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Abstract: The world is transitioning to renewable energy, with photovoltaic (PV) solar power being
one of the most promising energy sources. Large-scale PV mapping provides the most up-to-date and
accurate PV geospatial information, which is crucial for planning and constructing PV power plants,
optimizing energy structure, and assessing the ecological impact of PVs. However, previous methods
of PV extraction relied on simple models and single data sources, which could not accurately obtain
PV geospatial information. Therefore, we propose the Filter-Embedded Network (FEPVNet), which
embeds high-pass and low-pass filters and Polarized Self-Attention (PSA) into a High-Resolution
Network (HRNet) to improve its noise resistance and adaptive feature extraction capabilities, ulti-
mately enhancing the accuracy of PV extraction. We also introduce three data migration strategies
by combining Sentinel-2, Google-14, and Google-16 images in varying proportions and transferring
the FEPVNet trained on Sentinel-2 images to Gaofen-2 images, which improves the generalization
performance of models trained on a single data source for extracting PVs in images of different scales.
Our model improvement experiments demonstrate that the Intersection over Union (IoU) of FEPVNet
in segmenting China PVs in Sentinel-2 images reaches 88.68%, a 2.37% increase compared to the
HRNet. Furthermore, we use FEPVNet and the optimal migration strategy to extract photovoltaics
across scales, achieving a precision of 94.37%. In summary, this study proposes the FEPVNet model
with adaptive strategies for extracting PVs from multiple image sources, with significant potential for
application in large-scale PV mapping.

Keywords: PV; HRNet; FEPVNet; adaptive strategies

1. Introduction

The global demand for energy is facing significant challenges and uncertainties, mani-
fested by the decrease in fossil energy reserves and rising prices [1]. Moreover, the burning
of fossil energy sources emits large amounts of carbon dioxide, which leads to atmospheric
pollution [2]. As a result, countries are turning to renewable energy sources, particularly
solar energy due to its universality, harmlessness, and immensity and permanence [3].

According to the International Energy Agency’s (IEA) sustainability program, the
number of photovoltaic (PV) plants will increase rapidly, taking up much land [4]. However,
potential problems can be induced during the process of PV industry development, such as
competition for land with PV deployment due to increased human activity and damage
to biodiversity and the climate due to land change in PV regions [5]. Consequently, the
accurate geo-spatial location of PVs is critical for assessing past impacts and planning to
avoid future conflicts.
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With the development of satellite sensor technology, many remote-sensing images
have been acquired for PV extraction. PV panels can be detected and segmented from
remote-sensing images by designing representative features (e.g., color, geometry, and
texture) using the threshold segmentation algorithm [6,7], the edge detection algorithm [8,9],
or the SVM algorithm in machine learning [10,11]. However, these features vary due to the
atmospheric conditions, lighting, and observation scales, resulting in weak accuracy and
the generalization of traditional methods [12,13]. Moreover, PV plants have been built in
various landscapes (e.g., deserts, mountains, and coasts) [14–16]. This makes it challenging
to accurately identify PVs on a continental scale. Therefore, more than the traditional
method is required to cope with these situations [17].

Deep learning (DL) has been favored in view of its success in object detection and
segmentation for remote-sensing areas [18,19]. Many researchers began using convolu-
tional neural networks (CNNs) for scene classification, crop yield prediction, and land
cover, among other jobs [20–22]. For PV extraction, several CNNs were used to localize PVs
from remote-sensing images and estimate their sizes [23–26]. For example, Yuan et al. [27]
completed large-scale PV segmentation based on CNNs. Jumaboev et al. [28] compared
the PV segmentation effect of deeplabv3+, FPN, and U-Net. However, the above studies
focused on using the original DL models without analyzing the characteristics of PV image
or improving the models. Therefore, there is a gap in further improving DL methods’ seg-
mentation accuracy and robustness (i.e., the adaptive model design and data combination).

In recent years, the development of computer hardware and remote-sensing tech-
nology [29–31] has provided a solid foundation for large-scale PV mapping (e.g., global,
regional) [17,32]. Based on this, we need to design the CNN model to acquire PV features
from multi-source remote-sensing images adaptively, in order to complete PV extraction
from different regions and scales [6,33,34]. In addition, attention is used to observe crucial
local information and combine it with information from other regions to form an overall
understanding of the object, thereby enhancing the feature extraction ability. Currently,
attention is extensively employed in DL models for remote-sensing image processing to
make the model adaptive in acquiring the critical features of the object [35–37].

Previous methods have been primarily focused on PV extraction from a single data
source and have achieved impressive performance. However, these methods are insufficient
to cope with the multi-sourcing of remote-sensing images. The above literature has not
widely analyzed the cross-scale extraction of PVs from multi-source images. This study
examined the current mainstream CNN models. Many researchers have compared U-Net,
DeepLabv3+, PSPNet, and HRNet models on the PASCAL VOC 2012 dataset, and HRNet
achieved the best performance [38,39]. Therefore, we selected HRNet as the base model and
embedded Canny, Median filter, and Polarized Self-Attention (PSA) to design an adaptive
FEPVNet. We tested the effectiveness of FEPVNet in PV extraction from Sentinel-2 images
and conducted cross-validation using different PV region models. Finally, we constructed
three data migration strategies by combining multi-source data and employed the model
trained on Sentinel-2 images for PV extraction from Gaofen-2 images, and its Precision
reached 94.37%. Our cross-scale PV extraction method is expected to contribute to the
large-scale mapping of PV in the future.

The rest of the paper is organized as follows: Section 2 presents the dataset used.
Section 3 presents the experimental methodology of this study. Section 4 presents the
experimental results of this paper. Sections 5 and 6 present the discussion and conclusions
of this paper.

2. Datasets

To construct the cross-scale network model, four types of images are required: a
Sentinel-2 image at a 10 m resolution, which is available for download via Google Earth
Engine (GEE), a Google-14 (i.e., zoom level is 14) image at a 10 m resolution, a Google-16
(i.e., zoom level is 16) image at a 2 m resolution, all of which can be downloaded through the
Google Images’ API, and a Gaofen-2 image at a 2 m resolution, which can be downloaded
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from the Data Sharing Website of Aerospace Information Research Institute, Chinese
Academy of Sciences. Therefore, we first validated the FEPVNet performance using the
Sentinel-2 images, then constructed three data migration strategies using the Sentinel-2 and
Google images, and finally completed the PV extraction from the Goafen-2 images.

We utilized the PV location information from the open-source global PV installation
list [32] to select the vector sample with PVs. The above four categories of raster images
were downloaded according to the boundaries of these vector samples, and the vector
samples were transformed into PV labels of the corresponding category. The labels with
incorrect PV boundaries were redrawn using LabelMe. The sample images of Sentinel-2
that we used consist of three bands: red (B4), green (B3), and blue (B2), while the sample
label images are grayscale images. These images were cut into 1024 × 1024 pixels, forming
four datasets with properties shown in Table 1. The dataset was divided into three parts,
one training set, one validation set, and one test set. The results were poor when training the
model on Sentinel-2 images and directly extracting PVs from Gaofen-2 images. Therefore,
we consider combining multiple PV features to complete the transfer work of the Sentinel-2
model. We aimed to utilize the images from Sentinel-2 and Google of different resolutions
to perform cross-scale PV extraction in Gaofen-2 imagery without using Gaofen-2 imagery
to train the model. As a result, only the training set of Google images was needed. For
model training, we used Gaofen-2 imagery as the validation set and test set. Thus, Google
images did not require validation and test sets, and Gaofen-2 imagery did not need a
training set. Finally, we used data augmentation such as rotation, color transformation, and
noise injection to augment the dataset.

Table 1. The dataset properties.

Dataset
Name Resolution Region Number of

Training Sets
Number of

Validation Sets
Number of

Test Sets

Sentinel-2 10 m China 1037 49 177
Sentinel-2 10 m US 426 51 98
Google-14 10 m China 1000 0 0
Google-16 2 m China 1000 0 0
Gaofen-2 2 m China 0 52 118

3. Methodology

The methodology framework consists of five parts as shown in Figure 1: (a) completing
the PV dataset by converting the vector samples into labels for the multi-source images,
(b) validating the advantages of our improved module through ablation experiments of
FEPVNet, (c) comparing the PV extraction ability of different models on the Sentinel-2
dataset, (d) using FEPVNet for cross-validation of the Sentinel-2 images in different regions,
and (e) completing a PV cross-scale extraction from multi-source remote-sensing images
using FEPVNet and the migration strategy.

3.1. Proposal of a Filter-Embedded Neural Network

As shown in Figure 2, HRNet comprises a stem network for initial feature extraction
and a multi-scale resolution main body network. The main body network contains four
stages, each using residual blocks to extract features. At the end of each stage, a Transition
branch is added, where the output features are downsampled by a factor of two, and the
channels are expanded by a factor of two. Finally, the head uses bilinear interpolation to
upsample the low-resolution feature maps and connects the completed upsample feature
maps to the output predicted binarized maps.
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Several modifications were made to improve the HRNet model, including adding
high-low pass filtering, polarized parallel attention, and a deep separable convolution.
Four different stem networks were constructed: LG_stem, which combines Laplacian
and Gaussian filters, SG_stem, which combines Sobel and Gaussian filters, CG_stem,
which combines Canny and Gaussian filters, and CM_stem, which combines Canny and
Median filters. In addition, the Polarized Self-Attention–residual (PAR), Single Depthwise
Separable (SDS) residual and Double Depthwise Separable (DDS) residual blocks were
constructed to replace the standard residual blocks at different stages of the HRNet main
network. The performance of these modules was evaluated on Sentinel-2 images in terms
of efficiency, Precision, Recall, F1-score, and Intersection over Union (IoU) to determine the
best configuration for our model.

The best-performing FEPVNet model embedded the Canny and Median filter into the
stem and replaced the normal residual block in the second stage using the PAR. Considering
that FEPVNet has a large number of parameters, we used an SDS block to replace the normal
residual block, which dramatically reduced the number of parameters and improved the
computational efficiency, and this model was named FESPVNet.

3.1.1. Stem Network Embedded Filtering

When an image is input into the HRNet model, it is initially processed by the stem
network, which consists of two stride-2 3 × 3 convolutions, resulting in a feature map that
is 1/4 the size of the original image. The architecture of the stem network utilized in HRNet
is depicted in Figure 3a.

To enhance the stem network’s capability for an adaptive extraction of the boundary
features, we constructed the high-pass filter (HPF) residual structure depicted in the left
half of Figure 3b. This was achieved by using traditional computer vision methods such as
Canny [40], Sobel [41], and Laplacian [42] high-pass filters. We then embedded these filters
into the stem network so that the network could obtain images containing edge features.
Next, we embedded low-pass filters, such as Gaussian and Median [43,44], into the stem
network. as shown in the right half of Figure 3b, to filter out the noise in the feature maps.
Finally, we experimented with combining the above filters and determined that it was
optimal to embed the Canny and Median filters into the stem network.

The following are the steps for edge detection by Canny:

1. To perform the image smoothing, a Gaussian filter with a two-dimensional Gaussian
kernel is used to carry out a convolution calculation to complete a weighted average
of the image. This process is effective in filtering out the high-frequency noise in the
image. The calculation process is as follows:

Iσ = I × Gσ (1)

Gσ(x, y) =
1

2πσ2 e−
x2+y2

2σ2 (2)

2. The edges are determined based on the image’s gradient amplitude and gradient
direction. Here, the gradient amplitude and direction are calculated using the Sobel
operator for the image with the following equation:

Edge_Gradient(G) =
√

d2
x + d2

y (3)

Angle(θ) = arctan−1
(

dx
dy

) (4)

3. To remove the non-boundary points, non-maximum suppression is applied to the
entire image. This is achieved by calculating the amplitude of each pixel point relative
to the gradient direction, comparing the amplitudes of pixel points with the same
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gradient direction, and retaining only those with the highest amplitude in the same
direction. The remaining pixel points are then eliminated.

4. To detect the edges, we employ the double threshold algorithm. We define strong
and weak thresholds by setting pixel points with gradient values below the weak
threshold to 0 and those exceeding the strong threshold to 255. For pixel points whose
gradient values fall between the strong and weak thresholds, we keep pixel points
whose eight neighborhoods are larger than the strong threshold and set them to 255,
while the rest are assigned a value of 0. These points are then connected to form the
object’s edges.

The edge-enhanced images obtained by the HPF still contain noise, which can affect
the main body network’s feature extraction ability. However, a Median filter can mitigate
this issue. The Median filter is a non-linear filtering method based on a statistical theory
that can remove isolated noise while retaining the complete edge information of the image.
Its principle is to replace the gray value of a point in the image with the median of the gray
value of each point in the neighborhood of that point, so that the value of the pixel point in
the domain is close to the actual value. The process can be summarized as follows:

1. Slide the filter window across the image, with the center of the window overlapping
the position of a pixel in the image.

2. Obtain the gray value of the corresponding pixel in this window.
3. Sort the grayscale values obtained from smallest to largest and find the median value

in the middle of the sorted list.
4. Assign the median value to the pixel at the window’s center.
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3.1.2. The Main Body Network Adaptability Improvements

The PSA [45] mechanism adds channel attention to the self-attention mechanism based
on a single spatial dimension, enabling a refined feature extraction. In this work, we use
the parallel PSA, which consists of a channel branch and a spatial branch computed in
parallel and then summed up, as shown in Figure 4. The calculation formula is as follows:

PSAp(X) = Zch + Zsp= Ach(X)�ch X + Asp(X)�sp X (5)
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The Channel branch converts the input features X into Q and V using a 1 × 1 con-
volution. Firstly, the number of channels for Q is completely compressed to 1, and the
number of channels for V becomes C/2. Since the number of channels of Q is compressed,
it uses the High Dynamic Range (HDR) to enhance information by increasing the attention
range for Q using the softmax function. Then Q and V are multiplied to obtain Z, and the
number of Z channels is increased from C/2 to C by connecting 1 × 1 convolution and
LayerNorm. Finally, the sigmoid function restricts Z between 0 and 1. The calculation
formula is as follows:

Ach(X) = FSG

[
Wz|θ1

(
σ1(Wv(X))× FSM

(
σ2
(
Wq(X)

)))]
(6)

The spatial branch uses a 1 × 1 convolution to convert the input features into Q and
V. Global pooling is used to compress Q in the spatial dimension to a size of 1 × 1. In
contrast, V’s spatial dimension remains H ×W. As Q’s spatial dimension is compressed,
Q’s information is augmented using softmax. The feature obtained by matrix multiplication
of Q and V is reshaped 1 × H ×W and converted the values to between 0 and 1 using
sigmoid. The calculation formula is as follows:

Asp(X) = FSG
[
σ3
(

FSM
(
σ1
(

FGP
(
Wq(X)

)))
× σ2(Wv(X))

)]
(7)

The PSA minimizes information loss by avoiding significant compression in both
the spatial and channel dimensions. Additionally, traditional attention methods estimate
the probability using only softmax or non-linear sigmoid functions. In contrast, the PSA
combines softmax and sigmoid functions in both channel and spatial branches to fit the
output distribution of fine-grained regression results. Therefore, the PSA can effectively
extract the features of fine-grained targets.

In this study, we use the parallel PSA to improve the basic residual convolution block
construct the polarized attention residual block (PAR), and employ it in stage 2, stage 3,
and stage 4 of the HRNet main body network. In addition, we experimentally determine
the additional position of the PAR in each stage.
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Figure 5 illustrates the normal convolution operation. By performing N 3 × 3 convolu-
tion calculations on the H ×W × C feature map, an H ×W × N feature map can be output.
The parameters for this operation can be calculated as follows:

parm_tr = 3× 3× C× N (8)
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By dividing the above two Equations (9) and (10), we can obtain the following results:

parm_de
parm_tr

=
3× 3× C + C× N

3× 3× C× N
=

1
N

+
1
9

(10)

From the above Equation (10), it can be observed that replacing the normal 3 × 3
convolution with the Depthwise Separable Convolution reduces the number of parameters
in the replaced part by 1/8~1/9 of the original, leading to significant improvements
in the computational efficiency and a lighter network. Therefore, in this study, we use
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the Depthwise Separable Convolution to replace the basic residual convolution block in
Figure 7a, constructing two kinds of deep convolution residual blocks, as follows:

1. A SDS residual block, as shown in Figure 7c, where two normal convolutions are
replaced by depth convolution and point convolution.

2. A DDS residual block, as shown in Figure 7d, where two Depthwise Separable
Convolutions are used to replace two normal convolutions.

We used SDS and DDS for stage 2, stage 3, and stage 4 of the HRNet main body,
respectively. Through the experiments, we found that SDS outperformed the normal
residual block in stage 4.
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3.2. Evaluation of the Model Adaptability

Figure 1c shows that the FEPVNet model was employed for cross-validation to verify
its ability to adaptively extract PVs from different regions. Specifically, we trained the
FEPVNet model with the Sentinel-2 China dataset to extract PVs from the US region and
vice versa.

To enhance the generalizability of the Sentinel-2 image model in multi-source images
and facilitate its migration for use in high-resolution image models, we compared four
methods illustrated in Figure 1d, which include three image migration strategies. These
methods consist of training the model with the Sentinel-2 dataset, mixing Sentinel-2 images
with Google-14 images in a 1:1 ratio to form the dataset training model, mixing Sentinel-2
images with Google-16 images in a 1:1 ratio to form the dataset training model, and mixing
Sentinel-2 images with Google-14 and Google-16 images in a 1:1:2 to form the dataset
training model. We then used these methods to extract PVs from the Gaofen-2 image.

3.3. Evaluation Metrics

To evaluate the results of PV extraction, we utilized four metrics, namely Precision,
Recall, F1-score, and IoU. The calculations for these metrics can be completed using the
following equations:

Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)
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F1− score =
2TP

2TP + FN + FP
(13)

IoU =
TP

TP + FP + FN
(14)

In the above Equations (11)–(14), TP represents a positive sample judged as positive,
FP represents a negative sample judged as a positive, FN represents a positive sample
judged as negative, and TN represents a negative sample judged as negative.

4. Results
4.1. Ablation Experiment of Filter-Embedded Neural Network

We conducted ablation experiments using Sentinel-2 image to construct an optimal
filtering embedded neural network. We tested four different stem networks and replaced
normal residual blocks at various stages of the HRNet’s main body with PAR, SDS, and
DDS modules to better understand the impact of each module on the model’s performance.
We identified our model’s optimal configuration based on these experiments’ results.

4.1.1. The Results of Different Stem Models

The results in Table 2 show that, on the Sentinel-2 dataset, except for SG_stem, the
evaluation metrics of the improved stem models are higher than those of the stem. Specifi-
cally, on the Sentinel-2 dataset in the US, CM_stem had an increase in F1-score and IoU of
0.97% and 1.80%, respectively, compared to the stem. On the Sentinel-2 dataset in China,
the F1-score and IoU of CM_stem increased by 1.25% and 2.25% over the stem, respectively.
However, the other improvement methods only resulted in slight improvements in the
evaluation metrics compared to the stem.

Table 2. The evaluation metrics for different stem networks in China and the US.

Region Model Recall Precision F1-Score IoU

China

stem 0.9052 0.9489 0.9265 0.8631
LG_stem 0.8965 0.9336 0.9147 0.8428
SG_stem 0.8830 0.9057 0.8942 0.8087
CG_stem 0.9065 0.9226 0.9145 0.8425
CM_stem 0.9315 0.9472 0.9393 0.8856

US

stem 0.9521 0.9595 0.9558 0.9153
LG_stem 0.9498 0.9564 0.9531 0.9105
SG_stem 0.9444 0.9443 0.9444 0.8946
CG_stem 0.9541 0.9700 0.9620 0.9268
CM_stem 0.9619 0.9691 0.9655 0.9333

Figure 8 shows the prediction results of different stem networks on the Sentinel-2
dataset in the US and China. By comparing the Ground truth and the five prediction results,
it was found that the segmentation results of the CM_stem network in the last column were
consistent with the labels. Compared with other models, the segmentation result of the
CM_stem network in the last column was consistent with the label. As indicated by the red
circle in Figure 8, other network models wrongly classified the segmentation results of the
small boundary as PVs, while the segmentation results of the CM_stem network retained
the edge. Combining the prediction results and evaluation metrics of the two datasets,
we determined that the final method for improving the stem network is CM_stem, which
embeds Canny and the Median filter in the stem, as shown in Figure 3b.

4.1.2. The Results of Models in Different Stages

Table 3 presents the evaluation metrics obtained from the ablation experiments in the
main body network improvement on Sentinel-2 images in China and the US. Comparing
the evaluation metrics of HRNet in Table 2, we found that replacing the residual blocks in
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the HRNet main body network with PAR blocks improved the PV extraction performance
in the China region. In contrast, the PV extraction performance in the US region remained
almost the same. Therefore, considering that using PAR blocks increases the model’s
parameter count and Flops, we decided to use it in stage 2 of the main body network.
In addition, by comparing the performance of two different residual blocks, namely the
ordinary residual block and the SDS block, in the fourth stage of HRNet, it was observed
that replacing the former with the latter can reduce 39,873,600 parameters and 122.58 G
Flops without any significant change in the evaluation metrics.
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and Gaussian, CG_stem combined with Canny and Gaussian, and CM_stem combined with Canny
and Median.
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Table 3. The evaluation metrics for different main body networks.

Region Model Recall Precision F1-Score IoU Params Flops

China

PAR_stage2 0.9306 0.9423 0.9364 0.8805 65,939,858 376.34 G
PAR_stage3 0.9241 0.9372 0.9306 0.8702 67,400,786 385.47 G
PAR_stage4 0.9281 0.9481 0.9380 0.8833 70,555,922 385.45 G
DDS_stage2 0.9202 0.9369 0.9285 0.8665 65,120,210 355.52 G
DDS_stage3 0.9247 0.9149 0.9198 0.8515 53,557,586 260.13 G
DDS_stage4 0.9217 0.9265 0.9241 0.8590 28,401,362 259.82 G
SDS_stage2 0.9215 0.9366 0.9290 0.8675 65,068,946 354.14 G
SDS_stage3 0.9147 0.9388 0.9266 0.8633 52,735,058 252.09 G
SDS_stage4 0.9277 0.9380 0.9328 0.8742 25,973,522 251.93 G

US

PAR_stage2 0.9422 0.9655 0.9537 0.9116 65,939,858 376.34 G
PAR_stage3 0.9318 0.9605 0.9459 0.8975 67,400,786 385.47 G
PAR_stage4 0.9467 0.9615 0.9540 0.9122 70,555,922 385.45 G
DDS_stage2 0.9409 0.9650 0.9528 0.9099 65,120,210 355.52 G
DDS_stage3 0.9361 0.9617 0.9487 0.9025 53,557,586 260.13 G
DDS_stage4 0.9410 0.9582 0.9495 0.9039 28,401,362 259.82 G
SDS_stage2 0.9439 0.9609 0.9523 0.9090 65,068,946 354.14 G
SDS_stage3 0.9417 0.9690 0.9552 0.9142 52,735,058 252.09 G
SDS_stage4 0.9412 0.9633 0.9521 0.9087 25,973,522 251.93 G

As shown in Figure 9, we demonstrate the representative prediction results of the
ablation experiments on optimizing the backbone network. When PAR replaces the normal
residual block in stage 2 for PV extraction, the results are consistent with the labels. How-
ever, when SDS replaces the standard residual block in the fourth stage for PV extraction,
some of the extracted PV results are slightly missing. Compared with other stages using
PAR and SDS, the stages where the two residual blocks are replaced, have good perfor-
mance. In addition, when DDS is used to replace the normal residual block in stage 4 for PV
extraction, some PV panels with less salient features cannot be identified. The prediction
results of this improvement method are consistent with the other residual improvement
methods of the backbone network.

4.2. The Filter-Embedded Neural Network for PV Panel Mapping

Based on the ablation experiments conducted to improve HRNet’s stem and main body
network, we integrated the best-performing modules of each part to build two improved
models: FEPVNet and FESPVNet. FEPVNet replaces HRNet’s stem and stage 2 residual
blocks in the main body network with CM_stem and PAR, respectively. FESPVNet replaces
the stage 4 residual blocks in FEPVNet’s main body network with SDS. We then compared
the PV extraction results of U-Net, HRNet, SwinTransformer [47], FEPVNet, and FESPVNet
on Sentinel-2 images of the US and China.

Table 4 presents the evaluation metrics of different network models on Sentinel-2
images in different regions, namely China and the US. By comparing the evaluation metrics
of different models, we observed that FEPVNet’s IoU increased by 2.05% in the US and
2.37% in China compared to HRNet. Furthermore, compared to HRNet, FESPVNet reduced
the number of parameters by 39,780,864 and Flops by 120.74 G. However, FESPVNet’s IoU
increased by 1.2% in the US and 1.89% in China.

Figure 10 shows the PV prediction results of four network models. From the content
of the figure, it can be observed that U-Net has the worst prediction results, with many PV
areas still unidentified. In contrast, our proposed models, especially FEPVNet, perform
better than HRNet in the region marked by the red circle. Additionally, FEPVNet can
segment PV boundaries that HRNet cannot.
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Table 4. The evaluation metrics for different network models.

Region Model Recall Precision F1-Score IoU Params Flops

China

U-Net 0.4174 0.5316 0.4676 0.3052 31,054,344 64,914,029
HRNet 0.9052 0.9489 0.9265 0.8631 65,847,122 374.51 G
FEPVNet 0.9309 0.9493 0.9400 0.8868 65,939,858 376.34 G
SwinTransformer 0.9309 0.9460 0.9384 0.8840 59,830,000 936.71 G
FESPVNet 0.9246 0.9503 0.9373 0.8820 26,066,258 253.77 G

US

U-Net 0.8717 0.6224 0.7262 0.5702 31,054,344 64,914,029
HRNet 0.9521 0.9595 0.9558 0.9153 65,847,122 374.51 G
FEPVNet 0.9641 0.9695 0.9668 0.9358 65,939,858 376.34 G
SwinTransformer 0.9591 0.9726 0.9658 0.9339 59,830,000 936.71 G
FESPVNet 0.9567 0.9679 0.9623 0.9273 26,066,258 253.77 G
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4.3. The Adaptability of the Model under Different Regions

We trained HRNet and FEPVNet using Sentinel-2 images from various regions in
China and the US. To assess the cross-regional generalizability of the models, we conducted
cross-validation experiments where the trained American model was used to predict images
from the China region, and the Chinese model was used to predict images from the US
region. The evaluation metrics are shown in Table 5.

Table 5. The area comparison predictive evaluation metrics.

Region Model Recall Precision F1-Score IoU

China
HRNet_US 0.3755 0.9372 0.5362 0.3663
FEPVNet_US 0.4645 0.9539 0.6248 0.4544

US
HRNet_China 0.8288 0.4869 0.6134 0.4424
FEPVNet_China 0.6872 0.6221 0.6530 0.4848

Comparing the cross-validation results’ evaluation metrics in Table 5 with those in
Table 4, we observed that using US weights to predict the Chinese regional images resulted
in a 31.25% and 43.24% decrease in the F1-score and IoU, respectively. Similarly, using
Chinese weights to predict US regional images led to a 28.30% and 45.12% reduction in F1-
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score and IoU, respectively. Despite the decrease in metrics for cross-validation, FEPVNet
demonstrated better performance than HRNet in both the US and China regions, achieving
an F1-score and IoU of 3.96% and 4.24% higher in the US region and 8.86% and 8.81%
higher in the Chinese region, respectively.

In Figure 11, the red dashed boxes represent the prediction result plots for cross-
validation, while the remaining boxes represent the prediction result plots without cross-
validation. By comparing the two types of prediction results and analyzing the label
changes in the two types of evaluation metrics, we found that both HRNet and FEPVNet
missed PV extraction results during cross-validation. However, FEPVNet demonstrated
better PV extraction ability and a more stable performance than HRNet.

Remote Sens. 2023, 15, x FOR PEER REVIEW 17 of 24 
 

 

missed PV extraction results during cross-validation. However, FEPVNet demonstrated 

better PV extraction ability and a more stable performance than HRNet. 

Table 5. The area comparison predictive evaluation metrics. 

Region Model Recall Precision F1-Score IoU 

China 
HRNet_US 0.3755 0.9372 0.5362 0.3663 

FEPVNet_US 0.4645 0.9539 0.6248 0.4544 

US 
HRNet_China 0.8288 0.4869 0.6134 0.4424 

FEPVNet_China 0.6872 0.6221 0.6530 0.4848 

 

Figure 11. Cross-validation results. Note: The prediction results of HRNet and FEPVNet for China 

and US regions with different weight parameters are shown. 

4.4. The Adaptability of the Model under Multi-Source Images 

We proposed three data migration strategies to achieve cross-scale extraction of PVs. 

Since we used Gaofen-2 images of the China region in this study, we found the prediction 

results of both the HRNet and FEPVNet models were severely missing when we used a 

model trained on Sentinel-2 images to extract PVs from Gaofen-2 images, as shown in the 

Figure 11. Cross-validation results. Note: The prediction results of HRNet and FEPVNet for China
and US regions with different weight parameters are shown.

4.4. The Adaptability of the Model under Multi-Source Images

We proposed three data migration strategies to achieve cross-scale extraction of PVs.
Since we used Gaofen-2 images of the China region in this study, we found the prediction
results of both the HRNet and FEPVNet models were severely missing when we used a
model trained on Sentinel-2 images to extract PVs from Gaofen-2 images, as shown in the
third column of Figure 12. Comparing the prediction results with the evaluation metrics
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in Table 6 shows that the results were poor when directly using the Sentinel-2 model to
extract PV from Gaofen-2 images. Therefore, we utilized three data migration strategies
(i.e., using Google data as a medium for Sentinel-2 and Gaofen-2 images) to improve the
accuracy of PV extraction.
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Table 6. The evaluation metrics for the model migration prediction results.

Model Strategy Recall Precision F1-Score IoU

HRNet

Sentinel-2 0.2620 0.9216 0.4084 0.2563
Sentinel-2 Google-14 0.3346 0.9036 0.4884 0.3231
Sentinel-2 Google-16 0.8940 0.9162 0.9050 0.8265
Sentinel-2 Google-14 16 0.8889 0.9269 0.9075 0.8308

FEPVNet

Sentinel-2 0.2883 0.9083 0.4377 0.2801
Sentinel-2 Google-14 0.6681 0.8724 0.7567 0.6086
Sentinel-2 Google-16 0.8864 0.9437 0.9142 0.8419
Sentinel-2 Google-14 16 0.9084 0.9192 0.9138 0.8413
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The prediction results of the Sentinel-2 combined with the Google-14 image strategy
are shown in the fourth column of Figure 12, the prediction results of the Sentinel-2
combined with the Google-16 image strategy are shown in the fifth column of Figure 12,
and the prediction results of the Sentinel-2 and Google-14 16 combination strategy are
shown in the sixth column of Figure 12. From the contents of Figure 12, we have seen
that the prediction results of FEPVNet in the fifth column are consistent with the labels.
According to the evaluation metrics in Table 6, the optimal cross-scale PV extraction scheme
was the FEPVNet model combined with the Sentinel-2 and Google-16 combination strategy.
Its prediction results of the F1-score and IoU reached 91.42% and 84.19%, respectively. In
addition, the evaluation metrics of PVs extracted by FEPVNet all exceeded the evaluation
metrics of HRNet in the same case.

We utilized the FEPVNet model with the optimal evaluation metrics to extract PVs
from Gaofen-2 images, as illustrated in Figure 13. The red box in the circle diagram in the
upper left corner of Figure 13a represents the geographic location of the Gaofen-2 image.
The red area in the figure represents the extracted results of the PVs. The blue dashed
box area in Figure 13a is magnified, as shown in Figure 13b, and Figure 13c shows the
prediction result of Figure 13b. Combining data migration and FEPVNet can effectively
extract PVs from the Gaofen-2 image.
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in (a), and PVs in the red area. Note: Complete PV mapping on the Gaofen-2 image using the model
with the best evaluation metrics.

5. Discussion

In previous studies of PV extraction, some traditional methods and un-optimized
CNNs [21–24] have been used for PV extraction from a single data source, achieving
good results but with poor generalization. Although Kruitwagen et al. [32] achieved
PV extraction from multiple sources of images with the same resolution, cross-scale PV
extraction has not been completed. Based on the deficiencies in the above research, we
conducted a model of experiments using Sentinel-2 images to build FEPVNet. We combined
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Sentinel-2 and Google images to construct three data migration strategies to complete PV
extraction from Gaofen-2 images.

Given that previous methods have difficulty extracting small features at the edge
of PV panels and that image noise significantly influenced the extraction results, we
embedded Canny and Median filters into the stem to construct the CM_stem. As shown in
the prediction results in the last column of Figure 8, the above improvements effectively
enhanced the model’s edge extraction ability and anti-noise. To enhance the adaptive
capability of the model, we constructed PAR using PSA to replace the noraml residual
block and determined through ablation experiments which should be used in stage 2 of the
main body network, as shown in the best ablation experiment result in the third column of
Figure 9. Finally, we combined the CM_stem and PAR to propose the adaptive FEPVNet.
To reduce the number of parameters and improve the computational efficiency, we used
the SDS module to replace the normal residual block in stage 4 of FEPVNet and named this
model FESPVNet. After significantly reducing the number of model parameters, the loss
of each evaluation metric was less than 0.5%, indicating that our method achieved a good
balance between model accuracy and computational cost.

Furthermore, to demonstrate the adaptive capability of FEPVNet for PV extraction, we
conducted cross-validation of HRNet and FEPVNet. The quantitative evaluation metrics
are shown in Table 5. As the results show, the evaluation metrics of the prediction results
of both models have declined. The imbalance in the number of training images available
from the different regions can affect the model’s learning of photovoltaic features and
its prediction of photovoltaic results, which is difficult to avoid in deep learning training
completely. Under the fixed data source, appropriate over- or undersampling strategies,
weight updating strategies, or weighted loss functions may be adopted to improve the
adverse effects caused by this problem. In addition, the decline in evaluation indicators in
cross-validation results is also affected by regional differences. For example, as shown in
Figure 14, the landscapes in Chinese images are more straightforward than those in the
US, and the colors of the images are also significantly different (e.g., the green PV area
and the yellow circle in the figure). The difference in the data itself may require some
image pre-processing or post-processing strategies to reduce the impact while also placing
higher demands on the model’s generalization ability. Nevertheless, in cross-validation, the
performance of FEPVNet was still superior to that of HRNet, indicating that our method
has a high PV extraction accuracy and good generalization ability to cope with different
regional data.
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Finally, we compared the PV cross-scale extraction results of three migration strategies
and two models (i.e., HRNet and FEPVNet), and the quantitative evaluation metrics are
shown in Table 6. The FEPVNet model combined with the optimal migration strategy of
mixing Sentinel-2 and Google-16 images can accurately extract photovoltaic information
from Gaofen-2 satellite images. This study has positive implications for large-scale PV
mapping and can provide accurate PV geospatial information for those who need it.

6. Conclusions

The primary purpose of this study is to propose a cross-scale PV mapping method
based on the FEPVNet model, which is used to extract photovoltaic regions from multiple
sources of images adaptively. For experiments, four datasets were constructed using global
PV vector samples from Sentinel-2, Google-14, Google-16, and Gaofen-2.

To enhance the anti-noise edge information extraction and high-dimensional local
feature extraction capabilities of the network, we embedded Canny, Median filter, and PSA
into HRNet to construct the FEPVNet model. Subsequently, we conducted comparative
experiments and cross-validation experiments on the Sentinel-2 dataset. The results of
the comparative experiments show that compared to classical methods such as U-Net and
HRNet, FEPVNet has a higher PV extraction accuracy. Furthermore, in the cross-validation
experiments with different regional images, FEPVNet mitigated the impact of training data
imbalance and regional differences on PV extraction compared to HRNet. Finally, we used
the data migration strategies to enable the FEPVNet model trained on Sentinel-2 images to
extract PVs across scales in Gaofen-2 images, with Precision and F1-score reaching 94.37%
and 91.42%, respectively, which demonstrates the effectiveness of our method.

The main contribution of this study is to construct an adaptive Filter-Embedded Net-
work (i.e., FEPVNet) and data migration strategies to accomplish the cross-scale mapping
of PV panels from multi-source images. In the future, we will investigate the model’s ability
to extract other types of PV, such as rooftop photovoltaics, and its applicability to other
remote-sensing images. We will also use the cross-scale PV extraction method proposed in
this study to complete regional or national-scale PV mapping.
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