we added the
NAM attention module proposed by Liu et al. [45] to suppress less-significant features.

Figure 9 depicts SFIF’s structural layout. We cross-mapped the features of the two in-
put branches to produce the spatial attention weights. First, the shallow map X ∈ Rc×h×w

is mapped to the size Rc/2×h/2×w/2 by down-sampling and added to the deep feature
Y ∈ Rc/2×h/2×w/2 to form the input of the spatial attention U ∈ Rc×h/2×w/2. The max-
pooling and average-pooling processes are employed to produce the spatial attention, and
the spatial information is extracted through two layers of convolution, then a softmax
operation is run to obtain the weights for the spatial attention. The following formula is the
final spatial attention weight w ∈ R2×h×w:

U = Y + down(X), (13)

w = f1×3( f3×1(Fcap(U); Fcmp(U))), (14)

(w1; w2) = σ(w), (15)

where down(·) is the down-sampling operation; Fcap() and Fcmp() are the average-pooling
and max-pooling; f1×3() and f3×1() are 1 × 3 and 3 × 1 convolution operations; σ() is the
softmax operator.

High-resolution features Ŷ ∈ Rh×w×c; low-resolution features X̂ ∈ Rc×h/2×w/2; the
final fused features V ∈ Rc×h×w. We split w into two parts, w1 ∈ Rc×h×w and w2 ∈ Rc×h×w,
to express the space weight of Y and X; the process can be computed as follows:

Ŷ = w1 ⊗ Y, (16)

X̂ = w2 ⊗ X, (17)

V = NAM
(
up

(
Ŷ
)
+ X̂

)
, (18)

where
⊗

is matrix multiplication and up() is up-sampling using bilinear interpolation. The
added fused feature information is then passed through the NAM block, and the weight of
less-significant features is reduced by applying a sparse weight penalty. Lastly, we obtained
V, which was optimized by the spatial attention. The SFIF module uses less computation
and parameters to strengthen the effective spatial information and effectively fuses the
information of different branches, making the prediction result clearer.



Remote Sens. 2024, 16, 112 12 of 24

DOWN

softmax

MaxPoolAvgPool

Conv 1×3

ReLU

Split

X Y

U

1w
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Figure 9. The structure of Spatial Feature Interactive Fusion.

3. Experiment
3.1. Dataset Introduction

In this experiment, the images of the CSWV and HRC_WHU datasets used were
cropped to 256 × 256 px, and the images with only one class were deleted. The sorted
patches were randomly split into a 0.8:0.2 training set and validation set, and the deep con-
volutional neural network learning optimization, unbiased evaluation, and final evaluation
were carried out, respectively.

Overfitting happened during training due the small quantity of training data. To
increase the amount of picture patches and accompanying labels, we used data augmen-
tation, which enhanced the robustness of the network without increasing the amount of
manual labels [29]. Transformation enhancement techniques combining color, contrast, and
geometric elements were abandoned in favor of a random rotation inversion operation
because of the minor spectral variations and intricate natural forms of snow and clouds.

3.1.1. CSWV Dataset

The major task was to use high-resolution images for cloud and snow detection. This
paper used the public CSWV dataset [31], as shown in Figure 10, which was constructed
based on WorldView2, and the spatial resolution is 0.5–10 m. It contains 27 cloud and snow
images from WorldView2 in the Cordillera Mountains of North America, taken between
June 2014 and July 2016. These scenes have a complex surface, including forests, grasslands,
lakes, bare ground, and so on, resulting in a total of 9594 images. There is a variety of
clouds including cirrus, cirrocumulus, altocumulus, cumulus, and stratus.
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:Snow:Snow :Void:Void

(a)

:Cloud:Cloud

(b)

:Snow :Void

(a)

:Cloud

(b)

Figure 10. Some of the training data in CSWV. (a) The original image of CSWV. (b) The corresponding
pixel label. The pink represents clouds, the white snow, and the black the background.

3.1.2. HRC_WHU Dataset

We assessed the generalization ability of related models using the public HRC_WHU
dataset produced by Li et al. [46]. There are five main types of land cover represented
in this dataset from Google Earth: water, vegetation, urban, snow/ice, and barren. The
pertinent reference cloud masks were digitized by Wuhan University specialists in the
field of remote sensing image interpretation. A total of 5996 high-definition images were
generated in this dataset after data augmentation, and the number of channels was 3, as
shown in Figure 11.

:Cloud:Cloud :Void:Void

(a)

(b)

:Cloud :Void

(a)

(b)

Figure 11. Some of the training data in HRC_WHU. (a) The original image of HRC_WHU. (b) The
corresponding pixel label. The white represents clouds, and the black represents the background.

3.2. Experimental Setup

The deep learning framework of Python 3.8, PyTorch 1.10.1, and CUDA 11.1 served as
the foundation for all model experiments. The training and testing procedures were carried
out on a Windows 10 64 bit computer with an Intel Core i7-11700F @ 2.50 GHz CPU and
NVIDIA RTX3080 installed.
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We chose the Adaptive Moment Estimation (Adam) optimizer [47] as the gradient
descent in the training. The Adam optimization is a stochastic gradient descent extension
that uses second-order moment estimation to adaptively adjust the learning rate. Since the
learning rate is an essential element of the deep learning training process, we employed the
poly learning rate approach to dynamically change it [48]. This is the calculation formula:

lu = li ×
(

1 − epoch
max_epoch

)p
(19)

where lu is the updated learning rate, li is the initial learning rate, epoch is the current
iteration, max_epoch is the maximum number of iterations, and p is a constant that controls
the rate of decay. We set li to 0.00015, max_epoch to 250, p to 0.9, the batch size to 8, and
also, chose the classification cross-entropy function as the loss function.

This paper set the auxiliary loss and main loss jointly to monitor the learning during
the training, which drew inspiration from Zhao et al. [49]. Auxiliary loss is introduced into
a deep network to aid in learning optimization without impacting the learning of the main
branch. We offered three levels of semantic headers, including the primary loss, to make
the parameter adjustment easier. The loss function formula is as follows:

L(Θ) = λ1Lm(Θ) + λ2La1(Θ) + λ3La2(Θ), (20)

where Lm is the main loss and La1 and La2 are the auxiliary loss of branch 1 and branch
2. The loss weights λ1, λ2, and λ3 were set to 1:0.5:0.3, and the network parameter Θ was
updated iteratively to reduce the overall loss L(Θ). After adding the auxiliary loss, the
model parameters slightly increased, but the PA (%) and MIoU (%) were 0.75% and 1.59%
better than the base network. The auxiliary loss was observed to have a significant role,
and the results are presented in Table 1.

Table 1. Setting the AUX branch.

Method AUX PA (%) MIoU (%) Parameter (M) Flops (G)

ResNet50 ✓ 95.51 90.50 13.81 60.66
ResNet50 ✗ 94.76 88.91 13.35 60.43

3.3. Ablation Experiment

We assessed the performance of MAINet by adding modules for relatively compli-
cated networks, which provided a better understanding of our MAINet and revealed the
effectiveness of each module. To verify the function of each module (SCA, SFIF, MSBC, DFE,
DMIE; among them, SCA, MSBC, and SFIF constitute FIFU) in our network framework, we
conducted ablation research on MAINet using ResNet50 as the backbone. The performance
of the model was compared by the Pixel Accuracy (PA) and Mean Intersection over Union
(MIoU) of each module, along with the parameters and computation amount. MAINet
performed best when all of its components were merged, as shown in Table 2.

Table 2. Ablation experiments of MAINet.

Method PA (%) MIoU (%) Parameter (M) Flops (G)

ResNet50 94.37 88.18 38.86 10.82
ResNet50+SCA 94.81 89.18 42.01 11.36

ResNet50+SCA+SFIF 95.01 89.52 42.01 11.37
ResNet50+SCA+SFIF+MSBC 95.10 89.71 43.08 12.34

ResNet50+SCA+SFIF+MSBC+DFE 95.28 90.09 44.13 12.75
ResNet50+SCA+SFIF+MSBC+DFE+DMIE 95.51 90.50 60.66 13.81
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• Ablation for SCA: The spatial channel self-attention mechanism module combines
two attention mechanisms of the space and channel to determine spatial connections
between pixels and direct the network to adaptively focus on important channel
information in the entire image. This lessens the amount of redundant, irrelevant
information and significantly increases the categorization information prediction
accuracy. The data in Table 2 demonstrate that SCA can improve the PA and MIoU
indexes by 0.44% and 1.01%, respectively, which exactly validated our analysis.

• Ablation for SFIF: The module introduces shallow information across layers in the deep
network to strengthen the spatial information with less computation and parameters
and effectively integrates the information of different branches, which can recover
remote sensing images more effectively. According to the experiments’ data, our
model improved the PA and MIoU indexes by 0.19% and 0.34%.

• Ablation for MSBC: This module extracts the information of multi-scale receptive
fields for the shallow information introduced across layers through convolutional
kernels of different sizes and adopts strip convolutional kernels to more effectively
collect edge features while enhancing the global semantics. Table 2 shows that the
MSBC module increased the PA and MIoU by 0.09% and 0.19%, respectively.

• Ablation for DFE: Since some important details may be lost in the sampling operation,
DFE extracts the sameness and difference information from two adjacent different
scales’ features, then aggregates both pieces of information to obtain a richer feature
map. The obtained feature map will be used as the shallow branch of SFIF, which can
more successfully serve as a reference for remote sensing image restoration. As the
details are reproduced, it can be seen from Table 2 that DFE had beneficial effects; DFE
can improve the PA of the model from 95.10% to 95.28% and the MIoU from 89.71%
to 90.09%.

• Ablation for DMIE: This module takes into account the respective structural advan-
tages of the CNN and Transformer, realizes the combination of the two in the deep
layer through the bridge unit, so as to retain local and global feature extraction, and
can dig for the features more deeply. Although this module adds many parameters
and calculations, it further strengthens the segmentation effect and increases the
network’s capacity for representation. The results showed that DMIE improved the
PA from 95.28% to 95.51% and the MIoU from 90.09% to 90.50%, which proved the
effectiveness of DMIE.

To further validate the role of DFE and DMIE, we input 3 images and used the heatmap
to represent the changes of the output cloud and snow feature map under the corresponding
module. For DFE, Figure 12d,e represent the cloud characteristic map with the DFE module
and without the DFE module. Figure 12g,h represent the snow characteristic map with the
DFE module and without the DFE module. We found that the output feature mapping with
the DFE module was more focused on the key area and had richer boundary information.
It showed that the DFE module can extract high-frequency detail features more effectively
and has higher prediction accuracy for the boundary outline of cloud and snow, which is
crucial to the regional positioning of restored images.

For DMIE, Figure 12c,f represent the cloud characteristic map and snow characteristic
map with the DMIE module added. DMIE provided more-refined local features while
preserving the detailed features of DFE and made up for part of the lost information. At
the same time, the activated area was larger, and the relationship between features was
mined more deeply, which enhanced the long-distance feature dependence. This indicated
that the feature representation learned by the module had higher discriminative power.
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(a) (b) (c) (d) (e) (f) (h)(g)(a) (b) (c) (d) (e) (f) (h)(g)

Figure 12. Heatmap representation. (a) Test image; (b) labels; (c) cloud feature with DFE and DMIE;
(d) cloud feature with DFE; (e) cloud feature without DFE and DMIE; (f) snow feature with DFE and
DMIE; (g) snow feature with DFE; (h) snow feature without DFE and DMIE.

3.4. Comparison Test of CSWV Dataset

To assess MAINet’s performance, we compare it to other models in this section.
We chose the PA, harmonic mean (F1), Mean Pixel Accuracy (MPA), and MIoU as the
assessment indicators of the experiment, and the specific outcomes of several methods in the
same setting are shown in Table 3. Among all the methods, it was evident that the ResNet50-
based MAINet had the best effect. MAINet without pretraining was superior to the other
excellent segmentation methods without pretraining and was ahead of the pretrained PAN,
FCN8sAtOnce, and PSPNet models. MAINet with no pretraining achieved 94.53%, 94.01%,
94.35%, and 88.71% on the PA, F1, MPA, and MIoU. After loading the pretrained model, the
indexes of the PA, F1, MPA, and MIoU of our network were further improved to 95.51%,
94.99%, 95.21%, and 90.50%, surpassing the second place by 1.07%, 1.04%, 1.33%, and 1.9%,
respectively. The performance of CvT using the method of introducing convolution into
ViT is the worst in Table 3, while our model, MAINet, introduces the Transformer structure
into the CNN in the DMIE module and combines the two in depth through bridging unit
connections. This means that the network can naturally inherit the structural advantages of
CNNs and Transformers and preserves the greatest extent of the ability to extract local and
global properties, which greatly enhances both the representation ability of the network and
the effectiveness of semantic segmentation. From the results of the evaluation indicators,
it can be shown that the MAINet model well maintained the advantages of Transformers
and achieved a good combination of CNNs. The effectiveness of our suggested method is
shown by all these results.

As shown in Figure 13, we selected the six models with the highest MIoU and selected
six test images as the input to obtain the corresponding prediction results. By contrasting
the predictions from several models, the performance of MAINet in cloud and snow
segmentation can be better demonstrated visually. Since PSPNet uses the pyramid pooling
module, it has more advantages in the field of global acceptance; however, the boundary
of cloud and snow, the fragmented regions, and other details cannot be predicted well
by PSPNet. This is because PSPNet loses much detail information after repeated down-
sampling and the model does not have branches connected across layers to make up the
features, so it is not dominant in detail. As can be seen from Figure 13d, PSPNet can only
predict the approximate outline of the target with very rough details. Other multi-branch
networks such as the FCN8S, CSDNet, PAN, and UNet can preserve some details to make
the segmentation of cloud and snow edges more accurate. However, when the cloud
layer is shallow, there are still some situations that cannot distinguish the cloud and the
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background, which cannot meet the fine requirements. In MAINet, the FIFU module we
designed can better solve this problem, in which MSCB filters the shallow information,
further obtains the multi-scale semantics, and strengthens the extraction of the boundary
features. SCA enhances the spatial and channel information in the deep information and
improves the robustness of the model, which is essential for enhancing segmentation
accuracy. Finally, SFIF enhances the interaction ability between two channels, enhances the
mutual connection, integrates the element representation of the two types, suppresses the
weight of useless information, and integrates the context information in detail. With this
operation, category false detection is significantly less likely to occur, and the accuracy of
information throughout the up-sampling process is enhanced.

Table 3. Results on CSWV dataset. Pretrained models are marked with ‘†’ (bold represents the best).

Method PA (%) F1 (%) MPA (%) MIoU (%)

CvT 89.71 88.11 88.36 78.84
DeepLabV3Plus 91.16 89.77 90.26 81.63

HRNet 91.49 90.38 90.51 82.46
SegNet 91.64 90.65 91.35 82.85

OCRNet 92.02 90.49 91.30 83.52
CGNet 91.98 91.08 91.47 83.67

DABNet 91.97 91.15 91.40 83.68
FCN8s 91.89 91.14 91.68 83.74

ACFNet 92.34 91.42 91.73 84.21
PSPNet 92.51 91.70 91.98 84.71

PAN 92.66 91.91 92.37 85.05
DFN 93.23 92.53 92.10 86.22

CSDNet 93.78 93.10 93.71 87.08
UNet 93.94 93.45 94.31 87.60

MAINet 94.53 94.01 94.35 88.71

PAN † 93.83 93.27 93.77 87.39
FCN8s † 94.11 93.56 93.00 87.83
PSPNet † 94.44 93.95 93.88 88.60
MAINet † 95.51 94.99 95.21 90.50

Furthermore, the fourth, fifth, and sixth lines in Figure 13 show that the detection
results of the FCN8s, PANet, CSDNet, PSPNet, and UNet are prone to misdetect that the
shaded snowy ground is classified as cloud, misdetect that the shaded snowy ground
is classified as background, and ignore the discontinuous fine cloud pixels at the cloud
boundary. There was a clear miscalculation of thin cloud and fine snow areas. According
to Figure 13h, our MAINet network accurately segmented cloud and snow, correctly
identified some obscure thin cloud areas, solved the problems existing in other algorithms,
and improved the segmentation accuracy. The DFE we designed in MAINet fully preserved
the detailed information in the down-sampling process, which contained a rich spatial
position relationship between cloud and snow. The deep features were then guided by the
FIFU module in up-sampling, effectively recovering the spatial position of each pixel. The
result was that our model was better able to retain detailed information and extract the
detailed features of cloud and snow, which proved the overall grasp of the detected images
by our network.
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(b)(a) (d)(c) (e) (f) (g) (h)

Figure 13. The prediction of different models on CSWV dataset. (a) The original images; (b) labels;
(c) FCN8s; (d) PSPNet; (e) CSDNet; (f) PANet; (g) UNet; (h) MAINet. The red areas are error detection.
The green areas are misdetection. The yellow dotted box area is enlarged below each image.



Remote Sens. 2024, 16, 112 19 of 24

3.5. Generalization Experiment

The approach was expanded to cloud detection to test MAINet’s capacity to generalize
further. We utilized the HRC_WHU dataset as the training data, and the same networks in
Section 3.4 were used to compare with our network based on the same experimental setup.
We assessed the outcomes of the models by using the PA, F1, MPA, and MIoU as evaluation
indicators. The outcome is displayed in Table 4. MAINet outperformed the other models
on the HRC_WHU dataset in all indicators. It reached 95.60%, 94.82%, 95.64%, and 91.39%
on the PA, F1, MPA, and MIoU, which were 0.38%, 0.42%, 0.34%, and 0.70% greater than
the suboptimal PAN, respectively.

Table 4. Results on HRC_WHU dataset. Pretrained models are marked with ‘†’ (bold represents
the best).

Method PA (%) F1 (%) MPA (%) MIoU (%)

CvT 93.41 92.18 93.26 87.36
CGNet 93.98 93.03 94.19 88.45
FCN8s 94.21 93.11 94.04 88.80
HRNet 94.30 93.20 94.11 88.95
UNet 94.34 93.36 94.39 89.07
PAN 94.39 93.35 94.30 89.14

CSDNet 94.39 93.45 94.51 89.17
DABNet 94.53 93.58 94.55 89.42
SegNet 94.58 93.59 94.51 89.50
PSPNet 94.59 93.65 94.62 89.53

DFN 94.64 93.73 94.74 89.63
DeepLabV3Plus 94.84 93.97 94.94 89.99

ACFNet 94.88 94.02 95.00 90.07
OCRNet 95.13 94.20 94.97 90.49
MAINet 95.34 94.54 95.42 90.91

FCN8s † 94.73 93.80 94.74 89.77
PSPNet † 94.90 93.97 94.86 90.08

PAN † 95.22 94.40 95.30 90.69
MAINet † 95.60 94.82 95.64 91.39

According to Figure 14, the other models had poor segmentation results with rough
split edges, the severe loss of boundary details, and inaccurate positioning of thin clouds.
MAINet deeply excavated the important relationship between the feature information by
combining the CNN and Transformer structure through DMIE, realized the enhancement
of high-frequency detail information, and made up for the loss of information in down-
sampling with the help of MDIA. Through FIFU, the information from various scales
was efficiently combined, the details of the segmentation boundary were enriched in the
process of up-sampling and recovering the image, and the accurate positioning of the cloud
layer was realized. The proposed model achieved the best segmentation result, which was
beyond the reach of the other models. Our model more finely divided the cloud boundary
at fragmented thin clouds, and the likelihood of erroneous detection at the boundary was
significantly reduced, which can well adapt to segmentation tasks in different types of
ground backgrounds. This result demonstrated that MAINet was more precise than the
rival methods in estimating cloud cover and had higher generalization ability, which has
practical significance in remote sensing applications.
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(a) (b) (d) (e) (f) (g) (h)(c)

Figure 14. The prediction of different models on the HRC_WHU dataset. (a) The original images;
(b) labels; (c) DeepLabV3Plus; (d) PSPNet; (e) PAN; (f) ACFNet; (g) OCRNet; (h) MAINet. The red
areas are error detection. The green areas are misdetection. The yellow dotted box area is enlarged
below each image.

4. Discussion
4.1. Advantages of the Proposed Method

This study proposed a ResNet-based encoder–decoder network structure method to
overcome the problem. Compared with other works, the innovation of this model is that
it reduces information loss and enhances detailed information through the DFE module
in the down-sampling stage; uses the FIFU module in the feature fusion stage to improve
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the network structure and introduce channel space attention; uses in the deep layers the
DMIE module, which adds operations such as the Transformer module to enhance the
representation capabilities of the network. Additionally, the dataset we used to train
our model included images from tropical, temperate, and cold regions. For situations in
tropical climates where cloud cover can be persistent and variable, the model’s ability
to accurately segment clouds contributes to its utility in understanding and managing
tropical ecosystems. In temperate climates with significant seasonal changes, the model
performed well in cloud and snow segmentation, which is important for assessing water
resources, understanding snowmelt dynamics, and predicting potential flooding events.
In cold climates characterized by long-term snow cover, our model proved particularly
useful for monitoring changes in snow cover distribution and extent. Our model’s accurate
segmentation of snowpack facilitates climate research related to albedo changes and per-
mafrost dynamics. The successful application of its detection results in different climatic
environments highlights its potential to provide valuable insights into remote sensing and
environmental monitoring.

4.2. Limitations and Future Research Directions

While our deep learning model achieved significant results in cloud and snow seg-
mentation in remote sensing images, there are still limitations that need further discussion.
The acquisition of remote sensing images involves various methods, including Synthetic
Aperture Sonar (SAS) and Synthetic Aperture Radar (SAR). The features of these images
differ from those used in this study, which may affect the performance of our approach.
Future research directions could involve experimenting with other types of remote sensing
images. We might need to perform specific preprocessing on the input images or adjust our
network architecture and parameters to increase the model’s applicability. Furthermore,
the model may perform poorly when dealing with cloud and snow cover under extreme
weather conditions. The reason could be the lack of samples representing extreme condi-
tions in the training dataset, preventing the model from adequately capturing features in
such situations. Improving the model’s robustness can be addressed in future work by
augmenting the dataset with samples that represent these special cases.

5. Summary

Accurate cloud and snow recognition can improve the application of optical satellite
data and, also, has high application value in weather forecasting, climate observations, and
so on. This paper introduced an encoder–decoder network called Multi-level Attention
Interactive Network for cloud and snow detection segmentation. The proposal of MAINet
solves to a certain extent the defects of certain missing features and some false detections in
the results of previous detection methods and is suitable for medium- and high-resolution
images in the visible wavelengths:

• Some contributions adopted in MAINet’s structure:

– MAINet utilizes an encoder–decoder network with ResNet50 as the backbone,
which mines semantic data at various levels.

– The DMIE module combines the CNN and Transformer features to deeply mine
rich feature information.

– The DFE module compensates for the detailed semantic information that was lost
during the encoder’s down-sampling process.

– In the FIFU module, SFIF performs two-channel fusion. For information com-
munication, CSAM enhances the deep spatial channel information, and MSBC
enhances the peripheral information and feature information of the segmenta-
tion boundaries.

The experimental results showed that our proposed MAINet outperformed other algo-
rithms on the CSWV and HRC_WHU datasets, and the PA, F1, MPA, and MIoU indicators
reached 95.51%, 94.99%, 95.21%, and 90.50% and 95.60%, 94.82%, 95.64%, and 91.39%,
respectively. MAINet considerably increased the accuracy of detection in comparison to
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the previous methods and achieved better segmentation results in various complex scenes,
with very good generalization and robustness.
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