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Abstract: Ecosystem services (ESs) are crucial for sustainable development, as they impact human
well-being. However, changes in land use/land cover (LULC) caused by climate change and social
development can negatively affect ESs, particularly in arid river basins. This study focuses on current
and future changes in LULC in the Kaxghar River Basin (KRB) in Xinjiang, China, to determine
how these changes will affect the region’s ESs. The integrated PLUS-InVEST model was used to
investigate the spatiotemporal distribution and changing patterns of habitat quality (HQ) and carbon
storage (CS) under the natural increase scenario (NIS), economic development scenario (EDS), and
water protection scenario (WPS). Additionally, the Ecosystem Service Contribution Index (ESCI) was
also calculated to evaluate the contribution of LULC changes to ESs. The results show the following:
(1) from 2000 to 2020, the average value of HQ in the KRB gradually decreased from 0.54 to 0.49 and
CS trended slightly upward, with a total increase of 0.07 × 106 t. Furthermore, the changes in CS
were highly consistent with changes in LULC. (2) From 2020 to 2030, the area of low-grade (0–0.2)
HQ saw a continuous increase, with the fastest growth occurring in 2030 under the EDS. Meanwhile,
under the WPS, HQ significantly improved, expanding by 1238 km2 in area. Total CS under the three
test scenarios tended to decline, with the NIS showing the smallest decrease. (3) The expansion of
cropland and unused land had a negative impact on ESs, particularly on CS, whereas the conversion
to grassland and forestland had a significant positive impact. In conclusion, these insights will enrich
our understanding of ESs in the study area and contribute to balancing the relationship between
ecological conservation and socioeconomic development in the Kaxghar River Basin, as well as in
other parts of China’s arid Northwest and similar regions around the world.

Keywords: ecosystem services (ESs); PLUS model; future scenario; Kaxghar River Basin (KRB)

1. Introduction

The natural ecosystem is crucial for human survival and development [1], as it pro-
vides resources and materials necessary for life [2] and maintains a balance between humans
and nature [3]. This ability, which is known as ecosystem services (ESs), includes provision-
ing, regulating, supporting, and cultural services [4,5]. Land use/land cover (LULC) is the
primary factor affecting ESs [6], serving as a link between human activities and ecological
processes [7]. Changes in LULC, such as the conversion of forestland and grassland to crop-
land and built-up land, significantly alter the structure and function of ESs [8,9], leading to
ecosystem imbalances and subsequent reductions in human well-being [10]. These impacts
are more pronounced in ecologically fragile areas [11], making the assessment of ESs based
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on land-use changes in these areas crucial for enhancing ecological security and improving
ecological benefits.

Numerous methods have been used over the years to assess ecosystem services [12],
with several models being developed for ES valuation. Among them, the InVEST model
has the advantage of integrating and quantifying multiple ESs [13]. It has been widely used
in ES research [14,15], including for evaluations [16], supply and demand changes [17],
trade-offs/synergies [18], and drivers [19,20] of ESs. For instance, Ma et al. [21] studied
the spatiotemporal changes in ESs in the conservation-priority regions of China. The
researchers in [22] conducted a case study on the urban agglomeration of the Chaobai
River in northern China, analyzing the relationship between the supply and demand of ESs
and proposing a research scheme for ES protection and management. The spatiotemporal
variations in water-related ESs were assessed in [23], with the authors identifying trade-offs
between food production and water-related ESs in the Songhua River Basin. Additionally,
some studies assessed changes in a specific type of ES, such as carbon storage [24], water
conservation [25], and habitat quality [26].

Currently, research on how land-use change affects ESs is a hot topic in ecology and
geography [27–29]. Li et al. [30] studied the effects of land-use change on ESs in the China–
Mongolia–Russia Economic Corridor and found that these changes had significant impacts
on ESs, indicating that it is crucial to further examine future trends in ESs that are driven by
human activities. Accordingly, to estimate changes in ESs, the InVEST model was combined
with future land-use scenario simulation strategies, such as the CA-Markov [31], FLUS [32],
and CLUE-S [33]. While these models were able to provide satisfactory predictions, they
were unable to offer insights into the dynamics behind transitions of individual land-use
types and their impact on expected changes, as pointed out by Liang [34].

To address this limitation, the Patch-generating Land-Use Simulation (PLUS) model
has been developed based on the Cellular Automata (CA) model [35]. PLUS integrates two
main components: a rule-mining framework that explores transformation rules using the
Land Expansion Analysis Strategy (LEAS) and a CA model based on multitype Random
Seeds (CARS). This integration has improved the ability to simulate land-use changes and
their impacts, as demonstrated by Wang et al. [36], making the PLUS model a promising
tool for investigating future land-use scenarios [19,37].

The KRB is one of the most important tributaries of the TRB in Northwest China.
In recent years, however, the KRB has lost its surface water connection with the TRB
mainstream due to climate change and increasing agricultural activities [38,39]. This loss
has led to a range of ecological issues, including land desertification, water scarcity and
pollution, reduced biodiversity, and heightened vulnerability to natural disasters, such
as droughts and sandstorms. The result has been a rapid decline in ESs in the KRB [40],
directly threatening the ecological security of the region.

Considering the seriousness of these recent changes, it is prudent to conduct research
on the ESs in the KRB to find ways to improve the ecological environment and promote
sustainable regional economic development. The research gap on dynamic changes in
the KRB’s LULC and how these changes may affect ESs in the future urgently needs to
be addressed. Therefore, the current study focuses on the two key ecosystem services of
habitat quality (HQ) and carbon storage (CS) and aims to investigate the spatiotemporal
distribution and changing patterns of these ESs. It also attempts to quantify the contribution
of LULC changes to ESs under future scenarios using the integrated InVEST-PLUS model.
The results of this study can provide a scientific basis for land-use planning and the
sustainable development of ecosystems in arid regions.

2. Materials and Methods
2.1. Study Area

The Kaxghar River Basin (KRB) (73◦03′~80◦25′E, 38◦10′~40◦55′N) is located on the
western edge of the Tarim River Basin (TRB) in China’s arid Northwest. It is surrounded
by mountains to the north, south, and west and flat terrain to the east. As one of the
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main headwaters of the Tarim river, the KRB encompasses six rivers and covers an area of
approximately 7.2 × 104 km2. The altitude varies significantly across the basin, averaging
around 1298 m and falling rapidly from the west to the east. The continental arid climate
in the KRB is characterized by sparse precipitation, intense evaporation, ample sunlight,
large temperature differences between day and night, short winters, and long summers.
There is little interannual variation in temperature in the basin, with an average annual
temperature of 11.7 ◦C, annual rainfall of 137.4 mm, and potential evaporation of more
than 3000 mm [41]. The study area is depicted in Figure 1.
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Figure 1. Location of the study area. (The map is based on the standard map number GS (2016) 1666
downloaded from the standard map service website of the National Bureau of Mapping Geographic
Information, and the base map is not modified).

2.2. Materials and Data Processing

Land use/land cover data with a 30 m spatial resolution for 2000, 2010, and 2020 were
collected from the Chinese Academy of Sciences (CAS) (https://www.resdc.cn/data.aspx,
accessed on 20 June 2022). Fifteen driving factors were selected for this study, including
seven natural and environmental factors and eight socioeconomic factors that significantly
affect land-use change. Among the seven natural and environmental factors, five (the
aridity index, erosion intensity, soil type, annual mean temperature, and precipitation
[1 km × 1 km]) were collected from the Center for Resource and Environmental Science
Data, CAS (https://www.resdc.cn/, accessed on 20 June 2022), while the Digital Elevation
Model (DEM) with a resolution of 30 m was collected from the Geospatial data cloud
(http://www.gscloud.cn/, accessed on 20 June 2022), and the slope factor was derived
from DEM using ArcGIS10.6.

https://www.resdc.cn/data.aspx
https://www.resdc.cn/
http://www.gscloud.cn/
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The eight socioeconomic factors included population density, GDP, normalized dif-
ference vegetation index (NDVI), Nighttime Light Index (NLI), and distance variables,
such as distance from government, rivers, main roads, and highways. The 1 km gridded
population density and GDP were obtained from CAS (https://www.resdc.cn/data.aspx).
NDVI data were derived from MODIS MOD13Q1, with a spatial resolution of 250 m, pro-
duced by the NASA EOS data center (https://ladsweb.modaps.eosdis.nasa.gov, accessed
on 20 June 2022). NLI data with a spatial resolution of 500 m were collected from the VI-
IRS_DNB_VNLV2 datasets of the earth observation group (EOG) (https://eogdata.mines.
edu, accessed on 20 June 2022). In this study, the Google Earth Engine (GEE) platform
was employed to collect and process the NDVI and NLI imagery. Distance variables were
obtained from the open street map (https://www.openstreetmap.org, accessed on 20 June
2022) and were calculated in ArcGIS 10.6 using the Euclidean distance. After a series of
data pretreatment steps, such as projection transformation, clipping, and resampling in
ArcGIS10.6 software, all drivers were converted into the same projection of WGS-1984-UTM
zone-45N, at a resolution of 30 m × 30 m (Figure 2).
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Figure 2. Driving factors affecting the spatial distribution of LULC.

2.3. Methodology

The main objective of this study was to predict spatiotemporal changes in land
use/land cover and their impact on ecosystem services under various scenarios in the KRB.
As presented in Figure 3, the research conducted in this study was divided into several
steps. First, an analysis was performed on the spatiotemporal distribution characteristics
of LULC in the KRB. Secondly, the InVEST model was utilized to evaluate the dynamic
changes in HQ and CS ecosystem services. Thirdly, the PLUS model was employed to pre-
dict the land-use distribution in 2030 under different scenarios, and the spatial distribution
of the aforementioned ESs was further analyzed. Finally, an ES index was calculated to
assess the impact of different land-use changes on ESs.

https://www.resdc.cn/data.aspx
https://ladsweb.modaps.eosdis.nasa.gov
https://eogdata.mines.edu
https://eogdata.mines.edu
https://www.openstreetmap.org
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2.3.1. Assessment of Habitat Quality

Habitat quality is an important factor in the conservation of biodiversity and the
sustainable development of regions [32]. The evaluation of HQ relies on several crucial
parameters, with the three main ones being as follows: (1) the identification of potential
threats to HQ and their distance from habitats, (2) the sensitivity of each LULC type to
each threat, and (3) the suitability of each LULC type to provide a habitat. The InVEST
model produces an HQ map showing the HQ value range from 0 to 1, with a higher HQ
value indicating better habitat quality and greater biodiversity [42]. Areas of intensive
human activity, including cropland, built-up land, and unused land, are considered threat
factors [43] based on the conditions in the study area. Different LULC types exhibit varying
degrees of sensitivity to threat sources, which are primarily determined by ecological and
landscape ecology theories, as well as biodiversity conservation principles [44].

The main principle of the habitat quality assessment module is to establish a relation-
ship between land use and threat sources [45]. To do so, habitat distribution is calculated
based on the response of different habitats to threat sources, while the sensitivity of each
LULC type to threat sources is considered based on the habitat suitability of the LULC
type [46]. In general, natural systems have higher habitat suitability and lower sensitivity
to external disturbances, whereas artificial environments typically lack habitat suitability.
Threat factors and sensitivity data were obtained based on previous research [47–49]. The
details are shown in Table 1. More details for the calculation of HQ can be found in the
InVEST user’s guide and the relevant literature [50,51].
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Table 1. Threat factors and sensitivity of each land-use type.

Habitat
Suitability Sensitivity to Threats

Cropland Built-Up Land Unused Land

Decline type Linear Exponential Linear
Maximum threat distance 0.35 8 6

Weight 0.6 0.4 0.5
Cropland 0.5 0 0.9 0.5
Forestland 1 0.6 0.8 0.2
Grassland 0.9 0.8 0.5 0.3
Water area 1 0.5 0.4 0.5

Built-up land 0 0 0 0
Unused land 0.1 0.2 0.6 0

2.3.2. Assessment of Carbon Storage

The Earth’s terrestrial ecosystem is a key part of global carbon storage and plays a
critical role in the carbon cycle [52]. As an important indicator assessing ESs, CS was
calculated in this paper using the CS sub-model of InVEST. This approach is based on
above-ground biomass, below-ground biomass, soil carbon pool, and dead organic matter
to simulate carbon storage under current or planned scenarios. The calculation formula for
CS is as follows [53]:

CT = Ca + Cb + Cs + Cd (1)

where CT is the total CS of the ecosystem in the KRB, and Ca, Cb, Cs, and Cd are the
aboveground, underground, soil organic, and dead organic carbon density of the KRB,
respectively. Due to the density of dead organic carbon accounting for a small proportion
of the carbon pool [54], the dead organic carbon pool was not considered in this study. The
carbon density for different land-use types, which is required to be inputted into the model,
is the key to the calculation of CS. The data used in this paper are based on previous related
research [24,55], and the specific parameters are shown in Table 2.

Table 2. Carbon density data for each land-use type in the study area (kg/m2).

Land Use Types Above-Ground Below-Ground Soil Organics

Cropland 0.1 1.45 7.95
Forestland 0.76 2.08 15.88
Grassland 0.63 1.55 8.69

Water 0.05 0 0
Built-up land 0.04 0 0
Unused land 0.02 0 2.16

2.3.3. Simulation of Land Use under Different Scenarios

This study predicted the evolution of LULC in the KRB by using the PLUS model.
Compared with other types of land-use simulation models, PLUS integrates two main
parts [56], namely a rule-mining framework to explore the transformation rules based on
the land expansion analysis strategy (LEAS) and a CA model based on multitype Random
Seeds (CARS). Therefore, the PLUS model has better interpretation and higher simulation
accuracy regarding the influencing factors of various land-use changes.

1. Parameter settings

Firstly, 15 drivers from natural, environmental, and social aspects were chosen accord-
ing to the actual situation of the KRB and the data available in our study. All the drivers
were included in the PLUS model as projection variables. Then, the probability distribution
maps for each land-use type were determined by using the random forest algorithm (RFC),
based on the LULC data for 2000, 2010, and 2020. The RFC is a popular machine-learning
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algorithm commonly utilized in land-use studies [35]. It can be employed to explore the
relationships between landscape compositions and multiple driving factors.

Referring to previous studies [57] and according to the land-use pattern for our study
region, the neighborhood weights were set to 0.7 for Cropland, 0.4 for Forestland, 0.3
for Grassland, 0.3 for Water area, and 0.9 and 0.7 for Built-up land and Unused land,
respectively. The values of the neighborhood weights range from 0 to 1, with the closer the
value being to 1, the stronger the expansion capacity of the land-use type.

The transition matrix in the PLUS model indicates whether a conversion is possible
between each type of land use, with a value of 1 representing possible conversion and 0
representing no possibility of conversion.

For the accuracy test of the simulation results, Kappa and FOM coefficients were used
to verify the prediction accuracy of the PLUS model. The Kappa index, introduced by
Cohen in 1960 [58], is a frequently employed metric for evaluating the accuracy of remote-
sensing image classification. The FOM value assesses the agreement between two maps
and measures the consistency of land use and land cover transitions [59]. Both measures
have values ranging from 0 to 1, meaning the closer the value is to 1, the higher the accuracy
of the simulation result. The detailed calculation formula can be found in [8].

2. Scenario settings

This paper developed three scenarios to predict future LULC patterns, including
the natural increase scenario (NIS), economic development scenario (EDS), and water
protection scenario (WPS). Descriptions and parameter settings for the three test scenarios
are presented below.

The NIS is regarded as a baseline scenario that sets no conditions. In this paper, it also
assumes that the future demand for land use in the KRB is derived from the historical trend
of land-use change from 2000 to 2020, based on the Markov chain [35].

The EDS prioritizes economic development and assumes that future changes in land
use will lead to an increase in the demand for built-up land. Therefore, the transition
probability matrix in this study was adjusted as follows: the probability of the conversion
of built-up land to other types is reduced by 30% [35], and the probability of conversion of
other types to built-up land is increased by 50%.

The WPS is designed to simulate future land-use demand under water-conservation
conditions. For this consideration, the probability of the conversion of water areas to other
land-use types in this paper is set to 0, and the probability of conversion of other land-use
types to cropland is reduced by 30% [59].

The future demand of each land-use type under these three scenarios was predicted
using the PLUS model, as shown in Table 3. The predicted results were entered into the
InVEST model to calculate the dynamic changes in HQ and CS under different scenarios
in 2030.

Table 3. LULC in 2020 and demands of LULC under different scenarios (km2) in 2030.

Scenarios Cropland Forestland Grassland Water Area Built-Up Land Unused Land

2020 7468 437 30,759 2396 480 35,069
NIS 8427 598 29,504 2391 607 34,571
EDS 8214 586 29,445 2387 919 34,512
WPS 7700 653 29,688 2673 790 34,587

2.3.4. Influence of Land-Use Change on ESs

We applied the method developed by [60] to quantify the influence of land-use change
on ESs. The contribution of land-use change to ES changes was calculated as follows:

ESCIij =
∆Qij

∆Sij
× Pij (2)
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where ESCIij is the contribution of land-use conversion to changes in ecosystem services, in-
cluding habitat quality and carbon storage contribution indexes (HQCI, CSCI, respectively);
∆Qij is the amount of change in ecosystem services from land-use i to land-use j; ∆Sij is
the area where land-use i is converted to land use j; and Pij is the proportion of land-use
i converted to land-use j in the total converted area. When ESCI > 0, the contribution to
ecosystem services is positive and increases with an increasing ESCI.

3. Results
3.1. LULC Change in the KRB during 2000–2030
3.1.1. Validation of PLUS Model

Figure 4 provides the observed data and simulation results for 2000 and 2020, re-
spectively. As can be seen, the composition and distribution of various LULC types were
basically consistent with the actual situation. Additionally, the accuracy analysis results
show that the Kappa coefficients in 2010 and 2020 were 0.75 and 0.81, and the FOM values
were 0.21 and 0.25, respectively, indicating that the simulation accuracy of the PLUS model
in the KRB is satisfactory. The model can thus be used to simulate future LULC in this basin.
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3.1.2. Spatiotemporal Characteristics of Land-Use Change from 2000 to 2030

As can be seen from the historical data, the proportion of each LULC type in the KRB
remains relatively stable, which indicates that the LULC trend in this region will likely
not undergo drastic structural changes in the future (Figure 5). From 2000 to 2020, the
overall changing trends were increases in cropland, built-up land, and unused land and
decreases in grassland, forestland, and water areas. Among these changes, water areas
had the greatest decrement, with a rate of change of 56.06%, while cropland and built-up
land further expanded by 2446 km2 and 343 km2 from 2000 to 2010, respectively. Grassland
mainly intermingled with water areas in the basin’s northern and western mountainous
regions, decreasing by 2532 km2 from 2000 to 2020, for a rate of change of 7.64%.
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Figure 5. LULC area changes during 2000–2030.

The PLUS model was applied in this paper to predict the spatial distribution of land-
use demand for 2030 under various scenarios (Figure 6). Under the natural increase scenario,
the largest decrement occurred in grassland, which decreased by 4.01% (1226.03 km2), while
unused land increased the most, expanding by 998 km2. The changes in forestland were
the reverse of the previous trend, increasing by 4.13%. Under the economic development
scenario (Figure 6), built-up land and cropland saw a rapid expansion in area of 24.65%
and 16.49%, respectively. The area of water bodies likewise grew rapidly, with the water
protection scenario predicting a 25.32% increase. However, while the areas of built-up land,
cropland, and unused land all showed an increasing trend under the WPS, the growth rate
was significantly lower than that under the NIS and EDS.
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3.2. Changes in Habitat Quality
3.2.1. Changes in HQ during 2000–2020

Table 4 presents spatial variation statistics of HQ for different periods in the KRB. As
shown, there was a gradual decrease in HQ, with average values of 0.54, 0.50, and 0.49 in
2000, 2010, and 2020, respectively.

Table 4. Changes in HQ grades in the KRB from 2000 to 2030 (%).

Grades 2000 2010 2020 2030

NIS EDS WPS

Very poor (0–0.2) 0.29 0.48 1.33 2.30 2.29 2.36
Poor (0.2–0.4) 42.53 46.30 45.51 45.35 45.39 44.86

Moderate (0.4–0.6) 6.26 7.47 9.45 10.20 10.21 9.92
Good (0.6–0.8) 43.23 42.02 39.93 38.33 38.44 38.22

Excellent (0.8–1) 7.69 3.73 3.79 3.82 3.67 4.64
Mean value of HQ 0.5398 0.4992 0.4900 0.4795 0.4791 0.4848

This paper divides HQ into five grades at equal intervals of 0.2. The grades are as
follows: very poor (0–0.2), poor (0.2–0.4), moderate (0.4–0.6), good (0.6–0.8), and excellent
(0.8–1). Our statistical analysis shows that HQ in the KRB was dominated by poor grades
(Figure 7), which accounted for about 40% to 45% of the total area. During 2000–2020,
the proportion of good and excellent grades decreased from 43.2% and 7.69% in 2000 to
39.93% and 3.79% in 2020. The distribution of these two grades was concentrated in the
mountainous areas in the northern part of the KRB and the periphery of the oasis.
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Meanwhile, there was a significant increase in very poor and poor grade areas, rising
by 1.04% and 2.98%, respectively. This increase mainly occurred in unused lands, such
as Gobi sandy land, and salinized land. At the same time, moderate-grade areas in the
oasis increased from 6.26% in 2000 to 9.45% in 2020. The main LULC type included in the
expansion was cropland.
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3.2.2. Future Changes in HQ under Different Scenarios

For mean HQ values, the EDS shows the largest decrease from 2020 to 2030 (Table 4),
with a decline of 18.74%. Figure 8 illustrates the change in the KRB’s HQ from 2000 to 2030.
The smallest decrease occurred under the WPS, with a drop of 11.89%. This suggests that
HQ in the study area is predicted to decrease more significantly under the NIS and EDS
than under the WPS. Thus, implementing ecological protection measures under the social
economy would be beneficial for improving HQ (Figure 7).
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The NIS exhibited a continuous deterioration in HQ, with a decrease in area of
1889 km2 (Figure 8). The decrease mainly occurred at the edge of the oasis and in unused
land. In contrast, under the EDS, moderate-grade area changed significantly, increasing by
8.08%, although the overall improvement area under this scenario was only about 455 km2,
which is quite small. The WPS shows the largest improvement with an area expansion of
1238 km2, mainly due to the increase in area graded as excellent (Figure 8).

3.3. Changes in Carbon Storage
3.3.1. Changes in CS during 2000–2020

Carbon storage in the KRB during the historical period was estimated using the InVEST
model. As shown in Table 5, CS experienced a fluctuating upward trend that increased
from 49.19 × 106 t in 2000 to 49.73 × 106 t in 2010 and then decreased to 49.26 × 106 t
in 2020. During 2000–2020, total CS increased by 0.07 × 106 t. Gains in CS occurred in
cultivated land, with an increase of 2.32 × 106 t, while losses in CS occurred in grassland,
forestland, and water area, for a total loss of 2.79 × 106 t. Spatially, the distribution of CS in
the KRB remained basically stable and without drastic migration or other changes. From
2000 to 2020, decreases in CS in the KRB mainly occurred in mountainous areas and oases
in the plain regions, while increases in CS occurred in the southwest (Figure 9a).

Table 5. Changes in CS of LULC in the KRB from 2000 to 2030 (×106 t).

Land-Use Type 2000 2010 2020 2030-NIS 2030-EDS 2030-WPS

Cropland 4.55 5.44 6.88 7.43 7.43 7.22
Forestland 1.08 1.09 1.06 1.10 1.08 1.17
Grassland 36.01 35.00 33.26 31.92 32.02 31.83
Water area 0.03 0.01 0.01 0.01 0.01 0.01

Built-up land 0.00 0.00 0.00 0.00 0.00 0.00
Unused land 7.53 8.20 8.06 8.03 8.03 7.94
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3.3.2. Future Changes in CS under Different Scenarios

Total CS under the three test scenarios in 2030 showed a downward trend (Table 5).
During 2020–2030, the decrease in CS was smaller under the NIS (0.77 × 106 t) compared
to the EDS (0.79 × 106 t). However, the WPS resulted in the largest loss of CS, with a total
reduction of −1.08 × 106 t in 2020–2030 occurring mainly in the plains area. Combined
with LULC changes in the study area, we found that the WPS had the largest loss of CS
due to grassland conversion (1.42 × 106 t), while the increase in CS due to the expansion of
cropland was smaller (only around 0.34 × 106 t) than in the EDS and NIS (Figure 9b).

3.4. Key LULC Identifications and Influences of Land-Use Changes on ESs

Figure 10 shows the contribution of different land-use changes to ESs. From 2000 to
2020, the conversion of forestland, grassland, and built-up land had a negative impact on
HQ. However, under the three future scenarios, the most significant negative impact on
HQ comes from the conversion of grassland. The order of HQCI from largest to smallest
in the three scenarios is EDS > NIS > WPS. Conversely, the conversion of unused land
into cropland has a more positive impact on HQ, with the most significant positive impact
expected under the EDS (HQCI = 11.74).

Additionally, grassland conversion had a significant impact on CS in the KRB. As can
be seen in Figure 10, the conversion of unused land to grassland had the greatest positive
impact (CSCI = 19.60). However, the conversion of grassland to other types of land use
(except for forestland) had a significant negative impact on CS, especially the conversion of
grassland to unused land (CSCI = −21.91). Under the three future scenarios, the negative
impact on CS of the conversion of grassland to unused land is most significant under the
EDS (CSCI = −26.25), while the negative impact is least under the WPS (CSCI = −21.26).
Moreover, the conversion of forestland and grassland to cropland, built-up land, and
unused land had different negative effects on CS. It is worth noting that the positive effect
of the conversion to forestland on CS grows more significantly in the future scenario. To
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sum up, the expansion of cropland, built-up land, and unused land had a negative impact
on ESs, which was more significant on CS, while the conversion to grassland and forestland
had a significant positive impact on ESs.
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4. Discussion
4.1. Changes in HQ and CS under Different LULCs

The KRB, which is one of the most significant headwaters of the TRB, has a very
delicate ecological environment [61]. Currently, the economic and social development in
the region mainly relies on traditional agriculture and animal husbandry. Due to extensive
irrigation using unsophisticated techniques, however, the need for irrigation water has
grown steadily over time [62]. The utilization efficiency of agricultural irrigation water
in the KRB is considerably lower than both the average in Xinjiang and all across China.
Moreover, the region has also witnessed a surge in population and economic development
over the past two decades, with the GDP jumping from 42.90 × 108 yuan in 2000 to
645.85 × 108 yuan in 2020.

The result of these rapid changes has been a significant increase in cropland and
built-up land [57], with cropland alone expanding 55.76% (Figure 5), mainly in the lower
basin. However, at the same time, significant reductions have been observed in forestland,
grassland, and water areas in the KRB. Forestland declined the most during 2010–2020, with
a decreasing rate of −24.55%. Similarly, grassland and water areas decreased at a changing
rate of 7.64%, and 56.06%, respectively (Figure 6). Accordingly, the ecosystem services of
the KRB showed a corresponding increase in degradation in 2000–2020 (Figures 7 and 8).
This finding is in line with results presented in other studies of similar arid regions [47,63].

Meanwhile, the spatial distribution of ESs exhibited a decreasing trend from north to
south and from east to west, with the lowest values found in the middle of the study area.
This occurred because the ESs were affected by factors, such as land-use patterns, human
activities, and climate change [64]. Of all the land types studied in this paper, forestland
and grassland provide the highest value of ESs [65], as they are rich in biodiversity and
have a high capacity for carbon sequestration and runoff regulation. In contrast, cropland,
built-up areas, and unused land provide much lower services [66]. Desertification affects
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biological and geochemical processes, which in turn puts soil at risk and reduces its carbon
content [67]. Deforested land that has been abandoned due to a lack of water or soil fertility
is often blindly reclaimed, resulting in a vicious cycle that not only destroys the vegetation,
causing the forest to retreat into the sand, but also loosens the surface, promoting the
formation of new sand sources.

In addition, climate change affects hydrological processes and the distribution of
water and energy [68]. The results of the spatial distribution of HQ and CS in this paper
show that the areas characterized by high ES values in the KRB are distributed mostly in
forestland and grassland at higher elevations [8,30]. In the context of climate warming, the
melting of snow and ice in mountain areas provides sufficient water resources for the study
region, reduces water stress on plants, and enhances the production of NPP and gas control,
thereby increasing carbon sequestration. Although melting snow and ice increase surface
runoff, the continued expansion of cropland is causing a surge in agricultural water use,
intensifying the fragmentation of ecological land in the region and gradually degrading
downstream vegetation without water [69]. The result is a reduction in ESs that threatens
the overall stability of the ecosystem.

This study further predicts the impact of future land-use changes on ecosystem ser-
vices. The changes in LULC and ESs in 2020–2030 (Figures 5 and 7–9) are similar to those
in the past. In addition, the results of ESCI confirm that the conversion of grassland to
unused land had the greatest negative impact on ESs [30,70] and that the impact was
most significant under the economic development scenario (Figure 10). In contrast, the
conversion of other lands to forestland had a greater positive impact on ESs, with the
positive impact being most significant under the water protection scenario [71].

Therefore, in order to protect the ecological environment of the KRB, land conversion
management should be strengthened to reduce the conversion of land with high ES value
to land with low ES value. Special attention should be paid to the rational development of
water resources in the process of agricultural and urbanization development to improve
the efficiency of water resource use, while ecological engineering should be strengthened
to prevent ecological degradation caused by overexploitation.

4.2. Advantages of the Model Used in This Study

The InVEST model used in this study has been widely employed in the field of ecosys-
tem services studies [15,25], due to its unique advantages in spatial representation [23].
Researchers have discovered that the model is also applicable to arid regions [15]. For
example, Wang, Li, Mao, Li, Wang, and Lin [24] used the INVEST model to assess CS based
on climate change scenarios in the city of Bortala, Xinjiang. They found that the simulation
results of the model were close to the actual situation. Moreover, in a comparison with
other models, such as the CA-Markov, CLUE-S, and FLUS, the PLUS model used in the
current study is suitable for large-scale land-use simulations, as it gives higher simulation
accuracy. This result is similar to the results presented in other studies applying PLUS, such
as [34,56,72]. The PLUS-InVEST model has integrated a new land-use expansion strategy
and growth mechanism to accurately simulate the changes in different types of land-use
patches with high accuracy [47].

4.3. Limitations and Uncertainties

Combining the PLUS and InVEST models, the spatiotemporal variations of two types
of ESs from 2000 to 2030 in the KRB were analyzed in this paper. However, there are some
shortcomings that need to be addressed and improved upon in future investigations.

Firstly, the InVEST model calculates the habitat quality based on the weights of the
selected threat factors and the sensitivity data. However, the weights and sensitivity data
of the threat factors in this paper were obtained by referring to the relevant literature, and
the classification of LULC was a first-level classification that included only six land-use
categories. All of these uncertainties may have an impact on the assessment of HQ. Thus,
LULC data with higher resolution and finer land classification should be obtained for
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future research to improve the weights and sensitivity data of threat factors and make the
assessment results more reliable.

Secondly, due to the lack of measured data, the carbon density data used for land use
in this paper were also obtained from relevant published research, and the data do not
change over time. Therefore, combining a large amount of measured data to improve the
simulation accuracy of the model is vital in future research.

In addition, this study only focused on the spatiotemporal changes in two kinds of
ecosystem services, namely habitat quality and carbon storage. Future research should
encompass a broader range of factors, such as the water yield, soil conservation, and food
production, to provide a more comprehensive assessment of ESs. Furthermore, because
changes in ES can be influenced by a combination of several factors, such as climate change,
topographic factors, and socioeconomic factors, along with policy factors at the national and
local levels, the synergistic effects of these factors on ES should be considered. Adopting
such an approach would provide a reliable scientific basis for the coordinated development
of ecology, land use, and the economy in arid regions.

5. Conclusions

This study focused on the Kaxghar River Basin (KRB) in Xinjiang, China, and aimed
to investigate the spatiotemporal distribution and changing patterns of ecosystem services
(ESs) in the region, including habitat quality (HQ) and carbon storage (CS), using an
integrated PLUS-InVEST model. The main conclusions are as follows:

(1) The PLUS model has higher simulation accuracy and is suitable for land-use
simulations in the study area. Of the land-use types reviewed in this paper, cropland,
grassland, and water bodies were identified as undergoing the most significant changes
from 2000 to 2030. The economic development scenario (EDS) showed the highest growth
rate of cropland and built-up land, with an area increase of 1196.69 km2 and 120.70 km2,
respectively. The water protection scenario (WPS) led to a 25.32% increase in the water
body area, indicating the effectiveness of the WPS in preserving water resources.

(2) Over the past two decades, habitat quality in the KRB has remained at a relatively
moderate level. Under the EDS scenario, the area with low-grade HQ increased at the
fastest rate, while high-HQ-grade areas decreased the most. Meanwhile, under the WPS
scenario, 1238 km2 of land area saw an increase in HQ, indicating that implementing
ecological protection measures can be beneficial for improving habitat quality.

(3) The total CS in the KRB fluctuated upwards over the study period, with the most
significant changes observed from 2010 to 2020. However, under the three different sce-
narios, the total CS showed a decreasing trend, with the smallest decrease observed under
the NIS. High-carbon-storage areas were mainly distributed in regions with a complex
terrain and sparse population, while low-carbon-storage areas were scattered throughout
the study area.

(4) Different LULC changes had varying impacts on the ESs. The ESCI index results
showed that the conversion of grassland to unused land had the greatest negative impact
on both HQ and CS, especially under the EDS. In contrast, the conversion of other land to
forestland had a more positive impact on HQ and CS, with the most significant positive
impact observed under the WPS.
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