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Abstract: Synthetic Aperture Radar (SAR) imagery plays an important role in observing tropical
cyclones (TCs). However, the C-band attenuation caused by rain bands and the problem of signal
saturation at high wind speeds make it impossible to retrieve the fine structure of TCs effectively. In
this paper, a dual-level contextual attention generative adversarial network (DeCA-GAN) is tailored
for reconstructing SAR wind speeds in TCs. The DeCA-GAN follows an encoder–neck–decoder
architecture, which works well for high wind speeds and the reconstruction of a large range of low-
quality data. A dual-level encoder comprising a convolutional neural network and a self-attention
mechanism is designed to extract the local and global features of the TC structure. After feature
fusion, the neck explores the contextual features to form a reconstructed outline and up-samples
the features in the decoder to obtain the reconstructed results. The proposed deep learning model
has been trained and validated using the European Centre for Medium-Range Weather Forecasts
(ECMWF) atmospheric model product and can be directly used to improve the data quality of SAR
wind speeds. Wind speeds are reconstructed well in regions of low-quality SAR data. The root mean
square error of the model output and ECMWF in these regions is halved in comparison with the
existing SAR wind speed product for the test set. The results indicate that deep learning methods are
effective for reconstructing SAR wind speeds.

Keywords: tropical cyclones; synthetic aperture radar (SAR); generative adversarial network (GAN);
deep learning

1. Introduction

Tropical cyclones (TCs) are severe weather phenomena that occur over tropical oceans
and are characterized by strong winds, heavy rain, and storm surges [1]. TCs are one of
the most destructive natural disasters, causing significant damage to infrastructure and
property and loss of life [2]. With continued global warming and socioeconomic development,
TCs are becoming increasingly harmful, and accurately determining TC intensity and wind
speed structure is crucial for timely preparation and reducing the impact of these disasters [3].

Synthetic Aperture Radar (SAR) is an active microwave sensor that estimates the sea
surface wind field by measuring the intensity of radar echoes, known as the normalized
radar cross-section (NRCS) [4]. SAR sensors, such as Sentinel-1A/B and Radarsat-2, have
high-resolution imaging capabilities and can acquire multi-polarization data, which can
improve the accuracy of TC forecasting [5,6]. With the advent of high-quality SAR images,

Remote Sens. 2023, 15, 2454. https://doi.org/10.3390/rs15092454 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15092454
https://doi.org/10.3390/rs15092454
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-8943-3149
https://orcid.org/0000-0003-0426-3628
https://orcid.org/0000-0002-7514-3212
https://orcid.org/0000-0003-4872-2937
https://orcid.org/0000-0003-1121-8980
https://orcid.org/0000-0002-0635-9220
https://orcid.org/0000-0001-5130-0458
https://doi.org/10.3390/rs15092454
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15092454?type=check_update&version=1


Remote Sens. 2023, 15, 2454 2 of 23

various algorithms have emerged to retrieve wind fields. The use of geophysical model
functions such as CMOD has been effective in retrieving wind speed from the NRCS of
vertical–vertical (VV) and horizontal–horizontal (HH) polarized images. The Sentinel-1
wind speed product is based on the algorithm COMD-IFR2 developed by Institut Français
de Recherche pour l’Exploitation de la Mer, with model inputs of NRCS values, incidence
angles, track angles, a priori wind, and ice information [7]. However, for extreme cases
such as TCs, a saturation phenomenon occurs, leading to a reduced accuracy in wind speed
retrieval [8]. The use of cross-polarization SAR images (VH/HV) has been shown to solve the
problem of signal saturation under strong winds [9,10]. In recent years, several algorithms
have utilized SAR images to retrieve TC wind speeds, including the C-2PO model [11,12]
and the advanced C-3PO model [13]. SAR images have also been used extensively to study
the structures of TCs, such as symmetric double-eye structures, the radii of maximum wind
speed, and the orientation of wind or waves within the storm [14–16]. However, accurately
inverting the structure of TCs remains challenging due to C-band attenuation caused by
rainfall and the problem of signal saturation at high wind speeds [15,17,18]. To the best of
our knowledge, the progress of research on SAR wind speed reconstruction in TCs is still
relatively limited.

Deep learning algorithms have shown great potential in processing SAR images of TCs
to retrieve wind speed and analyze the structure of the storms. Boussioux et al. [19] used a
multi-modal deep learning (DL) framework to combine multi-source data for hurricane
forecasting. A DL method based on topological patterns was used with the high-resolution
data of Sentinel-1 to improve the accuracy of TC intensity detection [20]. Progress has been
made in exploring SAR wind speeds using DL, including deploying neural networks to
invert sea surface wind speed from SAR and designing CNNs to extract SAR features to
estimate TC intensity [21–24]. Using DL to construct forecast models based on Sentinel-1
and Sentinel-2 images has also shown good capability for offshore wind speed estimation
[25]. These studies illustrate the great potential of DL in SAR wind speed processing.
However, rain bands can cause C-band signal attenuation and extreme wind speeds can
result in signal saturation, producing low-quality data and making it difficult for SAR to
invert the TC structure accurately. Therefore, it is urgent to generate high accuracy wind
speed data using DL to improve the low-quality SAR wind speed data and reconstruct the
complete TC structure. However, due to the difficulty of leveraging the benefits of piece-
wise linear units in the generative context, adopting only a CNN could cause problems
for generative tasks such as SAR wind speed reconstruction. This situation has changed
with the emergence of generative adversarial networks (GANs) [26], which correspond to
a minimax two-player game in which a GAN framework with two networks, named the
generator and the discriminator, are trained simultaneously. Furthermore, the ingenious
approximation of some unsolvable loss functions by adversarial learning can promote the
application of DL in generating tasks.

In order to fully exploit the ability of SAR to observe wind speed, especially during
TCs, we propose a DL model for improving the low-quality data in SAR to reconstruct the
TC structure directly. The reconstruction only targets the data in the low-quality region,
retaining the original SAR high-precision wind speeds. In this way, the reconstructed results
are based on real observations with a high resolution. This paper proposes a dual-level
contextual attention GAN (DeCA-GAN) for reconstructing SAR wind speeds. A dual-level
encoder is designed to help the model learn local and global TC features simultaneously.
The neck part is designed to adaptively process the features extracted by the encoder
and feed them to the decoder. The final result is generated under the guidance of the
discriminator. The main contributions of this paper are as follows:

• We propose a GAN-based deep learning model for directly enhancing the quality
of SAR wind speeds and reconstructing the structure of TCs. The results are based
on SAR observations and are close to reality, and thus can be used for TC intensity
estimation, TC structure analysis, and forecast accuracy improvement.
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• The proposed model performs better than state-of-the-art models, especially for a large
range of low-quality data and in high wind speed reconstruction. We also conduct
ablation experiments to verify the components’ effectiveness in the proposed model.

• The model is validated on ECMWF and SMAP, and the reconstructed results can be
obtained in a few seconds using a single GPU. Compared to ECMWF, the reconstructed
results achieve a relative reduction of 50% in the root mean square error (RMSE).

The rest of this paper is structured as follows: Section 2 presents our framework for
SAR wind speed reconstruction in detail. In Section 3, we introduce the Sentinel-1 SAR
TC images and present the experimental parameters and the results of reconstructed SAR
wind speeds. We also conduct ablation experiments and visualize the feature maps inside
the DeCA-GAN model to demonstrate its effectiveness. The discussions and conclusions
are presented in Section 4 and Section 5, respectively.

2. Method
2.1. Architecture

This paper combines the advantages of dilated convolution [27] and the attention
mechanism [28,29] and proposes a novel network for reconstructing SAR wind speeds in
TCs. The overall encoder–neck–decoder framework of the proposed model DeCA-GAN is
shown in Figure 1. The encoder includes two branches, which can simultaneously obtain
local and global level semantic features from SAR wind speeds. After fusing the dual-level
features, the new feature maps are sent to the neck part after dimensionality reduction. In
this way, our model can learn TC structure and gain valuable features from both neighbor
and distant pixels in the image. The neck of the model includes five AOT blocks based on
work by Zeng et al. [30], which have various receptive fields on feature maps with the help of
special dilated convolution designs. The outputs of the neck contain abstract and high-level
semantic features. After two up-sampling operations, the model will generate a reconstructed
TC image. The effect of the reconstruction will be further enhanced under the supervision
of the discriminator.
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Figure 1. An overview of the Dual-Level Contextual Attention Network (DeCA-GAN) architecture.
The DeCA-GAN is built with a generator and a discriminator. The encoder of the generator is a
two-branch network for extracting features at the local and global levels, respectively, and the neck
consists of five feature extractors for progressively generating contours of the TC structure. The
discriminator uses the original mask as a label for the task of predicting patch-level pixels.

2.2. Encoder Based on Dual-Level Learning

The encoder of the DeCA-GAN has two pathways responsible for local and global
feature extraction, respectively. Suppose the encoder takes an image with a resolution of
160 × 160 × 1 (height, width, and channel, respectively). The first path of the encoder
passes through a 7 × 7 convolutional layer and two 3 × 3 convolutional layers with stride
2. After that, the image shape will become 40 × 40 × 256. In particular, each convolutional
layer in the first path is followed by an ECA module [31], as described in Section 2.2.2. This
pathway mainly processes the local-level relationships in images. In addition, the DeCA-
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GAN employs another pathway to extract global relationships between pixels in images
by using the contextual transformer (CoT) attention mechanism [29] (see Section 2.2.1).
As shown in Figure 2, the CoT block first passes input x through a 1 × 1 convolutional
layer, followed by a CoT module. The next 1 × 1 convolutional layer expands the channel
dimensions, and this layer down-samples the size of the feature maps. Then, x

′
can

be obtained via an ECA block and added to skip connection branch y to get output x
′′
.

Specifically, the CoT block repeats several times in the DeCA-GAN encoder, but only the
first repetition executes the down-sample and expansion operations. After concatenating
the feature maps of two pathways, the DeCA-GAN encoder employs a 1 × 1 convolutional
layer to reduce dimensionality. In this paper, we attempt two additional strategies to
determine the best method to fuse two-level feature maps: the first uses two consecutive 1
× 1 convolutional layers in the experiment, first expanding the number of channels and
then decreasing them, and the second uses two consecutive 1 × 1 convolutional layers, one
of which is used to change the channel dimension. However, the effect of the above two
methods is not as good as the single 1 × 1 convolution used in this paper. Moreover, the
output of the encoder is 160 × 160 × 256.

: k k

: v v

Concat
Key

Query

Value

: 1 1

: 1 1 Fusion*

Conv1 1

CoT

Conv1 1

Conv1 1

CoT Block

ECA

(a) (b)

Figure 2. Structure of the (a) CoT Block and (b) CoT in the DeCA-GAN.

2.2.1. CoT Block

In computer vision tasks, a CNN is usually the preferred method. Convolutional layers
can obtain higher-level semantic features in the image, giving the model better capabilities.
Moreover, because the convolution is of a locally connected layer, its computational load is
also small. However, similar to human vision, there is a contextual relationship between
objects in an image. For example, it is reasonable for a cup to be on a table and not a
train. The local convolution cannot learn the global context of an image well. Even if
dilated convolution can be used to increase the receptive field [32], convolution still finds
difficulty in exploring the connection between distant contexts, which plays a vital role in
visual tasks [33–35]. Vaswani et al. [28] proposed an outstanding framework transformer,
which possesses the self-attention mechanism to help models learn the more valuable
spatial features of the entire image. This new technique has been widely adopted in natural
language processing (NLP) fields [36–38]. In the self-attention mechanism, the data matrix
is copied as k, q, and v, denoted as key, query, and value, respectively. The whole process
of self-attention is formulated as follows:

Attention(q, k, v) = softmax(
qkT
√

dim
)v, (1)
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where dim is the length of a token (or a single word) in NLP. This operation allows q
to calculate the similarity with k by performing matrix multiplication and paying more
attention to corresponding high-similarity parts in v. As shown in Figure 3, we obtain a q
that is more similar to k1, followed by k2 and k3. The weight, w, denoted as an attention
map, is actually the corresponding similarity to q and k (in the dashed box). Specifically,
the more similar q and k are, the larger w will be, which means w1 > w2 > w3.

Figure 3. Illustration of the self-attention mechanism in the DeCA-GAN.

Inspired by this design, many CV works circumvent the above-mentioned CNN
limits by using transformer structures such as ViT [39], DETR [40], and Swin [41]. Some
other works directly replace the CNN with a self-attention module [42,43] in ResNet [44].
However, those architectures only consider relationships between q and k independently
without exploring valuable features among neighbor keys. CoT [29] is designed to capture
static and dynamic contexts simultaneously, with a better effect than vanilla self attention
and derivatives of ResNet such as ResNeXt [45] or ResNeSt [46].

In this paper, a CoT is employed in the encoder, and the details can be seen in Figure 2.
Suppose the size of input x is H ×W × C and k

′
represents the context features between

adjacent key values, which can be obtained via a k× k group convolution layer. CoT regards
k
′

as the static representation of x. k
′

is concatenated with query q, followed by two 1× 1
convolutional layers (Wα and Wβ) to obtain the multi-head attention map A. The size of A
is H ×W × (k× k× Cn), including the local relation matrix of size k× k, and Cn denotes
the head numbers. Specifically, the first convolutional layer follows a ReLU activation
function, whereas the second layer does not:

A = [k
′
, q]WαWβ. (2)

In this way, the attention map is calculated by q features and k
′

features instead of
isolated q–k pairs in the vanilla self-attention layer. This operation can enhance the learning
ability of the model. After that, the calculation process of attended feature map k

′′
can be

denoted as follows:
k
′′
= vs. ∗ A, (3)

where k
′′

are the dynamic features of x, which exploit interacting features among the input
data, and ∗ is the local matrix multiplication operation, which calculates the relations
between v and A within a k× k grid. In CoT, static features k

′
and dynamic features k

′′
are

combined via a fusion layer to form output o.

2.2.2. ECA Module

ECA is a kind of channel attention mechanism which aims to suppress noise and
unnecessary features and enables cross-channel feature exchange. This concept has been
widely researched in various modules.

The Squeeze-and-Excitation (SE) structure [47] is used in Efficientnet [48], which can
generate a channel descriptor by emphasizing more useful channel features. The core idea
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of SE is to automatically learn feature weights according to loss through a fully connected
network. Furthermore, the dimensionality reduction in the SE block can reduce complexity,
as shown in the equations below:

A = ReLU(W1 × g(X)), (4)

ω = σ(W2 × A). (5)

We suppose the output of the previous layer is X ∈ RW×H×C, where g(X) is the
channel-wise global average pooling, which can be denoted as g(X) = 1

WH ∑W,H
i=1,j=1 Xij.

To realize the dimensionality reduction, the size of W1 is set to C× (C/r), where r stands
for the reduction ratio. After a ReLU activation function, the number of channels will be
restored to the original size, followed by a sigmoid activate function, σ. The size of W2 is
(C/r)× C, and SE has a total of 2× C2/r parameters.

Based on the SE structure, a convolutional block attention module (CBAM) was proposed
in [49]. A CBAM combines spatial attention and channel attention to make the algorithm more
powerful, but the number of parameters is also increased. However, the dimensionality
reduction in SE and CBAM brings side effects to the channel attention mechanism, as
reported by Wang’s team; as a result, they designed a better structure called Efficient
Channel Attention (ECA) [31], which is a local cross-channel interaction strategy and can
yield better effects than the SE and CBAM structures with fewer parameters. As shown in
Equation (6), the ECA module adopts 1D convolution instead of a fully connected layer.

ω = σ(W × g(X)). (6)

Suppose the size of input X is H ×W × C; after a global average pooling layer, the
size will become 1× 1× C. The core innovation point of ECA is the 1D convolutional
layer, which can calculate a set of weights to indicate the importance of each feature map.
After passing through a sigmoid activation function, σ, it is multiplied by the original
X to obtain the weighted feature maps, represented by the symbol ⊗. Notably, the 1D
convolutional layer can help avoid harmful dimensionality reductions because of its same
input and output channels. The model can extract features from the original image and
reflect them in different feature maps; that is, it can generate many new channels through
a convolutional layer, and the ECA module can help the model pay more attention to
channels containing more valuable features by giving them higher weight. This technology
can help the model discard some redundant features and improve the training efficiency
and effectiveness. Furthermore, this structure can force the model to capture features
between different channels. The complete structure of the ECA module can be seen in
Figure 4.

GAP

Figure 4. The structure of the ECA module.
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2.3. AOT Neck

The DeCA-GAN model follows the encoder–neck–decoder structure. The neck part
consists of five AOT blocks based on [30]. Each block adopts the duplicate–transformation–
merge strategy in three steps, as shown in Figure 5. The first step is duplicating: the AOT block
has an input x1, which is duplicated in four sub-kernels. The second step is transformation,
where each sub-kernel has a convolutional layer. Specifically, these convolutional layers
are dilated convolutions. In this paper, we set dilation rates of 1, 2, 4, and 6 to make
these blocks more suitable for our small-size images. The convolutional layer with a lower
dilation rate pays more attention to local semantic features, whereas the bigger ones can
process larger-range relationships between pixels. Finally, the fusing operation makes all
the sub-kernel outputs with various receptive fields concatenate together and obtains x2
via a vanilla 3 × 3 convolutional layer. This design can help the model have different kinds
of views of image pixels.

256, 3×3, d=1, 64

ReLU

256, 3×3, d=2, 64

ReLU

256, 3×3, d=4, 64

ReLU

256, 3×3, d=6, 64

ReLU

256, 3×3, d=1, 256

256, 3×3, d=1, 256

Figure 5. The structure of the AOT block. The four terms inside the green and gray rectangles
represent the number of input channels, the size of the convolutional kernel, the dilation rate, and the
number of output channels, respectively.

Notably, the AOT block is an extraordinary method to let the model learn residual
features inspired by the great success of ResNet [44]. With identical residual connections,
the blocks in ResNet aim to output features that are, at a minimum, not worse. With
this structure, DL networks have achieved great success and progress. However, in the
field of image inpainting, refs. [50,51] reported that the ResNet block may cause color
discrepancy because it ignores the difference between input pixels inside and outside
missing regions. A gated residual connection was proposed to control how the model
learns the residual features. This structure first calculates the value of β by implementing a
vanilla convolution, followed by a normalizing layer and a sigmoid operation. The AOT
block aggregates output feature x2 and residual feature x1 as a weighted sum with β, as
shown below:

x
′
= x1 × β + x2 × (1− β). (7)

In contrast to the residual block [44], the AOT block adopts four kinds of dilation
rates for combining various receptive fields. In image inpainting works, capturing distant
contexts improves the model performance. Furthermore, unlike the dilated spatial pyra-
mid pool [27] structure, which is a decoder head for high-level recognition in semantic
segmentation, the AOT block is a fundamental building block to extract low-level features
by repetition in image inpainting models.

2.4. Loss

In this paper, we adopt various loss functions to optimize the model. Specially, we
use a GAN loss to enhance the performance of generative tasks. The idea of GAN [26] is
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widely used in image style transfer, super-resolution, image inpainting, and other fields.
The general form of a GAN loss function V is as follows [26]:

min
G

max
D

V(G, D) = Ex∼pdata(x) [log D(x)] +Ez∼pz(z) [log (1− D(G(z)))]. (8)

This strategy aims to train a G which can generate almost perfect images so that the
discriminator D could be confused. The idea of a GAN is that through the adversarial
relationship between G and D, both can reach their peak value relative to each other—
ultimately reaching the Nash equilibrium. In brief, the purpose of the discriminator is to
maximize the loss, and that of the generator is to minimize the loss.

2.4.1. SM-PatchGAN

In this section, a soft mask-guided PatchGAN (SM-PatchGAN) [30] is introduced
(see Figure 6). To overcome the diverse possible results for filling large missing-region
tasks based on reconstruction losses (e.g., L1 loss) [52], which can cause blurry textures for
high-resolution image inpainting, a GAN is introduced. Through the adversarial training
of G and D mentioned above, the model with GAN loss is able to predict more realistic
images. However, the vanilla GAN loss discriminator usually outputs a number between 0
and 1 to represent the evaluation of the whole image. However, this method is not suitable
for some tasks that need to maintain a high-resolution and a clear texture. PatchGAN [53]
is proposed to solve this problem. PatchGAN is a general method that has good results in
image synthesis, reconstruction, and inpainting. Actually, the discriminator of PatchGAN
is also a CNN-like vanilla GAN loss, but this CNN outputs a N × N matrix. Each element
represents a particular patch to determine whether the original image is real or fake. The
patches have large receptive fields and focus on more areas, which helps the PatchGAN
be more powerful than the methods that discriminate the whole picture directly when
reconstructing images.

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 0.3 0.4 1

1 0.6 0.7 1

1 1 1 1

Real Image Reconstructed Image

Discriminator

Figure 6. Diagram of the SM-PatchGAN architecture for SAR wind speed reconstruction.

However, PatchGAN treats the entire generated image as fake, and this method
ignores the regions outside the missing parts that are real. HM-PatchGAN is a better choice
to distinguish the inside and outside of missing regions by using hard binary masks. This
technique can improve the performance of D, but it ignores the patches near the boundary
that may combine with real and generated pixels. Therefore, arbitrarily setting the edge
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patch to either 1 or 0 is inappropriate. SM-PatchGAN adopts a Gaussian filter to blur the
edges of missing areas. For a real image, the label of D must be 1. For the reconstructed
image, first, SM-PatchGAN up-samples the N × N output calculated by D to the same
size as that of the label, and then it performs the Gaussian blurring operation. Thus, this
method can improve the image inpainting accuracy at the edge of missing regions.

In practice, for real image x, there is a corresponding binary mask m. A value of 1
indicates the missing areas, whereas 0 indicates known regions. The reconstructed image z
is denoted as follows:

z = G(x� (1−m), m)�m + x� (1−m), (9)

where � is pixel-wise multiplication. The inputs of G are a masked image and a binary
mask, and then G outputs a reconstructed image. We can convert the minimax problem in
(8) to a minimization problem as follows:

LD = Ez∼pz [(D(z)− σ(1−m))2]+ Ex∼pdata [(D(x)− 1)2], (10)

where σ is the combination of down-sampling layers and Gaussian filtering. Furthermore,
the generator adversarial loss is denoted as follows:

LG = Ez∼pz [(D(z)− 1)2 �m]. (11)

Notably, LG only includes the generator adversarial loss for the part within the missing
region. The SM-PatchGAN considers that there are both real and fake pixels in the patches
at the edge of the missing area and further improves the reconstruction effect at the edge
based on the PatchGAN. In order to test this improvement, we describe two commonly used
indicators in Section 3.3 to judge the structural restoration and quality of the reconstructed
image.

2.4.2. Joint Loss

For the task of TC reconstruction, we chose four proper loss functions, a reconstruction
(or L1) loss, a style loss [54], a perceptual loss [55], and an adversarial loss in SM-PatchGAN,
in order to make the generated TC image more realistic.

The reconstruction loss is used to minimize the error, which is the sum of all absolute
differences between the true and predicted values. Here, we compute the pixel-level
reconstruction loss as follows:

Lrec = ‖x− G(x� (1−m), m)‖1. (12)

Perceptual loss [55] is a widely used method for image style transfer and image super-
resolution tasks. By using a CNN to extract features from images, the style and content parts
of an image can be separated. In a CNN, the deeper layers aim to learn the overall layout
and structural features of the image, whereas the shallower layers mostly learn the texture
and detailed features of the image. A richer pixel distribution can be obtained through
the fusion of multi-layer features. By using the feature maps of the specific five layers in a
pretrained VGG19 [56] feature extractor, the L1 distance between the reconstructed image
and the real image can be further reduced:

Lper = ∑
i

‖φi(x)− φi(z)‖1

Ni
, (13)

where φi(x) is the feature maps of the i-th layer in the pretrained network VGG19, and Ni is
the number of elements in φi(x). Style loss [54] is a loss function commonly used in image
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style transfer tasks that uses a Gram matrix to capture image style features and calculates
the L1 distance between the reconstructed image and the real image:

Lsty = Ei
[
‖φi(x)Tφi(x)− φi(z)Tφi(z)‖1

]
. (14)

For the proposed DeCA-GAN, we chose the adversarial loss described in Equation (10)
to optimize the discriminator. This SM-PatchGAN method can make the generated results
around the missing regions more accurate. To optimize the generator, we use the joint loss
as follows:

L = λGLG + λrecLrec + λperLper + λstyLsty. (15)

These loss functions are commonly used in image inpainting, and we directly refer to
a previous work and adopt their selected lambda values in our task. However, in contrast
to the traditional image inpainting task, we adopt the TC wind speeds as input. The model
aims to pay more attention to the integrity of the TC structure in the image. Among joint
loss functions, perceptual loss extracts the abstract structure features of images through
VGG19, which is a necessary method to restore the consistency of the spatial structure. In
this paper, we carefully tune the Lper by setting a possible range [0.01, 0.1, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10] and use grid search to select the proper value λper = 4. Specifically, we iterated
the network 500 times for each value and used the parameter that yields the best result as
the final value. For the other lambda values, extensive experiments were performed in a
preliminary work [30] and the specific values were determined empirically. We followed
their approach and set λG = 0.01, λrec = 1, and λsty = 50. Adjusting the hyperparameters
is significant in machine learning; the right hyperparameters can help the model converge
faster or obtain a better result. In addition to the perceptual loss, extensive experiments
using grid search for the other three loss functions can positively affect the model with
minor adjustments.

3. Experiments

This paper proposes the DeCA-GAN for directly enhancing the quality of SAR wind
speeds and reconstructing the structure of TCs. We use ECMWF for model training and
validation. In this way, the model can learn the features of TC and reconstruct them from the
remote sensing image. Specifically, the model is trained and validated using ECMWF and
tested on Sentinel-1 images. In this section, we introduce Sentinel-1 images and describe the
experimental platform and the environment configuration. The hyperparameter choices for
the model are also listed. We compare our DeCA-GAN with other state-of-the-art models to
prove its superiority. Most importantly, we use the model pre-trained on ECMWF to input
Sentinel-1 SAR wind speeds and get a well-reconstructed TC structure, demonstrating
the practical application value of our model. The reconstructed results are validated on
Soil Moisture Active and Passive (SMAP) to verify the proposed method further. Finally,
we implement some ablation experiments to verify the components’ effectiveness in the
proposed model.

3.1. Data

To obtain TC wind speeds, we collected data from Sentinel-1A/B and selected 270 im-
ages that captured TCs. The images have been archived on the Copernicus Open Access
Hub website (scihub.copernicus.eu, accessed on 3 April 2023) and can be freely accessed.
Sentinel-1A/B consists of two satellites, Sentinel-1A, and Sentinel-1B, equipped with C-
band SAR sensors and active microwave remote sensors. There are four acquisition modes:
Stripmap (SM), Interferometric Wide swath (IW), Extra-Wide swath (EW), and Wave (WV).
The WV scan mode has only a single-polarization mode HH or VV. The other scan modes
are available in single-polarization (HH and VV) and dual-polarization (HH + HV and
VV + VH) modes. SMAP [57] operates in a sun-synchronous orbit and is equipped with
an L-band passive radiometer (1.4 GHz) with a resolution of about 40 km. Due to the

scihub.copernicus.eu
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low resolution of SMAP, we selected the L3 0.25-degree wind speed product from RSS for
verification (www.remss.com, accessed on 3 April 2023).

In this study, we collected 270 level-2 ocean (L2 OCN) product SAR wind speeds with
a resolution of 1 km as the dataset for SAR wind speed reconstruction. The Sentinel-1 ocean
wind field retrieval algorithm is described in [7]. The L2 OCN product also provides an
inversion quality flag that classifies the inversion quality of each wind cell in the grid as
‘good’, ‘medium’, ‘low’, or ‘poor’. The geographic locations of the OCN Sentinel-1A/B
SAR wind speeds are shown in Figure 7. ECMWF has a resolution of 0.25 degrees (ECMWF
provides wind data for a 0.125-degree horizontal grid after the end of 2009) and a time
resolution of 3 h. The ECMWF is selected at the closest time to the SAR data acquisition
and interpolates to the same resolution as Sentinel-1 [7]. We use ECMWF as labels to train
and validate the model and to test Sentinel-1 A/B SAR wind speeds. It is worth noting
that during validation and testing, we kept the ‘good’ and ‘medium’ data according to the
inversion quality flag and masked the ‘low’ and ‘poor’ data as low-quality data.

Sentinel-1B

Sentinel-1A

Figure 7. Geographical location of 270 Sentinel-1A/B images including TC structure. The blue
and green rectangles denote images from Sentinel-1A (147 images) and Sentinel-1B (123 images),
respectively.

3.2. Experiment Configuration and Implementation Details

Our experiments were carried out on a server with an Intel Xeon E5-2680 v4 CPU and
two Tesla M60 graphics cards (two cores each), with a total video memory of 32GB. The
operating system was Ubuntu 18.04.6, with Python 3.9 and CUDA 11.2.

For the model training, 270 TC images were split into training and validation sets at
a ratio of 8:2. We used the Adam optimizer (β1 = 0; β2 = 0.9) and set a batch size of 4 × 10
(multi-GPU training), which is the maximum load of our server. We fed 40 images into the
model for each iteration and updated the parameters. We randomly cropped 160 × 160-sized
sub-images from ECMWF during training. We also used random smearing to create a mask
the same size as the input image and reproduce the problem of SAR low-quality data. The
minimum width of the smeared lines is 1 pixel, which helps the model better adapt to
the small-sized low-quality parts, and the maximum width is 40 pixels. Moreover, the
minimum smearing area is 5%, and the maximum is 75%. This way of creating a mask
makes the model generalizable and reduces the possibility of overfitting compared to a
fixed mask. In addition, randomly cropped images from each original TC image can also
reduce the amount of calculation, which avoids using a too-small batch size on limited
computer resources and improves the training speed.

www.remss.com
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The learning rates for the generator and the discriminator were set to 1e− 4. After con-
vergence, we reduced the learning rate to 5e− 5 and performed several iterations to achieve
better results.

3.3. Evaluation Metric

Considering the difference between RGB data and ours, we carefully chose four
evaluation indicators to analyze the reconstruction effect of TCs: the structural similarity
index metric (SSIM), the peak signal to noise ratio (PSNR), the root mean square error
(RMSE), and the correlation coefficient (R).

Assuming there are images x and y, SSIM can be used to calculate their similarity,
whose range is (0–1). The closer the value is to 1, the more similar the images are. SSIM is
defined as follows:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
. (16)

PSNR is used to evaluate the image quality in units of dB, where larger values indicate
less distortion and a better image quality. Letting the original image I and the reconstructed
image K have dimensions M× N, PSNR is denoted as:

PSNR = 10 · log10(
MAX2

I
1

MN ∑m−1
i=0 ∑n−1

j=0 [I(i, j)− K(i, j)]2
), (17)

where MAXI is the maximum value in image I. Before SSIM and PSNR are calculated, the
image is first normalized. Both SSIM and PSNR are commonly used evaluation metrics in
image inpainting and reconstruction.

Moreover, for TC wind speed data, we use the RMSE, which is an evaluation method
that is more common in wind speed inversion tasks:

RMSE =

√
1

#G ∑
G
[I(i, j)− K(i, j)]2, (18)

where G represents the low-quality regions and #G denotes the number of pixels in this
area. In this paper, we only calculate the RMSE for the area that needs to be reconstructed
to verify the effect of DeCA-GAN on TC reconstruction.

We also choose R as a key evaluation metric, which is used to measure the degree of
linear correlation between variables under study:

R(X, Y) =
Cov(X, Y)√
Var[X]Var[Y]

. (19)

3.4. Experimental Results

In this section, we compare the proposed method with three other state-of-the-art
baselines in Section 3.4.1 and directly test our model on Sentinel1-A/B wind speeds in
Section 3.4.2. Furthermore, the reconstruction results are further verified with SMAP. To
ensure fairness, we use the same hyperparameters for training and validation on ECMWF.

• PConv [51] proposes to replace vanilla convolution with partial convolution to reduce
the color discrepancy in the missing area.

• GatedConv [50] is a two-stage network: the first stage outputs coarse results and the
second stage is for finer ones. This structure can progressively increase the smoothness
of the reconstructed image. The work also proposes an SN-PatchGAN for training.

• AOT-GAN [30] aggregates the feature maps of different receptive fields to improve
the reconstruction effect of high-resolution images.
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3.4.1. Comparison of DeCA-GAN to Baselines

In this section, we compare the proposed model with three baselines and show the
advantages of DeCA-GAN on high wind speeds and large-range low-quality data recon-
struction. The quantitative comparison results can be found in Table 1. It shows that our
model outperforms the state-of-the-art methods regarding all metrics, especially in the
RMSE. Specifically, our model outperforms AOT-GAN [30], the most competitive model.

Table 1. Quantitative comparisons of proposed DeCA-GAN and other state-of-the-art models on the
validation set. ↑ Higher is better. ↓ Lower is better.

Methods SSIM ↑ PSNR ↑ RMSE ↓ R↑

PConv 0.990 41.05 1.18 0.947
GatedConv 0.991 42.87 0.96 0.970
AOT-GAN 0.991 41.49 0.95 0.970

DeCA-GAN (ours) 0.994 43.81 0.74 0.983

We conducted two extra quantitative experiments for further verify that the proposed
model has better performance on a large range of low-quality data and high wind speed
reconstruction. First, we conducted quantitative comparisons under different low-quality
data ranges. As shown in Table 2, DeCA-GAN has apparent advantages in reconstructing
SAR wind speeds that contain more than 20% low-quality data. Notably, the reconstruction
results of the three models (GatedConv, AOT-GAN, and DeCA-GAN) exhibit RMSE values
of 1.21 m/s, 1.10 m/s, and 0.95 m/s with under 60–80% of low-quality data, respectively.
We find that GatedConv is slightly better than the proposed model regarding PSNR in
0–20% low-quality ranges, but with the increase in low-quality data, the attenuation is more
serious. It is worth mentioning that the proposed model outperforms GatedConv in the rest
of the metrics. This shows that the proposed model has better stability for reconstructing a
large range of low-quality data.

Table 2. Quantitative comparisons of the proposed DeCA-GAN and other state-of-the-art models
under different low-quality data ranges. ↑ Higher is better. ↓ Lower is better.

Methods Low-Quality Data SSIM ↑ PSNR ↑ RMSE ↓ R ↑

GatedConv

0–20% 0.996 46.74 0.74 0.982
20–40% 0.996 42.20 0.77 0.982
40–60% 0.988 36.66 1.11 0.962
60–80% 0.983 33.66 1.21 0.945

AOT-GAN

0–20% 0.995 43.34 0.59 0.988
20–40% 0.994 43.07 0.90 0.973
40–60% 0.990 36.62 1.00 0.967
60–80% 0.983 34.36 1.10 0.953

DeCA-GAN (ours)

0–20% 0.997 46.43 0.53 0.991
20–40% 0.997 44.31 0.62 0.988
40–60% 0.994 39.07 0.80 0.983
60–80% 0.987 35.78 0.95 0.968

Second, we conducted quantitative comparisons for different wind speed segments,
especially for the low and high wind speed parts. As shown in Table 1, the improvements
of the proposed model are not very obvious in SSIM and R. This is mainly due to data
imbalance in the TC reconstruction task. To explain this, we draw Figure 8 to highlight the
advantages of our DeCA-GAN in reconstructing low and high wind speeds. We group
the data in the validation set, and each group has a wind speed range of 2 m/s. There are
2,029,266 collocations in low-quality data in our validation set. However, the main struc-
tures of a TC (the wind wall and the wind eye, which have wind speeds lower than 2 m/s
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or greater than 30 m/s) only account for a small part, which makes it difficult for the
model to learn the TC structure effectively from the training set. It is not complicated for
DL models to reconstruct the wind speed outside the TC that contains a large number
of samples, but the TC structure is the primary challenge. This results in the model’s
improvement in reconstructing the TC structure being averaged out, and only a slight
improvement of DeCA-GAN in SSIM and R. Notably, SSIM evaluates the similarity of
the whole image. Non-low-quality data are also involved in the calculation. As shown in
Figure 8, we calculated the RMSE under different wind speed segments, showing that the
slight improvement in SSIM and R comes from the TC structure. The model has a good
reconstruction effect for wind speeds with a large sample size, while for a small sample
size, the RMSE is relatively higher. Compared with other models, when the wind speed is
lower than 2 m/s or greater than 30 m/s, DeCA-GAN can overcome the data imbalance
problem and obtain an improvement of 1.70 m/s in the RMSE at 34–36 m/s wind speeds.

×105

Figure 8. Quantitative comparisons of the RMSE (curve) and number of collocations (histogram) for
different wind speed ranges.

3.4.2. Reconstruction on Sentinel1-A/B

In this section, we directly input Sentinel-1 SAR wind speeds and validated the
reconstruction results on ECMWF and SMAP. The results of the proposed method are
shown in Figure 9. SAR is affected by rain bands and extreme wind speeds, which generate
a large amount of low-quality data and thus make it difficult to observe TCs accurately. We
masked ‘low’ and ‘poor’ data as low-quality data based on the quality flags provided in
the L2 OCN product. The proposed model is able to enhance the low-quality data of SAR
and reconstruct the entire TC structure from the Sentinel-1 SAR wind speeds with results
similar to ECMWF. In addition, the proposed model can still predict an accurate structure
based on the TC features learned from the training set when the low-quality data region
is large, even when the whole TC structure is masked. In particular, low-quality regions
including very high wind speeds at the wind wall and low wind speeds in the wind eye
can be well reconstructed at the correct locations.

As shown in Table 3, our model can improve the low-quality data in SAR wind speeds
and achieve a relative reduction of 50% in the RMSE. Due to the slight time difference
between Sentinel-1 SAR image imaging and ECMWF winds, the position and structure
of the TC in the image will differ, so the evaluation metric will be reduced accordingly.
Specifically, the RMSE is 2.60 m/s, the R is 0.777, the SSIM is 0.907, and the PSNR is 28.02.

Table 3. Performance comparisons of reconstructed and original Sentinel-1 SAR wind speeds.
↑ Higher is better. ↓ Lower is better.

SAR Wind Speeds SSIM ↑ PSNR ↑ RMSE ↓ R ↑
Original 0.807 23.25 5.16 0.547

Reconstructed 0.907 28.02 2.60 0.777
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（c）（a） （d）（b）

Figure 9. Comparisons of DeCA-GAN-reconstructed Sentinel-1-A/B SAR wind speeds with ECMWF
and original SAR wind speeds. (a) ECMWF; (b) original SAR wind speeds; (c) masked SAR wind
speeds; (d) reconstructed SAR wind speeds.

To further verify the effectiveness of the proposed model, we also compared the
reconstruction results with SMAP data. We searched 25 SMAP datasets to match Sentinel-1
and obtained a total of 5515 matchups. The imaging time difference between these two
datasets is within 60 min. The results show that the RMSE of the reconstructed Sentinel-
1 image is 3.78 m/s, and the correlation coefficient (R) is 0.79, as shown in Figure 10.
These results indicate that the proposed model performs well in reconstructing TCs from
SAR wind speeds. However, as shown in the scatter plot in Figure 10, reconstructed
high wind speeds (greater than 20 m/s) are significantly underestimated compared to
SMAP. We believe this phenomenon is due to the underestimation of strong TC winds
in the ECMWF [58,59]. Although the model can reconstruct TC images through learned
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features, it cannot avoid the limitations of the training set. Thus, the model does not tend
to reconstruct extreme winds well, such as those in SMAP data. Additionally, it is worth
noting that the RMSE and R values in the comparison are slightly lower than those obtained
on the test set, which may be due to imaging time differences in the SMAP data.

Figure 10. Comparisons of the Sentinel-1-A/B SAR wind speeds reconstructed by the DeCA-GAN
with the SMAP radiometer winds.

3.5. Ablation Studies

We conducted ablation experiments to verify the effectiveness of the three components
of DeCA-GAN (i.e., the dual-level encoder, the number of AOT blocks in the neck, and the
GAN loss function). To ensure the validity and credibility of the ablation experiments, we
use the same training strategy and hyper-parameters as those of the original DeCA-GAN,
as well as a fixed random seed.

3.5.1. Dual-Level Encoder

In this paper, we use the CoT self-attention module to build a global branch to enhance
the learning ability of the model. As shown in Section 3.6, this global branch mainly learns
the structure of the entire TC image. After the global feature map is combined with the
local branch, it can help the model achieve great performance in the overall structure and
detailed texture. We removed the global branch and used this as the baseline. This baseline
uses the same neck and decoder as those of DeCA-GAN, so any improvement can only be
due to changes in the encoder. As shown in Table 4, the model using the global branch has
better performance, and the RMSE is improved by about 0.16 m/s compared to the baseline.

Table 4. Comparing network performance using a dual-level branch and only a local branch. ↑Higher
is better. ↓ Lower is better.

Branch SSIM ↑ PSNR ↑ RMSE ↓ R ↑
Only Local 0.992 42.12 0.90 0.974

Local and Global 0.994 43.81 0.74 0.983



Remote Sens. 2023, 15, 2454 17 of 23

3.5.2. Number of AOT Blocks

To study the influence of the number of AOT blocks on the model’s learning ability, we
changed the neck of the DeCA-GAN model and attempted to stack four, five, six, seven, or
eight AOT blocks. Table 5 shows that the number of blocks greatly impacts the performance
of the model. Using five AOT blocks in the neck achieves the best results, with an RMSE
improvement of about 0.05 m/s compared to the next best design using six blocks.

Table 5. Comparison of results using different AOT block numbers in the DeCA-GAN neck. ↑ Higher
is better. ↓ Lower is better.

# Blocks SSIM ↑ PSNR ↑ RMSE ↓ R ↑
4 0.991 40.57 1.02 0.971
5 0.994 43.81 0.74 0.983
6 0.993 43.41 0.79 0.981
7 0.993 43.36 0.82 0.977
8 0.991 41.49 0.94 0.967

In addition, in Section 3.6, we visualize the feature map of the network with eight
AOT blocks and find that the outputs of the 4th, 5th, and 6th blocks are better, which was
also part of our inspiration when designing the DeCA-GAN.

3.5.3. Benefits of Adversarial Loss

Based on a GAN, this paper adopts an adversarial loss to solve the reconstruction blur
caused by L1 (or L2) loss and enhance the reconstruction effect. The baseline does not use
generator loss or discriminator loss functions. Compared with the proposed DeCA-GAN,
the reconstructed results generated by the baseline are significantly worse in all indicators
(see Table 6).

Table 6. Comparison of the results before and after using the GAN loss. ↑ Higher is better. ↓ Lower
is better.

Loss SSIM ↑ PSNR ↑ RMSE ↓ R ↑
Without GAN 0.955 35.09 1.60 0.909

Ours 0.994 43.81 0.74 0.983

3.6. Visualization of DeCA-GAN Internal Feature Maps

In this section, we analyze some intermediate processes of the DeCA-GAN in ex-
tracting TC features. The design idea of the encoder is to let the model learn global and
local features simultaneously. Through the dual-level fusion and the attention selection
of the ECA module, the encoder of the model can learn the key channels and features for
reconstructing TCs more comprehensively. For the neck of the DeCA-GAN, AOT blocks
can gradually generate a reconstructed sketch and send it to the decoder for up-sampling.
We wrote a simple visualization applet to exhibit some feature maps learned by various
parts of the model.

3.6.1. Features Learned by the Dual-Level Encoder

In this part, we show the features extracted by the dual-level encoder and the corre-
sponding masked image in Figure 11a. Figure 11b shows the outputs of the third convo-
lutional layer of the local branch. It can be seen that after three convolutional layers, the
network obtains more blurred feature maps. The model pays more attention to extracting
local features, especially the distribution of texture features at the edge of the low-quality
data, and finds correlation inside and outside the area that needs to be reconstructed.
Nevertheless, the feature maps of this branch do not reveal the TC structure. The role of the
convolutional layer is to find the relationship between the pixels in the local area, which
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has a high sensitivity to texture features. However, it is also necessary to learn the overall
TC structure from the image for tasks such as TC reconstruction.

（b） （c）

G
ro

un
d 

Tr
ut

h
M

as
ke

d 
Im

ag
e

（a）

Figure 11. Feature maps learned by the dual-level encoder. (a) The input masked image and the
corresponding ground truth. (b) Local branch. (c) Global branch.

As can be seen from the feature maps output by the last CoT block of the global branch
in Figure 11c, this branch pays more attention to the content of the entire image than the
local branch due to the effect of self-attention module. The pixels that are significant for
reconstruction results are given greater weights. Moreover, this branch appears to have
learned the ring structure of TCs. These results prove that the global branch can quickly
learn the overall TC structure, which could be helpful for the subsequent reconstruction of
the neck and up-sampling. Precisely, when the high wind speed parts and the wind eye of
the TC are masked, the model must judge the exact wind speed values of the high wind
speed area, and the possible position of the wind eye has to be located based on the data
that are not masked in the whole image.

With such an encoder design, the two branches of DeCA-GAN can indeed pay atten-
tion to global features while preserving local features. This enables the model to perform
better on the task of TC reconstruction (see Section 3.5.1).

3.6.2. Feature Integration by AOT Blocks

After passing the designed dual-level encoder, the model has learned the local and
global features of the image. These learned features are fed into the AOT neck for further
processing. The original input size in [30] is 512× 512, each AOT block incorporates four
receptive fields, and the maximum expansion rate is eight (six is used in this paper), which
works well for high-resolution images. However, the image input size of our selection is
160× 160, which can contain the entire TC structure; this size is suitable for the dataset
studied in this paper and does not require much video memory. In Figure 12, we stack
eight AOT blocks in the neck part of the DeCA-GAN to observe the features extracted from
each block separately. The colors in Figure 12a–h represent the relative relationships of the
different positions extracted by the model. We believe that the number of stacked AOT
blocks affects the performance of the network, and we find an interesting phenomenon by
visualizing the output of each AOT block.

The features of the first four blocks are relatively elementary, and the structure of TC is
distorted and incomplete. The output features of the fifth and sixth AOT blocks are better,
and the cyclone center and wind wall are close to the ground truth. From the seventh block,
there is a problem with the learned features; the high wind speed area begins to spread,
which is inconsistent with the actual situation and the prediction accuracy of the central
low-wind area also tends to deteriorate. Therefore, in this paper, the number of AOT blocks
is used as a hyper-parameter to conduct ablation experiments, and it is found that the effect
is best when using five blocks (see Section 3.5.2).
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Ground Truth (a) (b) (c) (d) (e) (f) (g) (h)

Figure 12. Visualization of the neck of the DeCA-GAN. The image features extracted by each AOT
block from ground truth are visualized in (a–h). The color range of each feature map is kept consistent
and is set according to the maximum and minimum values of all feature maps.

4. Discussion

Our designed model can achieve end-to-end SAR wind speed reconstruction in TCs
and works well for large low-quality regions and high wind speeds. To further compare
the performance of deep learning methods with traditional techniques, we implemented
linear and cubic interpolation, obtaining an RMSE of 3.05 m/s and 3.50 m/s, respectively.
As shown in Figure 13, when applied to large low-quality regions, linear interpolation
tends to be less effective in reconstructing the spatial distribution of tropical cyclones (TCs).
This method fails to accurately reconstruct high wind speeds, the wind eye, or the circular
structure of TCs, and tends to underestimate wind speeds significantly. In contrast, the deep
learning model proposed in this study is able to achieve TC reconstruction, particularly in
the case of large low-quality regions of SAR wind speeds. However, there are still some
limitations to the performance of this model.

ECMWF Masked Sentinel-1 Image DeCA-GAN Linear Interpolation

Figure 13. Comparison of the DeCA-GAN and the linear interpolation method.
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• We collected 270 ECMWF data and divided them into training and validation sets.
However, for DL algorithms, this amount of data is still relatively small. In addition,
ECMWF and SAR wind speeds belong to different distributions, resulting in degraded
performance when reconstructing SAR observations directly. We will continue to
expand the amount of data or introduce some techniques to obtain data closer to the
SAR distribution.

• The DeCA-GAN was trained based on ECMWF wind speed data as labels. ECMWF is
a very commonly used dataset in the wind speed retrieval of remote sensing satellites.
However, some studies have shown that ECMWF underestimates high wind speeds
[58,59], which may lead to some bias in the features learned by the proposed model.
This point is also confirmed by the comparison with SMAP, which indicates that our
model tends to underestimate wind speeds in high wind speed ranges. The next step is
to train the model using the Hurricane Weather Research and Forecasting wind speed.

5. Conclusions

In conclusion, this paper presents a DeCA-GAN model for improving low-quality
SAR wind speed data and reconstructing TC structures. The reconstructed results retain
the original SAR high-precision wind speed, and only the data in the low-quality region are
improved to obtain results that are close to reality. In particular, the model works well for
reconstructing high wind speeds and large ranges of low-quality data. The reconstructed
results can be used for TC intensity estimation, data assimilation, TC forecast accuracy
improvement, TC structure analysis, etc. Furthermore, the DL algorithm is very low-cost
and fast.

The proposed method is based on an encoder–neck–decoder architecture, with two
parallel branches that combine CNNs and the self-attention mechanism to extract local and
global features. The neck part of the model consists of AOT blocks that extract contextual
features and send them to the decoder to generate reconstruction results. We also introduce
an ECA module to calculate channel attention in the model, which enables cross-channel
interactions. In addition, we use a joint loss to improve the model’s performance. Through
ablation experiments, we find that the global branch we designed and the selection of
the number of AOT modules have positive impacts. We also find that using GAN loss
significantly improves the reconstruction ability of the model. When applied to reconstruct
SAR wind speeds, the model achieves an RMSE of 2.60 m/s, an R value of 0.777, an SSIM of
0.907, and a PSNR of 28.02, achieving a relative reduction of 50% in the RMSE. Additionally,
comparing the reconstructed SAR wind speeds with SMAP data yields an RMSE of 3.78
m/s and an R value of 0.79. Overall, our results suggest that the proposed DeCA-GAN
model is a promising approach for reconstructing SAR wind speeds in TCs.
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