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Abstract: Crop type mapping at high resolution is crucial for various purposes related to agriculture
and food security, including the monitoring of crop yields, evaluating the potential effects of natural
disasters on agricultural production, analyzing the potential impacts of climate change on agriculture,
etc. However, accurately mapping crop types and ranges on large spatial scales remains a challenge.
For the accurate mapping of crop types at the regional scale, this paper proposed a crop type
mapping method based on the combination of multiple single-temporal feature images and time-
series feature images derived from Sentinel-1 (SAR) and Sentinel-2 (optical) satellite imagery on
the Google Earth Engine (GEE) platform. Firstly, crop type classification was performed separately
using multiple single-temporal feature images and the time-series feature image. Secondly, with
the help of information entropy, this study proposed a pixel-scale crop type classification accuracy
evaluation metric, i.e., the CA-score, which was used to conduct a vote on the classification results of
multiple single-temporal images and the time-series feature image to obtain the final crop type map.
A comparative analysis showed that the proposed classification method had excellent performance
and that it can achieve accurate mapping of multiple crop types at a 10 m resolution for large spatial
scales. The overall accuracy (OA) and the kappa coefficient (KC) were 84.15% and 0.80, respectively.
Compared with the classification results that were based on the time-series feature image, the OA
was improved by 3.37%, and the KC was improved by 0.03. In addition, the CA-score proposed in
this study can effectively reflect the accuracy of crop identification and can serve as a pixel-scale
classification accuracy evaluation metric, providing a more comprehensive visual interpretation of
the classification accuracy. The proposed method and metrics have the potential to be applied to the
mapping of larger study areas with more complex land cover types using remote sensing.

Keywords: crop type mapping; the regional scale; multi-source; multi-temporal; time-series; infor-
mation entropy; GEE; RF

1. Introduction

Food security is the basis for a healthy life. However, since 2014, the number of hungry
people in the world has been increasing [1]. Climate change and extreme events are im-
portant drivers of increases in global hunger, as they directly hinder crop production [1–3].
In addition, rapid population growth, and complex and changing international relations
can also affect food security [4,5]. To address these challenges, we need to take effective
measures to ensure food security. It is important for government departments to quickly
and accurately obtain information on the types and spatial distributions of crops for devel-
oping food policies, adjusting agricultural structure, and ensuring national and global food
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security [6–9]. In addition, crop type mapping also forms the basis for research on crop cen-
suses [6,10], growth monitoring [11], disaster assessment [12], and yield estimation [13–15].
Compared with traditional field survey methods, remote sensing has become one of the
main means of fast and accurate large-scale crop type mapping due to its long-term dy-
namic monitoring, wide coverage, and low cost, providing good technical support for
extracting crop information [16–20].

Although there have been a large number of studies and achievements around land
cover mapping using remote sensing [17,21–23], it is still challenging to use remote sensing
to accurately map crop types over a large area. The biggest bottleneck is the data quality of
remote sensing images, including their spatial, spectral, radiometric, and temporal resolu-
tion. To improve the accuracy of crop type mapping using remote sensing, it is necessary to
optimize the data quality of remote sensing images and to develop and improve algorithms
for image interpretation and information extraction. Agricultural planting systems are
highly fragmented [24] and dynamic, especially in small-scale agriculture. This requires
high spatial and temporal resolution of remote sensing images, with spatial resolution
consistent with the scale of the fields, and higher revisit periods to avoid interference
from clouds and other factors, as well as to reveal more detailed changes in crop growth
periods and land use [17]. Higher spectral resolution helps to identify crop types. In the
past, regional crop type mapping was mainly carried out using satellite data from the
Landsat series and MODIS, but their spatial resolution and revisit periods were limiting
factors in achieving high-precision crop type mapping. The emergence of Sentinel-2 has
provided the unprecedented fine-scale crop monitoring ability [25]. Sentinel-2′s higher
spatial and temporal resolution, as well as its wide spectral range, make it an important tool
for crop type mapping. However, using the data set from a single satellite is not sufficient
to achieve complete coverage of the study area. Therefore, Landsat data are often used as a
supplement to Sentinel-2 data to obtain the complete coverage of the study area [26–28].
Many studies have shown that compared with a single type of satellite data, the fusion
of multi-source remote sensing data provides a wider range of target information content
from different perspectives of spatial, spectral, and temporal characteristics and performs
better in the monitoring of cultivated land [28–31]. In current data fusion research, there
are more and more methods combining optical data and radar data for cultivated land
monitoring. For example, an increasing amount of research is using a combination of
images to focus on phenology by combining Sentinel-2 and Landsat data, as well as adding
SAR data to enhance it and constructing suitable phenological time-series feature images
as input data [32–35].

The fusion of multi-source data provides a new approach to large-scale crop type
mapping, but there are still some problems to be solved: first, due to the limitations of
cloud and satellite revisit periods, it is difficult to synthesize specific time series images
of the coverage at the regional scale. The existing research on multi-source image fusion
usually synthesizes and fuses images within the time window according to the median
or mean and fills in the gaps with images from adjacent time periods, which may cause
local differences due to inconsistent observation times and observations. Furthermore,
the images obtained by such fusions are not original observation data, and the original
information from many single-temporal images in the study area is lost. In addition, many
studies tend to use the simple and direct layer stacking method for the optical band and
the SAR band. With the increase in spectral features and time-series images, the feature
parameters of the classifier input rapidly increase to dozens or even hundreds, which not
only makes the operation complex and reduces the processing speed but also means that,
in the case of limited samples, too many features may cause the classification accuracy to
decrease, which is the so-called “dimension disaster” [36].

Other challenges in accurate crop type mapping at the regional scale are the perfor-
mance of the classification algorithms and the limitations of remote sensing that require big
data computing power [29]. Classification algorithms often directly determine the accuracy
of crop type mapping. The classification algorithms currently developed for drawing crop
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types mainly include SVMs (support vector machines), CART (classification and regression
tree), RF (random forests), and DL (deep learning) [7,27,37], among which RF is considered
one of the most effective, accurate, and robust methods for mapping crop types [30,38,39].
In recent years, some research has shown that DL also has good performance in crop type
mapping [40,41], but this method often relies on a large number of samples to train the clas-
sification model. Limited by computational power, the study area covered by optical and
radar data fusion studies for crop type mapping so far has been relatively small on average,
with almost half of the studies conducted in areas less than 1000 km2 [18]. Only one study
was conducted at the national level by Torbik et al. [42], covering all of Myanmar’s territory
(676,578 km2). In general, relevant research is mainly limited to a few crop types or small
research areas, and there is a lack of large-scale mapping being practiced for multiple crop
types. This fact may reflect that the processing of massive amounts of data (multi-sensor,
high-spatial-resolution, and multi-temporal data) is a challenge. To cope with the era of
remote sensing big data, a number of remote sensing cloud computing platforms led by
the GEE (Google Earth Engine) have emerged, which makes it possible to achieve accurate
crop type mapping using remote sensing data at large spatial scales. At present, much
research has used the GEE platform to achieve agricultural remote sensing work [43–45].

In summary, this study aims to develop a new crop classification method based on the
integrated feature-level fusion and decision-level fusion of the GEE platform. By leveraging
the powerful data processing capabilities of the GEE platform, the study aims to evaluate
the potential of combining multiple single-temporal images and monthly time-series images
to overcome issues such as image gaps and fusion, and achieve fine crop classification at
the regional level. Specifically, it includes the following:

(1) Developing a method for crop type mapping that combines multiple single-
temporal feature images and time-series feature images derived from Sentinel-1 (SAR) and
Sentinel-2 (optical) satellite imagery, and applying it to the classification of multiple crops
at the provincial level;

(2) Constructing a new classification accuracy evaluation metric that can be used to
evaluate the accuracy of a pixel-scale classification and provide a more comprehensive
visual explanation of classification accuracy.

2. Materials and Methods
2.1. Study Area

Henan is a province in central China that covers a total area of approximately
1.67 × 105 km2 (31.38–36.37◦N, 110.35–116.65◦E; Figure 1). The terrain of Henan is varied,
with hills and mountains in the west and the Yellow–Huaihe alluvial plain in the east. The
southwestern part is mainly the Nanyang Basin. The plain and basin, as well as the hills
and mountains, make up 55.7% and 44.3% of the total area, respectively. Most of Henan has
a warm temperate climate, with some areas transitioning into the subtropical zone. It has
an annual average temperature ranging from 10.5 to 16.7 ◦C, with average annual sunshine
hours ranging from 1285.7 to 2292.9 h and an average annual precipitation ranging from
407.7 to 1295.8 mm [46]. The favorable geography and climate provide suitable conditions
for agricultural production, with the main focus on two crops per year. According to the
National Bureau of Statistics, Henan’s sowing area for grain crops was 1.08 × 105 km2 in
2021, accounting for 9.16% of China’s total sowing area for grain crops. Grain production
was 6.54 × 107 t, accounting for 9.58% of the national total, and played a significant role in
the country’s overall grain production. According to the Henan Provincial Statistical Year-
book, Henan’s autumn harvest crops are mainly maize, peanuts, rice, and soybeans. Maize
is widely distributed throughout the province and is the main crop of most prefecture-level
cities. Peanuts are also widely distributed throughout the province, mainly in Kaifeng,
Nanyang, and Zhumadian. Rice is mainly grown in Xinyang in the south. Soybeans are
mainly grown in Zhoukou, Shangqiu, and Xuchang. In addition, sweet potatoes, cotton,
tobacco, medicinal herbs (mainly yams), flowers, and different types of fruits and vegeta-
bles are grown in the Henan Province using greenhouses and piecemeal planting systems,
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collectively referred to as “other crops” in this paper. The concentration of other crops
is mainly distributed in the central and eastern regions of the Henan Province. Maize,
peanuts, and soybeans are typically planted from late May to early June and harvested
from late September to early November. Rice is transplanted in May and harvested from
late September to early October. The growth period of other crops is generally longer than
that of the above crops, with an early planting and late harvesting time.

1 

 

 
1 

 Figure 1. The geographical location of Henan Province, China, and the distribution of ground crop
samples obtained in this study.

Due to the diversity of the geography and climate, and the household contract re-
sponsibility system, the structure of agriculture is complicated in Henan province. In
mountainous and hilly areas, small-scale agriculture predominates, with highly fragmented
fields. In flatlands, the originally larger and more regular farmland suitable for mechanical
cultivation has also become more fragmented due to the household contract responsibility
system. This presents challenges for the fine classification of crops in Henan.

2.2. Datasets
2.2.1. Sentinel Imagery

Sentinel-1 and Sentinel-2 are two of the satellites in the Copernicus program, which is
a joint initiative of the European Union (EU) and the European Space Agency (ESA) [47].
Sentinel-2 consists of two satellites, which have become the first choice for regional high-
precision mapping in recent years due to their high spatial (10 m), high temporal (5 d), and
high spectral (13 bands) resolutions. Sentinel-1 also consists of two satellites, carrying a
C-band (5.4 GHz) synthetic aperture radar, which is an active microwave remote sensing
satellite that can achieve all-weather observation of the ground. GEE offers a variety of
products from both satellites for free, online. Based on prior knowledge, we know that
the period from mid-June to mid-September of each year is the common time period for
the growth and development of various major autumn crops in the study area. Therefore,
110 Sentinel-1 images (Figure 2) and 1137 Sentinel-2 images (Figure 3) covering Henan



Remote Sens. 2023, 15, 2466 5 of 20

Province, China, from 16 June 2021 to 15 September 2021, were used as input data in this
study. According to previous studies [48] and experiments, the “VH” polarization mode
has better performance in crop identification than the “VV” polarization mode, so this study
chose the Sentinel-1 GRD (ground range detection) product with the “VH” polarization
mode, which has a spatial resolution of 10 m, and performed a mosaic fusion of ascending
and descending track data. Texture features, an important surface and structural attribute
of images, can improve the classification accuracy of remote sensing images [49,50] when
used as feature variables. In this study, the “VH” band of the Sentinel-1 GRD was used to
generate texture features based on the gray-level co-occurrence matrix (GLCM), and the
sliding window was set to 3 × 3 after experimentation. The 6 most commonly used texture
features were selected: VH_asm (angular second moment, reflecting the uniformity of the
image’s gray-scale distribution and the texture’s coarseness), VH_contrast (contrast, reflect-
ing the clarity of the image and the depth of the texture’s grooves), VH_corr (correlation,
reflecting the local gray-scale correlation of the image), VH_var (variance, measuring the
dispersion of the gray-scale distribution), VH_idm (inverse difference moment, reflecting
the size of local texture changes in the image), and VH_ent (entropy, expressing the random-
ness of the image’s texture). Each texture feature variable was added to the original image
as a separate band to form the SAR classification feature image set (Table 1). Sentinel-2
data were the level 2 surface reflectance product (Level-2A) that had been atmospherically
corrected, the QA60 band was used for de-cloud processing, and the resolution of all
bands was resampled to 10 m. The following spectral features were calculated: NDVI
(normalized difference vegetation index, which separates vegetation from water and soil),
NDWI (normalized difference water index, highlighting water bodies in the image), EVI
(enhanced vegetation index, which improves the ability to detect sparse vegetation), NDBI
(normalized difference built-up index, accurately reflecting built-up land information),
and LSWI (land surface water index, representing soil moisture changes). Each spectral
feature variable was added to the original image as a separate band to form the optical
classification feature image set (Table 1). 

2 

 
2 Figure 2. The number of observations of Sentinel-1. Total number of observations during the period

from 16 June 2021 to 15 September 2021 (a), number of observations from 16 June 2021 to 15 July 2021
(b), number of observations from 16 July 2021 to 15 August 2021 (c), number of observations from 16
August 2021 to 15 September 2021 (d).
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Figure 3. The number of observations of Sentinel-2 after de-cloud processing. Total number of
observations during the period from 16 June 2021 to 15 September 2021 (a), number of observations
from 16 June 2021 to 15 July 2021 (b), number of observations from 16 July 2021 to 15 August 2021 (c),
number of observations from 16 August 2021 to 15 September 2021 (d).

Table 1. The parameters of the classification feature image set used in this study.

Satellite Data Type Number Band Resolution (m)

Sentinel-1 GRD 110

VH 10
VH_asm 10

VH_contrast 10
VH_corr 10
VH_var 10
VH_idm 10
VH _ent 10

Sentinel-2 Leve-2A 1137

Blue 10
Green 10
Red 10

Red Edge 1 20(Resampled to 10)
Red Edge 2 20(Resampled to 10)
Red Edge 3 20(Resampled to 10)

NIR 10
Red Edge 4 20(Resampled to 10)

SWIR 1 20(Resampled to 10)
SWIR 2 20(Resampled to 10)
NDVI 10
NDWI 10

EVI 10
NDBI 10
LSWI 10

2.2.2. Ground Reference Dataset

We conducted a field survey of the study area in July–August 2021 and recorded the
coordinates of the sample points. Based on the statistical prior knowledge from the Henan
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Statistical Yearbook, our sampling points cover the main production areas of various crops
and try to ensure that samples of a certain type of crop can cover the entire study area. After
subsequent adjustments and screening, a total of 4132 crop samples were used for this study,
including maize (1000 points), rice (744 points), peanuts (1270 points), soybeans (498 points),
and other crops (620 points). In addition, we used the 2021 10-m resolution global land
cover map (ESA WorldCover 10 m v200) [51] released by the European Space Agency to
generate non-crop samples and combined with Google Earth high-resolution imagery for
visual interpretation to determine 1000 non-crop samples uniformly covering the entire
study area, including tree cover, shrubland, grassland, built-up, bare/sparse vegetation,
permanent water bodies, herbaceous wetland, etc. Finally, the sample points were randomly
divided into two groups, 70% of which were used to train the model for classification, and
30% were used to evaluate the accuracy of the classification results (Table 2).

Table 2. The number of ground reference samples divided into training and validation.

Crop Type
Number

Training Validation Total

Maize 717 283 1000
Rice 539 205 744

Peanuts 888 382 1270
Soybeans 340 159 499

Other Crops 441 179 620
Others 675 325 1000
Total 3600 1533 5133

2.3. Methods

The regional-scale crop type mapping method we proposed can be divided into three
parts, as shown in Figure 4: (1) using the time-series feature image and multiple single-
temporal feature images for crop type classification, (2) voting on the two classification
results to determine the final crop types, and (3) accuracy evaluation.

2.3.1. Classifier

Random forest (RF) is a machine learning algorithm that combines multiple decision
trees using a voting mechanism to make predictions [52,53]. It is an ensemble classifier that
has been widely used in the supervised classification of remote-sensing images due to its
simplicity, speed, robustness, and high classification accuracy [54]. In addition to being
used for classification, RF can also be used for regression tasks. One of the main advantages
of RF is that it is less prone to overfitting compared to other machine learning algorithms.
Therefore, in this study, the RF algorithm was used as the classification method. We set the
output mode of the RF to “MULTIPROBABILITY” to achieve soft output, and the output
result was an array of probabilities that each class was correct. Through experiments, the
“numberOfTrees” of the RF in this study was set to 50 and the “bagFraction” was set to 0.8.
The JM (Jeffries–Matusita) distance is a widely accepted feature separability measure [45,55]
that can be used to characterize the separability of different land cover classes based on the
same features, as well as to characterize the separability of different features based on the
same land cover classes. Feature selection was not conducted in this study, as we found that
the importance of different classification features would vary with the changing growth
season through the calculation of the JM distance, and recent research has not found that
feature selection can effectively improve classification accuracy [18,33].
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2.3.2. Classification Based on Time-Series Feature Image

In the classification of the time-series feature image, the feature image set was divided
into three time windows (from 16 June 2021 to 15 July 2021; from 16 July 2021 to 15 August
2021; and from 16 August 2021 to 15 September 2021) for fusion (Figures 2 and 3). For
each time window, the SAR classification feature image set and the optical classification
feature image set were calculated pixel by pixel to obtain a total of 6 median feature images.
The gaps in the median feature images were filled with the median of the median feature
images of the adjacent time periods before and after. Then, the 6 median feature images that
cover the entire study area were aggregated to obtain the time-series feature image. Next,
the time-series feature image was sampled according to the coordinates of the training
samples, and the classifier was trained using sampling results. Finally, the time-series
feature image was classified using the trained classifier, and a probability image based on
the time-series feature image was obtained. Each pixel of the probability image stores the
correct probability array of each class, and the class corresponding to the maximum value
of the correct probability array is the class of the pixel.



Remote Sens. 2023, 15, 2466 9 of 20

2.3.3. Classification Based on Multiple Single-temporal Feature Images

Compared with single-temporal images, time-series images can enhance image infor-
mation [29], mainly temporal change information. However, the synthesis process involves
operations such as taking the median or mean of the time window images and filling in gaps
with images of similar time periods, which inevitably leads to errors due to differences in
local image observation time and the number of observations, as well as the fusion method
of pixels, etc., and the final result cannot accurately reflect the changes in crops within the
time period [56]. To address the effects of image fusion, this study used the classification
feature image set from 16 June 2021 to 15 September 2021, to perform single-temporal
image classification, maximizing the use of remote sensing images. The single-temporal
feature image classification of images within a time period was a cyclic process. First,
the single-temporal feature images were screened from the classification feature image
set by day, and then the single-temporal feature images were mosaicked. Next, it was
determined whether the training samples on the mosaicked image contained all the classes
to be classified. If not, the image was discarded. If it contained all the classes, then the
single-temporal feature image was sampled according to the training samples contained,
and the classifier was trained with the sampling result. Finally, the single-temporal feature
image was classified using the trained classifier, and a probability image corresponding to
the single-temporal feature image was obtained. Each pixel of the probability image stores
the correct probability array of each class. It is worth noting that there may be gaps in the
probability image based on a single-temporal image, and these gap pixels are all assigned
zero values. The above operations were performed on all single-temporal feature images
within the time period, and all the obtained probability images were summed pixel by pixel
to form a probability image based on multiple single-temporal images. A probability image
based on multiple single-temporal SAR classification feature images and a probability im-
age based on multiple single-temporal optical classification feature images were obtained
by classifying the SAR classification feature image set and the optical classification feature
image set using this method. Finally, the two probability images were normalized and
summed pixel by pixel to obtain a probability image based on the multiple single-temporal
SAR classification feature image set and the multiple single-temporal optical classification
feature image set within the time period. Each pixel of the probability image stores the
correct probability array of each class, and the class corresponding to the maximum value
of the correct probability array is the class of the pixel.

2.3.4. Voting on the Two Classification Results to Obtain the Final Crop Type Map

After the previous steps of classification, we obtained two crop type probability images,
one of which is a probability image based on the time-series feature image, and the other is
a probability image based on multiple single-temporal feature images. In order to obtain a
crop type map with higher accuracy, we combined the two.

Information entropy is a measure used in information theory to measure the uncer-
tainty of a random variable. It is used to quantify the amount of information contained
in a random variable. In probability theory and information theory, information entropy
is the expected value of the information contained in a random variable. Simply put, the
more chaotic the situation, the greater the information entropy, and vice versa. A common
application of information entropy is in decision tree learning, where it is used to choose
the optimal split attribute. In this study, it was used to measure the determinacy of a classifi-
cation result. Specifically, if a random variable X has n possible values, with corresponding
probabilities of P1, P2, . . . , Pn, and the various values are mutually independent, then its
information entropy can be expressed as [57]

H(X) = −∑n
i=1 Pi log2(Pi) (1)
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In order to calculate the information entropy, the probability image must first be
standardized as follows:

Pi =
pi

∑n
i pi

(2)

in which pi is the probability of the i-th class being stored in the probability image, and
the entropy of the probability image was calculated according to formula (1). Due to the
different classification methods, the amount of information contained in the probability
image based on multiple single-temporal feature images differs from the probability image
based on the time-series feature image. The probability image based on multiple single-
temporal feature images was fused with multiple classification results and contained
richer information. This led to different sensitivities in measuring classification accuracy
between the probability image based on multiple single-temporal feature images and the
probability image based on the time-series feature image. Therefore, the classification
accuracy of the probability image based on multiple single-temporal feature images and
the probability image based on the time-series feature image cannot be compared using
only the numerical value of information entropy. To build a unified evaluation standard,
we defined a classification accuracy score (CA-score) that can quantitatively measure the
identification accuracy of the crop type of each pixel. The CA-score is defined as follows:

CA− score = f (H) (3)

in which the information entropy H is treated as an independent variable and the overall
accuracy of the classification is treated as a dependent variable in the function f (H). To
derive this function, we first used H as a masking threshold and applied it to areas of the
classification image with values less than the threshold. We then calculated the overall
accuracy of the remaining image and finally obtained f (H) using the curve fitting. Then,
the CA-score was calculated pixel by pixel for the above two classification images using the
f (H) and added to the classification image as a new band. Then, according to the numerical
value of the CA-score, the two probability images were voted to determine the value of
each pixel, resulting in a fused probability image. The class corresponding to the maximum
value of the correct probability array of each class in the pixel of the fused probability image
was the crop type of the pixel, and finally, the crop type map was obtained.

To evaluate the merits of the new indicator and method established in this study, three
schemes were developed as follows:

Scheme 1: Classification based on the time-series feature image.
Scheme 2: Classification based on multiple single-temporal feature images.
Scheme 3: Classification by voting the probability images of Scheme 1 and Scheme 2

pixel by pixel based on the CA-score.

2.3.5. Accuracy Assessment

The accuracy of crop type mapping was assessed using 30% of the ground samples. To
assess the accuracy of the classification results and provide a comprehensive overview of the
performance of the classification algorithm, we calculated five common statistical indicators,
OA (overall accuracy), KC (Kappa coefficient), UA (user’s accuracy), PA (producer’s
accuracy), and F1-score, using the classification confusion matrix. F1-score is a metric
that combines precision and recall and is used to measure the consistency between the
classification samples and the reference samples. It is calculated by taking the harmonic
mean of precision and recall [30]:

F1− score = 2× UA× PA
UA + PA

(4)

In addition, the CA-score can provide a more comprehensive visual interpretation of
classification accuracy at the pixel scale. Therefore, we selected a case region from the crop
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type map, combined with the CA-score images and Sentinel-2 images, to further compare
the classification accuracy of different classification methods.

3. Results
3.1. The Relationship between Information Entropy and Classification Accuracy

The relationship between information entropy H and classification accuracy is shown
in Figure 5. It was found that, whether it was based on the classification results of mul-
tiple single-temporal feature images, or the time-series feature image, OA and KC had a
strong correlation with the information entropy; furthermore, as H decreased, OA and KC
gradually increased, and the coefficients of determination (R2) were all greater than 0.96.
This indicated that using information entropy to measure classification accuracy was very
reliable and could accurately measure classification accuracy at the pixel scale and provide
a better visual interpretation of classification accuracy. The f (H) of the classification results
were based on multiple single-temporal feature images and the f (H) of the classification
results based on time series feature images were obtained through a cubic polynomial
fitting. The CA-score was then calculated based on their respective f (H).
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3.2. Accuracy of Different Schemes

Table 3 shows the confusion matrix and accuracy of different schemes for crop type
classification. The results were as follows. (1) The combination of the classification results
based on the time-series feature image and the classification results based on multiple single-
temporal feature images proposed can effectively improve the classification accuracy of crop
types, with OA and KC of 84.15% and 0.80, respectively, compared with the classification
results based on the time-series feature image, in which OA increased by 3.37% and KC
increased by 0.03 (Scheme 1, Scheme 2, Scheme 3). (2) The accuracy of the classification
based on the time-series feature image was slightly higher than that based on multiple
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single-temporal feature images, mainly reflected in the more accurate identification of
soybeans (Scheme 1, Scheme 2). (3) As maize, rice, and peanuts were planted in contiguous
areas and have significant differences in crop community characteristics, they were easy to
identify and had higher classification accuracy. However, the planting area of soybeans
and other crops was smaller and more scattered, making them more prone to omissions or
commissions, resulting in relatively lower classification accuracy.

Table 3. Accuracy of crop type classification of different schemes.

Class

Scheme 1 Scheme 2 Scheme 3

PA
(%)

UA
(%)

F1-Score
(%)

PA
(%)

UA
(%)

F1-Score
(%)

PA
(%)

UA
(%)

F1-Score
(%)

Maize 81.63 69.79 75.24 85.87 69.43 76.78 84.45 74.22 79.01
Rice 89.76 92.93 91.32 88.78 87.50 88.14 91.22 89.47 90.34

Peanut 88.22 82.80 85.42 90.31 81.75 85.82 90.31 86.25 88.24
Soybean 54.09 86.00 66.41 44.03 97.22 60.61 62.26 92.52 74.44

Other
Crops 57.54 64.38 60.77 56.42 66.45 61.03 62.01 70.70 66.07

Others 94.46 91.10 92.75 91.69 90.58 91.13 95.08 91.42 93.21
OA (%) 81.41 80.82 84.15

KC 0.77 0.76 0.80

3.3. Major Autumn Crop Type Map for 2021

Figure 6 shows the distribution of crop types in Scheme 3. The spatial distribution
of different crops is consistent with prior knowledge provided by statistical yearbooks
and field surveys. To further compare the spatial detail differences of crop type maps
for different schemes, we selected a case region and generated Sentinel-2 true-color and
false-color images, crop type maps, and CA-score maps for different schemes (Figure 7). It
can be seen from Figure 7 that in the classification results based on the time-series feature
image, some vacant land was incorrectly identified as cropland. In the results based on
multiple single-temporal feature images, the boundaries of different crops are more clearly
identified, but there were also some other crops that were incorrectly identified as vacant
land (non-crop). Combining the results based on the time-series feature image and the
results based on multiple single-temporal feature images through the CA-score can reduce
omission and commission and can obtain a crop type map that is more in line with reality,
which is roughly the same as the image of Sentinel-2.

3.4. Comparison of Mapping Results and Agricultural Statistical Reports

Although OA and KC achieved considerable success, there may still be some omissions
or additions. To further verify the accuracy of the crop type map, it was compared with
statistical data. As of the submission of this manuscript, the Henan Provincial Statistical
Yearbook had not yet updated the 2021 statistics, so we used the agricultural statistics for
2019 and 2020 for comparison. The statistical data for other crops in agricultural statistics
are annual, so we did not compare other crops. Firstly, the areas of different crops were
compared at the provincial level. Secondly, we used the mean of the 2019 and 2020 statistical
data to conduct a correlation test on the prefecture-level data (Table 4). The coefficients of
determination (R2) of maize, rice, peanuts, and soybeans were 0.69, 0.99, 0.98, and 0.30,
respectively. Meanwhile, the RMSE values were 871.3 km2, 143.9 km2, 286.4 km2, and
215.4 km2, respectively. According to Figure 8, the areas of maize planting in Luoyang,
Sanmenxia, Xinyang, Zhoukou, and Zhumadian were quite different from the statistical
data. This discrepancy directly led to the large RMSE and small R2 of maize. Similarly, the
soybean planting area in Nanyang, Sanmenxia, Xinyang, Xuchang, and Zhoukou showed
significant differences from the statistical data, resulting in large RMSE and small R2 values
for soybeans as well. We hypothesized that the possible causes of this could be either
the structural adjustments in planting and the severe floods that occurred in July 2021,
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or the limitations of the images in effectively capturing the variability. Otherwise, the
planting areas of various crops were almost the same as the city-level statistical data in the
study area. The above results indicate that the mapping results of this study were highly
consistent with the statistical data. 

4 

 
6 
Figure 6. Spatial distribution of major autumn crops in Henan Province based on scheme 3 in 2021.

Table 4. Mapping results of Scheme 3 in 2021 compared to the agricultural statistical data from 2019
and 2020.

Crop Type

Area in
Province-Level of

Statistical Data (km2)

Area in Province-Level
of Mapping Results

(km2)

RSME in
Prefectural-

Level
(km2)

R2 in
Prefectural-

Level

2019 2020 2021

Maize 36,923.7 37,763.8 37,379.9 871.3 0.69
Rice 5997.8 5752.4 8275. 9 143.9 0.99

Peanut 12,230.7 12,647.2 16,749.0 286.4 0.98
Soybean 4239.9 3973.4 3777.8 215.4 0.30
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4. Discussion
4.1. The Potential of Multi-Source and Multi-Temporal Feature Images for Crop Type Mapping

The crop type classification method proposed in this study achieved high-precision
crop type mapping at the regional scale by combining multi-temporal feature images and
time-series feature image derived from multi-source Sentinel imagery. This is mainly due
to the following two factors.

(1) The application of multi-source satellite data. We compared the crop classification
accuracy of Scheme 1 and Scheme 2 developed in Section 2.3.4 using only Sentinel-1 SAR
data, only using Sentinel-2 optical data, and the integration of optical data and SAR data
(Table 5). Classification based solely on optical data is superior to that based solely on
SAR data, which is consistent with some existing studies [58,59]. However, optical images
are often affected by clouds and revisit periods, making it difficult to obtain high-quality
observation data. SAR has high penetration power and is not affected by clouds, allowing
for the acquisition of high-quality observation data. SAR can obtain information about
the structure of the crop canopy and the plant water content [60,61], can be used for plant
growth monitoring [62,63], and has also performed well in crop type classification [33].
Some studies have shown that combining optical and SAR images can improve classification
accuracy [33,58], and our results also support this. Compared to using a single satellite
image for crop classification, using both types of data can enhance information and reveal
more details of crop growth, not only in the combination of spectral and texture features
but also in the enhancement of time information (there is a time interval between optical
and SAR observations). By combining both types of data, it is possible to improve the
accuracy of classification algorithms and obtain more reliable results.

Table 5. Accuracy of crop type classification based only on the Sentinel-1 SAR data, Sentinel-2 optical
data, and integration of optical data and SAR data.

Scheme
Optical Data SAR Data Optical and SAR Data

OA (%) KC OA (%) KC OA (%) KC

Scheme 1 77.49 0.72 52.11 0.42 81.41 0.77
Scheme 2 78.72 0.74 44.19 0.30 80.82 0.76

(2) Classification based on the time-series feature image and multiple single-temporal
feature images. Compared with single-temporal images, time-series images can enhance
the information content of images by capturing the temporal changes in the images [29].
Using time-series feature images in classification can improve classification accuracy. How-
ever, the process of constructing time-series feature images involves image fusion, which
inevitably leads to information loss and errors. Single-temporal feature images do not have
the information loss and errors caused by image fusion, but the accuracy of classification us-
ing only one single-temporal feature image is also not high, due to the limited information it
contains. However, combining the classification results of multiple single-temporal feature
images based on different times can improve the accuracy of crop classification. With the
help of information entropy, the CA-score was defined and calculated, and then it was used
to vote on the classification results of the time-series feature image and multiple single-
temporal feature images to determine the final classification result, which not only makes
full use of time-varying features but also overcomes the errors caused by image fusion.

4.2. Classification Accuracy Index at the Pixel Scale

The accuracy of classification results is uncertain, and information entropy can mea-
sure the uncertainty of things. Figure 9 is the information entropy H and the CA-score
distribution of Scheme 1 and Scheme 2 developed in Section 2.3.4. Table 3 shows the
classification accuracy of different crops, while Figure 6 displays their spatial distribution.
The combination of the two can reflect the spatial distribution of crop classification accuracy.
Furthermore, when considering the spatial distribution of the information entropy H and



Remote Sens. 2023, 15, 2466 16 of 20

the CA-score, as depicted in Figure 9, it can be observed that both have good consistency
with classification accuracy in terms of numerical magnitude and spatial distribution. This
indicates that, regardless of Scheme 1 or Scheme 2, information entropy can effectively
reflect classification accuracy. However, due to the difference in data used and classification
methods, the amount of information contained in the results corresponding to different
schemes differs. Scheme 2 involves multiple classifications; the amount of information
contained in the result is much larger than that of Scheme 1, and the corresponding value
of information entropy is also larger than the former. Therefore, the classification accuracy
of different classification schemes cannot be compared only using the value of informa-
tion entropy. In this study, the relationship between information entropy and accuracy
was established. Figure 5 shows that information entropy had good consistency with OA
and KC in evaluating classification accuracy. Additionally, the CA-score was defined to
measure the classification accuracy at the pixel scale and to compare the classification
results of different methods. The results show that the CA-score was simple and reliable
for measuring the accuracy of crop recognition and could provide a more comprehensive
and intuitive explanation of classification accuracy at the pixel level than other metrics.
It not only compensates for the limitations of traditional OA and KC evaluation metrics,
which rely on limited point data to evaluate surface data but also facilitates the fusion of
land cover classification maps obtained from different data and methods, complementing
each other’s strengths and resulting in more accurate results. This study covers a wide
geographical range with diverse and complex terrains and climates, involving various crop
types and intricate planting structures. Despite these challenges, the proposed method
and metric exhibit excellent performance, showing strong adaptability and scalability, with
great potential to be applied to complex land cover accurate classification and extraction in
larger areas and different regions. 

5 

 
9 
Figure 9. The information entropy H and the CA-score distribution of scheme 1 and scheme 2. H of
Scheme 1 (a), H of Scheme 2 (b), CA-score of Scheme 1 (c), CA-score of Scheme 2 (d).
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4.3. Uncertainty and Algorithm Improvement

The results suggest that the method proposed in this study is capable of accurately
identifying crop types at the regional scale, but there is still some uncertainty. First, although
texture features were considered, there may still be salt-and-pepper noise in the crop type
classification results. To improve classification accuracy and eliminate salt-and-pepper
noise, some studies have combined target segmentation and pixel-based classification
methods [64,65]. In future research, combining target segmentation methods may improve
mapping accuracy and reduce interference from pixel-based classification. Second, in
the process of generating probability images of crop type classification based on multiple
single-temporal SAR feature images and multiple single-temporal optical feature images,
there may be insufficient training samples for the overall classes or a certain class in one
certain classification process due to the coverage limitations of single-temporal feature
images, which affected the classification results. In future research, it will be possible to
classify the time-series feature images first and then select pixels with higher CA-score from
the classification results (the pixels are considered to be correctly classified) as additional
training samples for the classification based on multiple single-temporal SAR and optical
images. Third, through accuracy assessment, it can be known that the classification accuracy
differs between crops, so the calculation of the CA-score through the relationship between
the OA and information entropy H may not be entirely reliable. If the relationship between
the classification accuracy and information entropy H is calculated separately by crop
category therefore, further calculation of the CA-score may lead to more accurate results.
Fourth, in this study, the cloud removal operation of Sentinel-2 images was performed
using the QA60 band, which is only a binary classifier for thick clouds and cirrus clouds
and therefore cannot fine-tune what is a cloud. While removing cloud interference, it may
also inadvertently remove some valid observations, potentially reducing the number of
effective observations and thus affecting classification accuracy. There has been a great deal
of research on cloud removal algorithms for optical satellite imagery, such as “S2cloudless”
and “InterSSIM” threshold algorithms, which can convert cloud probability maps into
cloud masks through threshold processing [66]. Suitable thresholds can be determined
based on the unique features of one’s own research to minimize cloud commission and
omission errors. Finally, in the field investigation, we found that some farmland has mixed
crops, and it is undoubtedly a big challenge to accurately identify the crops at a 10-m
resolution, which will also lead to incorrect classification.

5. Conclusions

This study proposed a novel method for multi-crop classification at the regional scale
using multiple sources of remote sensing data. Firstly, a classification accuracy index called
CA-score was constructed using information entropy. Then, a novel decision fusion method
based on the CA-score was designed to integrate multiple single-temporal feature images
and the time-series feature image derived from multi-source Sentinel imagery for crop
classification. A comparative analysis showed that the proposed classification method had
excellent performance and could achieve large-scale accurate mapping of various crops.
The OA and KC of the new method were 84.15% and 0.80, respectively, which were 3.37%
and 0.03 higher than the OA and KC obtained from the classification results based on the
time-series feature image. In addition, the correlation analysis with OA and KC indicated
that the CA-score index proposed in this study was effective in reflecting the accuracy of
crop identification and can be used as an evaluation index for classification accuracy at the
pixel scale, providing a more comprehensive visual interpretation of classification accuracy.
It not only makes up for the limitations of the traditional OA and KC evaluation indicators
using limited point data to evaluate surface data but also can be used to integrate land
cover classification maps obtained from different data and methods, complementing each
other’s advantages, so as to obtain more accurate results. The proposed method and metric
have the potential to be applied to mapping of larger study areas with more complex land
cover types using remote sensing.



Remote Sens. 2023, 15, 2466 18 of 20

Author Contributions: Conceptualization, S.F.; methodology, S.F., X.W. and Y.Y.; validation. X.W., S.F.
and J.D.; formal analysis, X.W.; measurement, X.W. and Y.Y.; data curation, X.W.; writing—original
draft preparation, X.W.; writing—review and editing, S.F., H.W.; visualization, X.W.; supervision, Y.Y.
and J.D.; project administration, S.F.; funding acquisition, S.F. and H.W.; All authors have read and
agreed to the published version of the manuscript.

Funding: This work was jointly supported by the Strategic Priority Research Program of the Chinese
Academy of Sciences (Grant No. XDA28050200), the National Natural Science Foundation of China
(No. 41971082), the National Key Research and Development Program of China (2019YFC1510505),
and the Key Project of Innovation LREIS (KPI009).

Acknowledgments: We are grateful to the anonymous reviewers whose constructive suggestions
have improved the quality of this study. We wish to express our gratitude to the sentinel data and
data analysis services provided by the GEE platform. Additionally, we would like to express our
sincere thanks to all the field data collectors.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. World Health Organization. The State of Food Security and Nutrition in the World 2018: Building Climate Resilience for

Food Security and Nutrition. Available online: https://www.fao.org/agrifood-economics/publications/detail/en/c/1153252/
(accessed on 28 April 2023).

2. Zhao, C.; Liu, B.; Piao, S.; Wang, X.; Lobell, D.B.; Huang, Y.; Huang, M.; Yao, Y.; Bassu, S.; Ciais, P. Temperature increase reduces
global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci. USA 2017, 114, 9326–9331. [CrossRef] [PubMed]

3. Shi, W.; Wang, M.; Liu, Y. Crop yield and production responses to climate disasters in China. Sci. Total Environ. 2021, 750, 141147.
[CrossRef] [PubMed]

4. Waldner, F.; Canto, G.S.; Defourny, P. Automated annual cropland mapping using knowledge-based temporal features. ISPRS J.
Phot. Remot. Sens. 2015, 110, 1–13. [CrossRef]

5. Najafova, M. Impact of War between Russia and Ukraine on Food Security. Center of Analysis of International Relations:
Azerbaijan, 2022. Available online: https://policycommons.net/artifacts/2329915/impact-of-war-between-russia-and-ukraine-
on-food-security/3090540/ (accessed on 1 March 2023).

6. Cai, Y.; Guan, K.; Peng, J.; Wang, S.; Seifert, C.; Wardlow, B.; Li, Z. A high-performance and in-season classification system of
field-level crop types using time-series Landsat data and a machine learning approach. Remote Sens. Environ. 2018, 210, 35–47.
[CrossRef]

7. Shelestov, A.; Lavreniuk, M.; Kussul, N.; Novikov, A.; Skakun, S. Exploring Google Earth Engine platform for big data processing:
Classification of multi-temporal satellite imagery for crop mapping. Front. Earth Sci. 2017, 5, 17. [CrossRef]

8. Becker-Reshef, I.; Justice, C.; Barker, B.; Humber, M.; Rembold, F.; Bonifacio, R.; Zappacosta, M.; Budde, M.; Magadzire, T.; Shitote,
C. Strengthening agricultural decisions in countries at risk of food insecurity: The GEOGLAM Crop Monitor for Early Warning.
Remote Sens. Environ. 2020, 237, 111553. [CrossRef]

9. Franch, B.; Vermote, E.F.; Skakun, S.; Roger, J.-C.; Becker-Reshef, I.; Murphy, E.; Justice, C. Remote sensing based yield monitoring:
Application to winter wheat in United States and Ukraine. Int. J. Appl. Earth. Obs. Geoinf. 2019, 76, 112–127. [CrossRef]

10. Johnson, D.M.; Mueller, R. Pre-and within-season crop type classification trained with archival land cover information. Remote
Sens. Environ. 2021, 264, 112576. [CrossRef]

11. Di, Y.; Zhang, G.; You, N.; Yang, T.; Zhang, Q.; Liu, R.; Doughty, R.B.; Zhang, Y. Mapping Croplands in the Granary of the Tibetan
Plateau Using All Available Landsat Imagery, A Phenology-Based Approach, and Google Earth Engine. Remote Sens. 2021, 13,
2289. [CrossRef]

12. Mutanga, O.; Dube, T.; Galal, O. Remote sensing of crop health for food security in Africa: Potentials and constraints. Remote Sens.
App. Soc. Environ. 2017, 8, 231–239. [CrossRef]

13. Jin, Z.; Azzari, G.; You, C.; Di Tommaso, S.; Aston, S.; Burke, M.; Lobell, D.B. Smallholder maize area and yield mapping at
national scales with Google Earth Engine. Remote Sens. Environ. 2019, 228, 115–128. [CrossRef]

14. Donohue, R.J.; Lawes, R.A.; Mata, G.; Gobbett, D.; Ouzman, J. Towards a national, remote-sensing-based model for predicting
field-scale crop yield. Field Crop. Res. 2018, 227, 79–90. [CrossRef]

15. Zhuo, W.; Huang, J.; Li, L.; Zhang, X.; Ma, H.; Gao, X.; Huang, H.; Xu, B.; Xiao, X. Assimilating soil moisture retrieved from
Sentinel-1 and Sentinel-2 data into WOFOST model to improve winter wheat yield estimation. Remote Sens. 2019, 11, 1618.
[CrossRef]

16. Bégué, A.; Arvor, D.; Bellon, B.; Betbeder, J.; De Abelleyra, D.; PD Ferraz, R.; Lebourgeois, V.; Lelong, C.; Simões, M.; Verón, S.R.
Remote sensing and cropping practices: A review. Remote Sens. 2018, 10, 99. [CrossRef]

17. Weiss, M.; Jacob, F.; Duveiller, G. Remote sensing for agricultural applications: A meta-review. Remote Sens. Environ. 2020, 236,
111402. [CrossRef]

https://www.fao.org/agrifood-economics/publications/detail/en/c/1153252/
https://doi.org/10.1073/pnas.1701762114
https://www.ncbi.nlm.nih.gov/pubmed/28811375
https://doi.org/10.1016/j.scitotenv.2020.141147
https://www.ncbi.nlm.nih.gov/pubmed/32853939
https://doi.org/10.1016/j.isprsjprs.2015.09.013
https://policycommons.net/artifacts/2329915/impact-of-war-between-russia-and-ukraine-on-food-security/3090540/
https://policycommons.net/artifacts/2329915/impact-of-war-between-russia-and-ukraine-on-food-security/3090540/
https://doi.org/10.1016/j.rse.2018.02.045
https://doi.org/10.3389/feart.2017.00017
https://doi.org/10.1016/j.rse.2019.111553
https://doi.org/10.1016/j.jag.2018.11.012
https://doi.org/10.1016/j.rse.2021.112576
https://doi.org/10.3390/rs13122289
https://doi.org/10.1016/j.rsase.2017.10.004
https://doi.org/10.1016/j.rse.2019.04.016
https://doi.org/10.1016/j.fcr.2018.08.005
https://doi.org/10.3390/rs11131618
https://doi.org/10.3390/rs10010099
https://doi.org/10.1016/j.rse.2019.111402


Remote Sens. 2023, 15, 2466 19 of 20

18. Orynbaikyzy, A.; Gessner, U.; Conrad, C. Crop type classification using a combination of optical and radar remote sensing data:
A review. Int. J. Remote Sens. 2019, 40, 6553–6595. [CrossRef]

19. Seifi Majdar, R.; Ghassemian, H. A probabilistic SVM approach for hyperspectral image classification using spectral and texture
features. Int. J. Remote Sens. 2017, 38, 4265–4284. [CrossRef]

20. Gao, F.; Anderson, M.C.; Zhang, X.; Yang, Z.; Alfieri, J.G.; Kustas, W.P.; Mueller, R.; Johnson, D.M.; Prueger, J.H. Toward mapping
crop progress at field scales through fusion of Landsat and MODIS imagery. Remote Sens. Environ. 2017, 188, 9–25. [CrossRef]

21. Gómez, C.; White, J.C.; Wulder, M.A. Optical remotely sensed time series data for land cover classification: A review. ISPRS J.
Photogramm. Remote Sens. 2016, 116, 55–72. [CrossRef]

22. Bontemps, S.; Defourny, P.; Radoux, J.; Van Bogaert, E.; Lamarche, C.; Achard, F.; Mayaux, P.; Boettcher, M.; Brockmann, C.;
Kirches, G. Consistent global land cover maps for climate modelling communities: Current achievements of the ESA’s land cover
CCI. In Proceedings of ESA Living Planet Symposium, Edimburgh, UK, 9–13 September 2013; pp. 9–13.

23. Chen, J.; Cao, X.; Peng, S.; Ren, H. Analysis and applications of GlobeLand30: A review. ISPRS Int. J. Geo-Infor. 2017, 6, 230.
[CrossRef]

24. Burke, M.; Lobell, D.B. Satellite-based assessment of yield variation and its determinants in smallholder African systems. Proc.
Natl. Acad. Sci. USA 2017, 114, 2189–2194. [CrossRef] [PubMed]

25. Defourny, P.; Bontemps, S.; Bellemans, N.; Cara, C.; Dedieu, G.; Guzzonato, E.; Hagolle, O.; Inglada, J.; Nicola, L.; Rabaute, T.
Near real-time agriculture monitoring at national scale at parcel resolution: Performance assessment of the Sen2-Agri automated
system in various cropping systems around the world. Remote Sens. Environ. 2019, 221, 551–568. [CrossRef]

26. Lin, C.; Zhong, L.; Song, X.-P.; Dong, J.; Lobell, D.B.; Jin, Z. Early-and in-season crop type mapping without current-year ground
truth: Generating labels from historical information via a topology-based approach. Remote Sens. Environ. 2022, 274, 112994.
[CrossRef]

27. Huang, X.; Fu, Y.; Wang, J.; Dong, J.; Zheng, Y.; Pan, B.; Skakun, S.; Yuan, W. High-Resolution Mapping of Winter Cereals in
Europe by Time Series Landsat and Sentinel Images for 2016–2020. Remote Sens. 2022, 14, 2120. [CrossRef]

28. Joshi, N.; Baumann, M.; Ehammer, A.; Fensholt, R.; Grogan, K.; Hostert, P.; Jepsen, M.R.; Kuemmerle, T.; Meyfroidt, P.; Mitchard,
E.T. A review of the application of optical and radar remote sensing data fusion to land use mapping and monitoring. Remote
Sens. 2016, 8, 70. [CrossRef]

29. Li, C.; Chen, W.; Wang, Y.; Wang, Y.; Ma, C.; Li, Y.; Li, J.; Zhai, W. Mapping Winter Wheat with Optical and SAR Images Based on
Google Earth Engine in Henan Province, China. Remote Sens. 2022, 14, 284. [CrossRef]

30. Ren, T.; Xu, H.; Cai, X.; Yu, S.; Qi, J. Smallholder crop type mapping and rotation monitoring in mountainous areas with
Sentinel-1/2 imagery. Remote Sens. 2022, 14, 566. [CrossRef]

31. Rao, P.; Zhou, W.; Bhattarai, N.; Srivastava, A.K.; Singh, B.; Poonia, S.; Lobell, D.B.; Jain, M. Using Sentinel-1, Sentinel-2, and
Planet imagery to map crop type of smallholder farms. Remote Sens. 2021, 13, 1870. [CrossRef]

32. Blickensdörfer, L.; Schwieder, M.; Pflugmacher, D.; Nendel, C.; Erasmi, S.; Hostert, P. Mapping of crop types and crop sequences
with combined time series of Sentinel-1, Sentinel-2 and Landsat 8 data for Germany. Remote Sens. Environ. 2022, 269, 112831.
[CrossRef]

33. Orynbaikyzy, A.; Gessner, U.; Mack, B.; Conrad, C. Crop type classification using fusion of sentinel-1 and sentinel-2 data:
Assessing the impact of feature selection, optical data availability, and parcel sizes on the accuracies. Remote Sens. 2020, 12, 2779.
[CrossRef]

34. Bargiel, D. A new method for crop classification combining time series of radar images and crop phenology information. Remote
Sens. Environ. 2017, 198, 369–383. [CrossRef]

35. Inglada, J.; Vincent, A.; Arias, M.; Marais-Sicre, C. Improved early crop type identification by joint use of high temporal resolution
SAR and optical image time series. Remote Sens. 2016, 8, 362. [CrossRef]

36. De Sa, J.M. Pattern Recognition: Concepts, Methods, and Applications; Springer Science & Business Media: Berlin/Heidelberg,
Germany, 2001.

37. Lary, D.J.; Alavi, A.H.; Gandomi, A.H.; Walker, A.L. Machine learning in geosciences and remote sensing. Geos. Fron. 2016, 7,
3–10. [CrossRef]

38. Song, Q.; Hu, Q.; Zhou, Q.; Hovis, C.; Xiang, M.; Tang, H.; Wu, W. In-season crop mapping with GF-1/WFV data by combining
object-based image analysis and random forest. Remote Sens. 2017, 9, 1184. [CrossRef]

39. Kluger, D.M.; Wang, S.; Lobell, D.B. Two shifts for crop mapping: Leveraging aggregate crop statistics to improve satellite-based
maps in new regions. Remote Sens. Environ. 2021, 262, 112488. [CrossRef]

40. Wang, Z.; Zhang, H.; He, W.; Zhang, L. Cross-phenological-region crop mapping framework using Sentinel-2 time series Imagery:
A new perspective for winter crops in China. ISPRS J. Photogramm. Remote Sens. 2022, 193, 200–215. [CrossRef]

41. Seydi, S.T.; Amani, M.; Ghorbanian, A. A Dual Attention Convolutional Neural Network for Crop Classification Using Time-Series
Sentinel-2 Imagery. Remote Sens. 2022, 14, 498. [CrossRef]

42. Torbick, N.; Chowdhury, D.; Salas, W.; Qi, J. Monitoring rice agriculture across myanmar using time series Sentinel-1 assisted by
Landsat-8 and PALSAR-2. Remote Sens. 2017, 9, 119. [CrossRef]

43. Teluguntla, P.; Thenkabail, P.S.; Oliphant, A.; Xiong, J.; Gumma, M.K.; Congalton, R.G.; Yadav, K.; Huete, A. A 30-m landsat-
derived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine
cloud computing platform. ISPRS J. Photogramm. Remote Sens. 2018, 144, 325–340. [CrossRef]

https://doi.org/10.1080/01431161.2019.1569791
https://doi.org/10.1080/01431161.2017.1317941
https://doi.org/10.1016/j.rse.2016.11.004
https://doi.org/10.1016/j.isprsjprs.2016.03.008
https://doi.org/10.3390/ijgi6080230
https://doi.org/10.1073/pnas.1616919114
https://www.ncbi.nlm.nih.gov/pubmed/28202728
https://doi.org/10.1016/j.rse.2018.11.007
https://doi.org/10.1016/j.rse.2022.112994
https://doi.org/10.3390/rs14092120
https://doi.org/10.3390/rs8010070
https://doi.org/10.3390/rs14020284
https://doi.org/10.3390/rs14030566
https://doi.org/10.3390/rs13101870
https://doi.org/10.1016/j.rse.2021.112831
https://doi.org/10.3390/rs12172779
https://doi.org/10.1016/j.rse.2017.06.022
https://doi.org/10.3390/rs8050362
https://doi.org/10.1016/j.gsf.2015.07.003
https://doi.org/10.3390/rs9111184
https://doi.org/10.1016/j.rse.2021.112488
https://doi.org/10.1016/j.isprsjprs.2022.09.010
https://doi.org/10.3390/rs14030498
https://doi.org/10.3390/rs9020119
https://doi.org/10.1016/j.isprsjprs.2018.07.017


Remote Sens. 2023, 15, 2466 20 of 20

44. Liu, L.; Xiao, X.; Qin, Y.; Wang, J.; Xu, X.; Hu, Y.; Qiao, Z. Mapping cropping intensity in China using time series Landsat and
Sentinel-2 images and Google Earth Engine. Remote Sens. Environ. 2020, 239, 111624. [CrossRef]

45. Ni, R.; Tian, J.; Li, X.; Yin, D.; Li, J.; Gong, H.; Zhang, J.; Zhu, L.; Wu, D. An enhanced pixel-based phenological feature for accurate
paddy rice mapping with Sentinel-2 imagery in Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2021, 178, 282–296.
[CrossRef]

46. Fang, P.; Zhang, X.; Wei, P.; Wang, Y.; Zhang, H.; Liu, F.; Zhao, J. The classification performance and mechanism of machine
learning algorithms in winter wheat mapping using Sentinel-2 10 m resolution imagery. App. Sci. 2020, 10, 5075. [CrossRef]

47. Fritz, S.; See, L.; Rembold, F. Comparison of global and regional land cover maps with statistical information for the agricultural
domain in Africa. Int. J. Remote Sens. 2010, 31, 2237–2256. [CrossRef]

48. Chen, S.; Useya, J.; Mugiyo, H. Decision-level fusion of Sentinel-1 SAR and Landsat 8 OLI texture features for crop discrimination
and classification: Case of Masvingo, Zimbabwe. Heliyon 2020, 6, e05358. [CrossRef] [PubMed]

49. Tassi, A.; Vizzari, M. Object-oriented lulc classification in google earth engine combining snic, glcm, and machine learning
algorithms. Remote Sens. 2020, 12, 3776. [CrossRef]

50. Ghasemi, M.; Karimzadeh, S.; Feizizadeh, B. Urban classification using preserved information of high dimensional textural
features of Sentinel-1 images in Tabriz, Iran. Earth Sci. Infor. 2021, 14, 1745–1762. [CrossRef]

51. Zanaga, D.; Van De Kerchove, R.; Daems, D.; De Keersmaecker, W.; Brockmann, C.; Kirches, G.; Wevers, J.; Cartus, O.; Santoro, M.;
Fritz, S. ESA WorldCover 10 m 2021 v200. 2022. Available online: https://zenodo.org/record/7254221#.ZFCsKXYzY6R (accessed
on 1 March 2023).

52. Sonobe, R.; Yamaya, Y.; Tani, H.; Wang, X.; Kobayashi, N.; Mochizuki, K.-i. Assessing the suitability of data from Sentinel-1A and
2A for crop classification. GIS. Remote Sens. 2017, 54, 918–938. [CrossRef]

53. Wang, J.; Li, K.; Shao, Y.; Zhang, F.; Wang, Z.; Guo, X.; Qin, Y.; Liu, X. Analysis of combining SAR and optical optimal parameters
to classify typhoon-invasion lodged rice: A case study using the random forest method. Sensors 2020, 20, 7346. [CrossRef]

54. Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm.
Remote Sens. 2016, 114, 24–31. [CrossRef]

55. Tolpekin, V.A.; Stein, A. Quantification of the effects of land-cover-class spectral separability on the accuracy of Markov-random-
field-based superresolution mapping. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3283–3297. [CrossRef]

56. Felegari, S.; Sharifi, A.; Moravej, K.; Amin, M.; Golchin, A.; Muzirafuti, A.; Tariq, A.; Zhao, N. Integration of Sentinel 1 and
Sentinel 2 Satellite Images for Crop Mapping. App. Sci. 2021, 11, 10104. [CrossRef]

57. Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]
58. Van Tricht, K.; Gobin, A.; Gilliams, S.; Piccard, I. Synergistic use of radar Sentinel-1 and optical Sentinel-2 imagery for crop

mapping: A case study for Belgium. Remote Sens. 2018, 10, 1642. [CrossRef]
59. Denize, J.; Hubert-Moy, L.; Betbeder, J.; Corgne, S.; Baudry, J.; Pottier, E. Evaluation of using sentinel-1 and-2 time-series to

identify winter land use in agricultural landscapes. Remote Sens. 2018, 11, 37. [CrossRef]
60. Tian, H.; Qin, Y.; Niu, Z.; Wang, L.; Ge, S. Summer Maize Mapping by Compositing Time Series Sentinel-1A Imagery Based on

Crop Growth Cycles. J. Indian Soc. Remote. Sens. 2021, 49, 2863–2874. [CrossRef]
61. Xu, L.; Zhang, H.; Wang, C.; Zhang, B.; Liu, M. Crop classification based on temporal information using sentinel-1 SAR time-series

data. Remote Sens. 2018, 11, 53. [CrossRef]
62. Zhao, W.; Qu, Y.; Chen, J.; Yuan, Z. Deeply synergistic optical and SAR time series for crop dynamic monitoring. Remote Sens.

Environ. 2020, 247, 111952. [CrossRef]
63. Wang, Y.; Fang, S.; Zhao, L.; Huang, X.; Jiang, X. Parcel-based summer maize mapping and phenology estimation combined

using Sentinel-2 and time series Sentinel-1 data. Int. J. Appl. Earth. Obs. Geoinf. 2022, 108, 102720. [CrossRef]
64. Luo, H.; Li, M.; Dai, S.; Li, H.; Li, Y.; Hu, Y.; Zheng, Q.; Yu, X.; Fang, J. Combinations of Feature Selection and Machine Learning

Algorithms for Object-Oriented Betel Palms and Mango Plantations Classification Based on Gaofen-2 Imagery. Remote Sens. 2022,
14, 1757. [CrossRef]

65. Guo, L.; Zhao, S.; Gao, J.; Zhang, H.; Zou, Y.; Xiao, X. A Novel Workflow for Crop Type Mapping with a Time Series of Synthetic
Aperture Radar and Optical Images in the Google Earth Engine. Remote Sens. 2022, 14, 5458. [CrossRef]

66. Skakun, S.; Wevers, J.; Brockmann, C.; Doxani, G.; Aleksandrov, M.; Batič, M.; Frantz, D.; Gascon, F.; Gómez-Chova, L.; Hagolle,
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