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Abstract: Template matching is the fundamental task in remote sensing image processing of air-
and space-based platforms. Due to the heterogeneous image sources, different scales and different
viewpoints, the realization of a general end-to-end matching model is still a challenging task. Con-
sidering the abovementioned problems, we propose a cross-view remote sensing image matching
method. Firstly, a spatial attention map was proposed to solve the problem of the domain gap. It is
produced by two-dimensional Gaussian distribution and eliminates the distance between the dis-
tributed heterogeneous features. Secondly, in order to perform matching at different flight altitudes,
a multi-scale matching method was proposed to perform matching on three down-sampling scales in
turn and confirm the optimal result. Thirdly, to improve the adaptability of the viewpoint changes,
a pixel-wise consensus method based on a correlation layer was applied. Finally, we trained the
proposed model based on weakly supervised learning, which does not require extensive annotation
but only labels one pair of feature points of the template image and search image. The robustness
and effectiveness of the proposed methods were demonstrated by evaluation on various datasets.
Our method accommodates three types of template matching with different viewpoints, including
SAR to RGB, infrared to RGB, and RGB to RGB.

Keywords: cross-viewpoint; heterogeneous alignment; template matching; spatial attention; multi-scale
matching; pixel-wise consensus

1. Introduction

Remote sensing image matching is used to identify visual correspondences between
two images and is fundamental to tasks such as visual localization, topographic mapping,
and environmental inspection [1]. However, during the image acquisition process, remote
sensing images may include heterogeneous images from various sources, with differences
in scale and viewpoint, due to the differences in air- and space-based platforms, as well
as differences in sensors and observation altitudes. The image matching process based
on air- and space-based platforms is shown in Figure 1, where the observation viewpoint
of the space-based platform is close to vertical, while the observation viewpoint of the
air-based platform is usually an oblique angle. At this point, due to differences in the
observation angle and distance, there will be differences in scale and viewpoint for the
same target or area. On the other hand, air-based platforms mostly carry optical sensors,
while space-based platforms can carry a wider variety of sensor types, including optical
and radar sensors. This leads to a problem of data heterogeneity in image matching due
to differences in sensors. In this work, images acquired by satellites are referred to as
template images, while images acquired by drones are referred to as search images. For the
template matching task, the template image is a part of the search image, and the primary
objective of our work is to match them to the same coordinates. In summary, there are three
objective problems that need to be addressed in the task of matching images from air- and
space-based platforms:
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(1) Data heterogeneity between template and search images;
(2) Scale differences between template and search images;
(3) Observation angle differences between template and search images.
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Figure 1. Comparison of different sources and different view images.

Traditionally, visual correspondences consistent with geometric transformations, such
as affine transformations, are processed using local features [2]. These features can be
divided into point-based and region-based matching. Point-based matching uses feature
points as local representations of image features, representing the original pixel inten-
sities and being robust to luminance variations, affine variations, and noise. However,
this method is only suitable for similar scenes with similar grayscale intensities, and
performance will significantly decline when facing different image sources and views.
Region-based matching [3–5] finds local features through feature descriptor similarity.
Local features have good integrity and stability in cases of deformation and area change.
However, this method lacks flexibility and adaptability when dealing with heterogeneous
images and changes in viewpoint.

In recent years, deep neural networks (DNNs) have gradually been applied to remote
sensing image processing. Due to their high flexibility and adaptiveness, DNNs have shown
good performance in many tasks, such as semantic segmentation, change detection, and
pixel-based classification [6–8]. In particular, the two-stream parallel network has become a
common choice for many works [9]. Han et al. [10] proposed MatchNet, which segments
the image into patches and then classifies them using the fully connected layer. Similarly,
D2Net [11] and CMM-Net [12] segment the feature map to obtain feature descriptors and
match points. The segmentation of images or feature maps, using the properties of a
two-stream parallel network to calculate the similarity between two features, is a very
effective method. However, there are some problems when faced with large-scale variations.
Some researchers [13–15] proposed combining feature point extraction methods (SIFT [16],
SURF [17]) with DCNN. These methods first use feature extraction operators to calculate
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possible match points and extract patches based on those points. Then, they use DCNN to
calculate the similarity of the two patches, thus maintaining the correct and eliminating
the incorrect points. The effectiveness and accuracy of these methods have been confirmed
through numerous experiments. However, these methods are divided into two stages and
cannot be trained as an end-to-end model. Rocco et al. [18] proposed a trainable model for
affine transformation. They labeled the parameters and trained the model with the images
in order to transform them. Furthermore, some works used DCNN to learn more reliable
similarity metrics between descriptors, such as SuperPoint [19], SuperGlue [20], NCNet [21],
and Patch2pix [22]. These models consider feature maps as feature descriptors and regress
matching points by comparing the similarity between two feature maps. However, as in our
work, remote sensing images often contain many complex and repeated textures, making
it difficult to maintain accuracy against this background for pre-trained models based on
point and edge datasets. On the other hand, images originate from different sensors (such
as infrared, SAR, and RGB) and different platforms (such as satellite platforms and aviation
platforms); hence, extracting and characterizing homologous features from heterogeneous
features in multimodal images remains a challenge.

Considering the scale differences and viewpoint differences between the template
image and the searching image, the object tracking methods are well suited to our work.
Siamese neural network is the basic framework of object tracking methods. Broadly
speaking, the two-stream parallel network is optimized and improved based on it and used
for remote sensing image processing. Object trackers [23–25] usually use the first frame of
a video as a template to track the next frame. Although the template has some deformation
with the reference image of the next frame, this difference is slight. However, in our work,
the templates were usually fixed and provided by a satellite, but the search view based
on drones was constantly changing. This is a challenge for image matching, meaning that
the trackers are not directly applicable to our work. Drawing lessons from the advantages
of deep feature descriptors and object trackers, Zhang et al. [14] proposed a multi-modal
remote sensing image matching method based on DNN. It was produced by a Siamese fully
convolutional network, and a similarity score between two input images was obtained.

The abovementioned methods have been verified on different datasets. However, con-
sidering the heterogeneity of image features, scales and viewpoints in template matching
tasks, an end-to-end trainable model is still required. In our work, we decomposed the
template image matching of air- and space-based platforms into three main questions. The
contributions of our work are as follows:

(1) We propose a heterogeneous feature alignment method, aimed at addressing the
problem of data heterogeneity between template and search images caused by sensor
distances. Our approach utilizes the Siamese FC [23] as the main model for image
matching and addresses domain shift issues by introducing a spatial attention map
based on a 2D Gaussian distribution. This method forms an adaptive spatial activation
using the 2D Gaussian distribution, which dynamically adjusts the weight of positive
and negative samples in the loss function. This allows for convergence during training,
reducing the distribution distance between heterogeneous features and enabling the
model to better learn regional features for matching template and search images.

(2) We propose a multi-scale matching method aimed at solving the problem of scale dif-
ferences between search images and template images caused by observation distances.
The template images provided by satellite are usually fixed, while the search images
provided by aerial platforms vary with flight trajectories. Therefore, we propose a
multi-scale matching method based on multi-level sub-sampling comparison. We
extract feature maps of the template images at different sub-sampling levels of the
model, respectively match them with the search images, obtain matching points, and
determine the optimal matching points by comparing the Euclidean distance between
each matching point and the ground truth.

(3) We proposed a pixel-wise consensus method aimed at addressing the problem of view-
point differences between template and search images caused by different observation
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angles. After applying the two aforementioned methods, the model could determine
the position of the template image in the search image and achieve image region-level
matching. To further achieve image registration at different viewpoints, we proposed
a pixel-wise consensus method based on a correlation layer. This method constructs
a correlation map between the template feature map and the search feature map,
and regresses the matching point pairs by solving for the points with the maximum
correlation value.

(4) The annotation of labels for image matching is a labor-intensive and time-consuming
task. Therefore, the weakly supervised learning method was proposed to reduce the
labeling workload. In this method, we only labeled one point, which was the centroid
of the template image, and indicated its position in the search image. The model
could learn the local features during training and predict the location of the template
image in the search image. We compared the distance between the ground truth and
the prediction to determine the positive and negative samples, labeled as 1 and −1,
respectively. Then, we implemented the regression process on the correlation map to
produce pairs of matching points.

(5) We conducted three types of matching experiments, including SAR to RGB, infrared to
RGB, and RGB to RGB, each with viewpoint differences. Furthermore, to demonstrate
the robustness of our method in the context of viewpoint changes, we conducted
simulations at several exact angles. Additionally, we compared all of the experiments
using different methods, including handcrafted and deep-learning-based methods, to
verify the effectiveness of the proposed method and demonstrate its feasibility.

The remainder of this paper is structured as follows. Section 2 details the methods
used for feature extraction, heterogeneous feature alignment, multi-scale matching, pixel-
wise consensus, and weakly supervised learning. In Section 3, we present the experimental
details, the dataset statement, and comparisons of the experimental results with several
state-of-the-art methods, including ours. Finally, we provide conclusions in Section 4. An
overview of our work is presented in Figure 2.
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Figure 2. Our method consists of a two-stage end-to-end matching model. In the first stage, the
extractor processes both the template and search images, and feature maps are generated. We then
perform multi-scale matching and select the high confidence score map. Simultaneously, we complete
heterogenous feature alignment based on the spatial attention map. In the second stage, we crop the
search image based on the location generated by the score map and obtain the cropped search feature
map and template feature map through the extractor. Finally, we use the correlation layer to obtain
the correlation map and regress the matching points through the regressor.
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2. Methods
2.1. Dense Feature Extraction

Here, we follow the common practice of using CNN as a feature extractor, and the
backbone of our method is a pre-trained VGG16 [26]. We consider the pre-trained model
based on the open-source dataset to learn some edge and corner feature information, which
is helpful for this task. We remove the full connection layer and retain the former 8 layers.
Given the template image IT and the search image IS, dense feature maps are produced by
the feature extractor, and they can be formulated as:

f d
s = φ1(IS) (1)

f d
t = φ1(IT) (2)

where φ1 denotes the feature extractor, and we consider the last layer of the feature extractor
to be the activation maps. The spatial resolutions of the search image and template image
are (H, W) and (M, N), respectively. Similarly, (h, w) and (m, n) denote the height and
width of the search feature map f d

s and template feature map f d
t , respectively. For the

search image IS, the spatial dimension of its feature map f d
s is H

2d , where d denotes the
down-sampling operation. In our method, the number of down-samplings was set to 1, 2
and 3.

2.2. Heterogeneous Feature Alignment

The search feature map f d
s and template feature map f d

t contain the feature descriptions
of the search image and template image. Many methods process these two feature maps
directly. However, in our work, the template image was part of the search image, which
means that the global information of the search image was redundant for pixel-wise
registration. In order to further process the match points, we must first achieve the template
feature matching to select the most relevant local information. Determining the most
relevant area in the search image is a significant challenge. Usually, the template image
obtained by satellite is RGB or SAR. As drones are often equipped with visible and infrared
cameras, the search image is RGB. When the source sensors of the template image and
search image are different, the problem of a domain gap arises. The same object has various
features in different domains. For example, RGB images contain information on edge and
color, but these types of data cannot be displayed in long-wave infrared images. (In our
work, we used an infrared sensor with a wavelength of 8 µm, which is long-wave infrared
and relatively lacking in edge information).

We followed the methods of previous object tracking works [26] and proposed the
local area consensus network based on the Siamese network. Thus, f d

s ∈ Rh×w×c and
f d
t ∈ Rm×n×c are processed through the convolutional operation, and then f d

t can be seen
as a convolution kernel, which slides on f d

s to obtain the score map s ∈ R(h−m+1)×(w−n+1).
Since the model structure is clear and fixed, the coordinates of each point on the score map
correspond to the location of f d

t in f d
s . We define the process in the following way:

s = Conv2d
(

f d
t , f d

s

)
(3)

losscla =
1
n ∑

n
−[yn· log(sn) + (1− yn)· log(1− sn)] (4)

where s denotes the score map, which consists of predicted scores sn = (s1, s2, s3 . . . sn),
the convolutional stride is 1, and yn is the ground truth labelled by 0 and 1, as shown in
Figure 3b.
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Figure 3. The processing of heterogeneous feature alignment. For the template image matching,
intuitively, the feature distance of the heterogenous image is more significant than that of the
homologous image, and the model fitting is difficult. Therefore, it is necessary to propose a method
that can aid in model fitting when faced with heterogenous image matching.

Note that there is a problem of class imbalance, according to which we only have one
positive sample but (h−m + 1)(w− n + 1)− 1 as a negative sample. Ideally, the model
will fit the position of the positive sample (labelled as 1). It is successful for images from
the same source with the same viewpoint (as in object tracking, in which adjacent frames
are used for processing). However, in our work, the template image and search image
originated from different sources with different viewpoints. Clearly, the feature relevance
was weaker, and the problem of class imbalance was amplified by the heterogeneous
features, which prevented the model from converging during training, as shown in Figure 4.
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Figure 4. The high-score regions on the score map, represented by white areas, indicate the potential
location of the template image. In our experiment, we chose the region with the highest score as the
location of the template image. It is evident that the score map without spatial attention diverges
entirely and cannot converge to the correct area.

In order to alleviate the domain gap, a feasible processing method is to diminish
the high-level information distance of the template image and the search image. Let the
coordinates of the score map be (pn, qn). The spatial attention map is introduced based on
a two-dimensional Gaussian distribution. This provides a solid incentive for the positive
sample and weakens the redundant part of the global information. It also alleviates the
domain gap and brings the heterogeneous features closer together in high-level features,
which can be formulated as:

g(pn, qn) =
1

2πσ1σ2
√

1− ρ2
e
[− 1

2(1−ρ2)
(
(pn−µ1)

2

σ1
2 − 2ρ(pn−µ1)+(qn−µ2)

σ1σ2
+

(qn−µ2)
2

σ2
2 )]

(5)
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where (µ1, µ2) is the location of the ground truth of the positive sample, the center point
of the matching area (template image in search image). Here, σ1 and σ2 determine the
magnitude of the two-dimensional Gaussian distribution, which, intuitively, points adjacent
to the ground truth by one pixel and, given an incentive, can facilitate the model fitting, as
seen in Figure 5. Therefore, we set σ1, σ2 to 0.1. ρ indicates the correlation coefficient. Since
the pixels are independent, we set ρ to 0. The two-dimensional Gaussian distribution can
be simplified as follows:

g(pn, qn) =
1

2πσ1σ2
e[−

1
2 (

(pn−µ1)
2

σ1
+

(qn−µ2)
2

σ2
)] (6)
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2.3. Multi-Scale Matching 

The spatial resolution of the template image provided by the satellite is fixed, but the 

search area changes with the flight altitude of drones. Detectors [27,28] and trackers 

[24,25] usually use RPN and Anchor to accommodate object scale changes. However, in 

template matching, it is necessary to consider not only the features of the object itself but 

also the background information. Furthermore, our label only records the location of one 
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Figure 5. We use the spatial attention map to weight the score map. The red location (ground truth)
indicates a strong signal, while the green and blue locations (adjacent points) indicate weak signals.
Other points are filtered out.

During training, the spatial attention map dynamically adjusts the location of the
incentive according to the ground truth on each matching scale and performs the calculation
with the loss function:

losscla =
1
n ∑

n
−g(pn, qn)[yn· log(sn) + (1− yn)· log(1− sn)] (7)

2.3. Multi-Scale Matching

The spatial resolution of the template image provided by the satellite is fixed, but the
search area changes with the flight altitude of drones. Detectors [27,28] and trackers [24,25]
usually use RPN and Anchor to accommodate object scale changes. However, in template
matching, it is necessary to consider not only the features of the object itself but also the
background information. Furthermore, our label only records the location of one pair
of matching points; the size of the matching area does not participate in the regression
calculation. Inspired by Yolo’s three-scale detection path, we introduced a multi-scale
matching method to accommodate different flight altitudes. We applied the down-sampling
times as different scale extraction standards. Then, three-scale template image feature maps
of f d

t were obtained. After the convolutional operation, we could also obtain three-scale
score maps, which can be defined as:

sd = Conv2d
(

f d
t , f 2

s

)
(8)

The multi-scale matching process can be seen in Figure 6. In the training stage,
three-scale template feature maps can cover different ranges in the search feature map,
alleviating the problem of varying search horizons with different flight altitudes of drones.
We constantly obtain three match points on the three-scale score maps by match point
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re-localization, and the model selects one score map for the loss calculation, which is
determined by the Euclidean distance. The score map selection can be defined as:

(p∗, q∗) = argmin
(pd ,qd)

√(
pd − pgt

)2
+
(
qd − qgt

)2, d = 1, 2, 3 (9)

where
(

pgt, qgt) is the ground truth of the labelled points,
(

pd, qd
)

denotes the inference
points with the highest score of three scale, and (p∗, q∗) denotes the optimal inference
points, which indicates the best score map.
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Figure 6. Three-scale score maps, each of which can predict the matching points (red points) with the
highest score, the most accurate prediction among (s1, s2, s3). We compared the pixel errors with
the ground truth (green point) and chose the score map corresponding to the minimum error for the
loss calculation.

2.4. Pixel-Wise Consensus

After the abovementioned processing, we obtained a certain area of the search image,
which was highly correlated with the template image. To further achieve pixel-level
registration, we introduced a correlation layer, which was first proposed in the study on
FlowNet [29]. The correlation layer measures the similarity between two feature maps and
does not need to be trained. Some researchers [18,21] have also used a correlation layer
to achieve affine transformation and neighborhood consensus. In our work, we used the
correlation layer to predict pairs of matching points, as shown in Figure 7. Assuming that
we obtained a good match point (p∗, q∗) in sd, we could then crop the search image IS to
obtain Icrop

S . Let d = 2, then the correlation feature map is:

fs′ = φ1

(
Icrop
S

)
(10)

ft = φ1(IT) (11)

ft→s′ = ψ( fs′ , ft) (12)

fs′→t = ψ( ft, fs′ , ) (13)

where fs′ denotes the feature map of the cropped search image. ψ is the correlation layer,
and ft→s′ ∈ Rmn×h′×w′ is the template image dose for the correlation operation with the
cropped search image. Correspondingly, fs′→t ∈ Rh′w′×m×n is the cropped search image
dose for the correlation operation with the template image. ft→s′ and fs′→t are transpose
relations, which contain all of the pairwise points.



Remote Sens. 2023, 15, 2426 9 of 20

Remote Sens. 2023, 15, x FOR PEER REVIEW 9 of 21 
 

 

𝑐𝑘,𝑙 ≔ 𝑘𝑛 + 𝑙, 𝑐𝑖,𝑗 ≔ 𝑖𝑤′ + 𝑗 (16) 

𝑘∗ = ⌊
𝑐𝑘,𝑙

𝑚
⌋ (17) 

𝑙∗ = 𝑐𝑘,𝑙  𝑚𝑜𝑑 𝑚 (18) 

where (𝑘∗, 𝑙∗) denotes the point solved by 𝑓𝑡→𝑠′. If 𝑘∗ = 𝑘 & 𝑙∗ = 𝑙, then (𝑖, 𝑗) and (𝑘, 𝑙) 

can be seen as pairs of matching points. 

 

Figure 7. Supposing that (𝑖, 𝑗) and (𝑘, 𝑙) are a pair of matching points, so that (𝑐, 𝑖, 𝑗) and (𝑐, 𝑘, 𝑙) 

can be seen as the feature description. The coordinates of the most robust activation in 𝑓
𝑡→𝑠′  and 

the coordinates of the strongest activation in 𝑓
𝑠′→𝑡

 can be solved for each other. 

2.5. Weakly Supervised Learning 

In this section, we define the weakly supervised training conducted in our work. 

Usually, fully supervised training is the preferred method, but in work such as ours, dense 

annotation consisting of pairs of points is time-consuming and complicated. Sparse anno-

tation is one option, but it may cause imprecision. Therefore, it is desirable to propose a 

weakly supervised training method to train using a pair of images and to fit pairs of 

matching points. For this purpose, we proposed a training method that only needs one 

point in the annotation. Supposing the matching image (𝐼𝑇 , 𝐼𝑆) and the matching feature 

map (𝑓𝑡
𝑑 , 𝑓𝑠

𝑑), the 𝑒𝑟 can be obtained. The positive and negative can be defined as: 

𝑒𝑟 = √(𝑝𝑑 − 𝑝𝑔𝑡)2 + (𝑞𝑑 − 𝑞𝑔𝑡)2  (19) 

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒:  {
𝑒𝑟 ≤ 5,       0 < 𝑒𝑝𝑜𝑐ℎ ≤ 50
𝑒𝑟 ≤ 2,   50 < 𝑒𝑝𝑜𝑐ℎ ≤ 100

 (20) 

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒:  {
𝑒𝑟 > 5,       0 < 𝑒𝑝𝑜𝑐ℎ ≤ 50
𝑒𝑟 > 2,   50 < 𝑒𝑝𝑜𝑐ℎ ≤ 100

  (21) 

where 𝑒𝑝𝑜𝑐ℎ denotes the training epochs. Based on this definition, the 𝑝𝑜𝑠(𝑓𝑡→𝑠′ , 𝑓𝑠′→𝑡) 

and 𝑛𝑒𝑔(𝑓𝑡→𝑠′ , 𝑓𝑠′→𝑡) are obtained, and they are labelled as: 

𝑝𝑜𝑠(𝑓𝑡→𝑠′ , 𝑓𝑠′→𝑡) = 1 (22) 

𝑛𝑒𝑔(𝑓𝑡→𝑠′ , 𝑓𝑠′→𝑡) = −1 (23) 

From Section 2.4, we can obtain correlation feature maps 𝑓𝑡→𝑠′ and 𝑓𝑠′→𝑡. Due to 

their reciprocal transposition, we only choose one to form the regression. Ideally, the 

Figure 7. Supposing that (i, j) and (k, l) are a pair of matching points, so that (c, i, j) and (c, k, l)
can be seen as the feature description. The coordinates of the most robust activation in ft→s′ and the
coordinates of the strongest activation in fs′→t can be solved for each other.

Determining pairs of matching points, they can be defined as:

(ick,l , jck,l ) = argmax
(i,j)

ft→s′(ck,l , i, j ), 1 ≤ k ≤ m, 1 ≤ l ≤ n (14)

(kci,j , lci,j) = argmax
(k,l)

fs′→t
(
ci,j, k, l

)
, 1 ≤ i ≤ h′, 1 ≤ j ≤ w′ (15)

ck,l := kn + l, ci,j := iw′ + j (16)

k∗ =
⌊ ck,l

m

⌋
(17)

l∗ = ck,l mod m (18)

where (k∗, l∗) denotes the point solved by ft→s′ . If k∗ = k & l∗ = l, then (i, j) and (k, l) can
be seen as pairs of matching points.

2.5. Weakly Supervised Learning

In this section, we define the weakly supervised training conducted in our work.
Usually, fully supervised training is the preferred method, but in work such as ours,
dense annotation consisting of pairs of points is time-consuming and complicated. Sparse
annotation is one option, but it may cause imprecision. Therefore, it is desirable to propose
a weakly supervised training method to train using a pair of images and to fit pairs of
matching points. For this purpose, we proposed a training method that only needs one
point in the annotation. Supposing the matching image (IT , IS) and the matching feature
map

(
f d
t , f d

s

)
, the er can be obtained. The positive and negative can be defined as:

er =
√(

pd − pgt
)2

+
(
qd − qgt

)2 (19)

Positive :
{

er ≤ 5, 0 < epoch ≤ 50
er ≤ 2, 50 < epoch ≤ 100

(20)

Negative :
{

er > 5, 0 < epoch ≤ 50
er > 2, 50 < epoch ≤ 100

(21)
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where epoch denotes the training epochs. Based on this definition, the pos( ft→s′ , fs′→t) and
neg( ft→s′ , fs′→t) are obtained, and they are labelled as:

pos( ft→s′ , fs′→t) = 1 (22)

neg( ft→s′ , fs′→t) = −1 (23)

From Section 2.4, we can obtain correlation feature maps ft→s′ and fs′→t. Due to their
reciprocal transposition, we only choose one to form the regression. Ideally, the number of
correct matching points of two perfectly matched images is h′ ∗ w′, but in the cross-view
matching task, the number of matching points is much smaller than this value. Note
that the size of the correlation map is (mn, h′, w′), which means that there is a significant
amount of noise and a number of incorrect matching features. Therefore, we proposed the
regression module φ2, a cascade neural network consisting of a convolution layer and fully
connected layer. First, considering the fact that the feature is available in the neighborhood
of the correct point, we used the 1-kernel of the convolution layer to force the model to
filter out redundant information and noise, each followed by Relu non-linearities. Through
several layers, the channel dimension of the correlation map is reduced but maintains the
spatial scale. Therefore, in this sparse tensor, a large amount of redundant information is
filtered, while the stronger activated points are retained. The number of channel dimension
reductions is set to mn

t , t = 2, 4, 6, 8. Then, the regression is processed based on ft→s′ by
the regression module φ2:

θ = φ2( ft→s′) (24)

where φ2 is a cascade neural network, and θ is the prediction. Additionally, the loss function
can be defined, and it consists of two parts: the first is image region classification loss,
illustrated in Section 2.2, Formula (7), and the second is match point regression loss. These
parts can be defined as:

lossreg =
1
M

M

∑
i=1

(yi − θi)
2 (25)

loss = losscla + lossreg (26)

2.6. Match Point Re-Localization

The area prediction was processed on the score map, and the match point regression
was processed on the correlation map. Both were down-sampled during inference, and the
pixel error was accumulated. In order to locate the exact location of the match points in the
original resolution, we proposed a match point re-localization method.

Suppose that the cropped searching feature map fs′ , and the template feature map
ft and match points (i, j, k, l) are obtained through Formulas (12)–(17). fs′ and ft are up-
sampled by bilinear interpolation. Note that the maximum pooling size in our model
is 2 ∗ 2; thus, each point corresponds to four points in the corresponding area of the up-
sampled feature map. Furthermore, we use the cosine distance to compare the similarity
between feature points. We first compare the most similar points in the up-sampled feature
map; then, we confirm the most similar points between the two feature maps and proceed
to the original resolution according to the down-sampling times. The processing stage is
illustrated in Figure 8 and can be formulated as follows:

fs′
′ = F ( fs′) (27)

ft
′ = F ( ft) (28)
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con f
(

fs′ , fs′
′) = maxtop−2

{
fij· fin jn∣∣∣∣ fij||2
∣∣∣∣ fin jn ||2

}
, n = 1, 2, 3, 4 (29)

con f
(

ft, ft
′) = maxtop−2

{
fkl · fkn ln

|| fkl ||2|| fkn ln ||2

}
, n = 1, 2, 3, 4 (30)

conf ( ft
′, fs′

′)

=

{
fi′ j′ · fk′ l′∣∣∣∣∣∣ fi′ j′
∣∣∣∣∣∣2|| fk′ l′ ||2

,
fi′′ j′′ · fk′ l′∣∣∣∣∣∣ fi′′ j′′
∣∣∣∣∣∣2|| fk′ l′ ||2

,
fi′ j′ · fk′′ l′′∣∣∣∣∣∣ fi′ j′
∣∣∣∣∣∣2|| fk′′ l′′ ||2

,
fi′′ j′′ · fk′′ l′′∣∣∣∣∣∣ fi′′ j′′
∣∣∣∣∣∣2|| fk′′ l′′ ||2

}
(31)

where F is the bilinear interpolation, and con f ( fs′ , fs′
′) is the top-2 similarity between fs′

and the up-sampled feature map fs′
′, the same as con f ( ft, ft

′). Based on the confidence
value, four candidate points can be obtained from each feature map, denoted as (i′, j′),
(i′′ , j′′ ), (k′, l′) (k′′ , l′′ ). Then, the two con f ( ft

′, fs′
′) feature maps are obtained, indicating

the match points in the up-sampled feature maps.
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Figure 8. In the match point re-localization process, we use bilinear interpolation to restore the
original resolution in a step-by-step manner and find the new match point in the corresponding area
with the minimum distance.

3. Experiments
3.1. Experimental Datasets

In this section, we present the details of three types of template matching experi-
ments that we conducted to demonstrate the effectiveness and robustness of our proposed
methods. The experiments were carried out as follows:

(1) SAR to RGB: The SEN1-2 Dataset [30] was used for this part of the experiments. The
dataset contained SAR images from Sentinel-1 satellites and multispectral images
from Sentinel-2 satellites. The dataset included 32 cities and terrain such as mountains,
forests, lakes, rivers, wastelands, buildings, etc., spanning a wide range of categories
and thus being challenging for heterogeneous image matching. We cropped the SAR
image as the template image and the RGB image as the search image. The total
number of image pairs was 1200.

(2) Infrared to RGB: The Drone-view, which is our self-built dataset, was used in this part
of the experiments. We used the drone’s infrared and visible sensors to photograph
the ground at 200 m and 500 m altitudes, respectively, as shown in Figure 9. The
dataset contained a variety of scenarios, such as lakes, roads, mountains, etc. The
images acquired at the 500 m altitude were template images, and the images acquired
at the 200 m altitude were considered as search images. The total number of image
pairs to conduct the experiment in this part was 3482.
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Figure 9. We collected images with various angle differences.

(3) RGB to RGB: The University-1652 [31] was used in this part of the experiments. This
dataset contained maps of 1652 colleges and universities derived from three platforms:
drones, satellites and ground cameras. We used the data of the drones and satellites,
and the differences in viewpoints between the two was obvious. The images of
the satellite were considered as direct template images, and the images of drones
were regarded as search images. The total number of image pairs in this part of the
evaluation was 701.

All image pairs were labelled, as shown in Figure 10. We moved the template image to
the search image in order to find the matching area and label the center point coordinates.
The coordinates can be imprecise due to the changing viewpoint; hence, we must specify
the matching area. For the three types of template matching (SAR, infrared and RGB),
the former (SAR) was the template image, and the last (RGB) was the search image. This
process simulated the search view of the drones and the three types of templates provided
by the satellites. The number of training sets and the test set were divided according to
the ratio of 8:2, and the distribution used for each dataset is shown in Table 1. In our
experiments, we used data augmentation to increase the size of the dataset, including
random brightness, random grayscale, and adding Gaussian noise. During training, each
augmentation strategy was applied once.
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Table 1. Dataset distribution.

Types

Datasets
The SEN1-2 Dataset [30]

(Contains Mountains, Cities,
Lakes, Rivers, etc.)

The Drone-View
(Contains Roads, Lakes,

Rivers, etc.)

The University-1652 [31]
(Contains Cities,
Buildings, etc.)

Training Testing Training Testing Training Testing

SAR to RGB 960 240 N/A N/A N/A N/A
Infrared to RGB N/A N/A 2786 696 N/A N/A

RGB to RGB N/A N/A N/A N/A 561 140
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3.2. Experimental Details and Metrics

During training, 20% of the data was selected for testing, and 80% was selected for
training with each dataset. We resized the search image to 512*512 and the template image
to 128*128. The model parameters were optimized by SGD with a momentum of 0.9. The
learning rate (LR) was set to 5 × 10−3 in the first 50 epochs and decayed every 50 epochs
by 0.1 × 5 × 10−3. All of the experiments were implemented with an NVIDIA 2080Ti. In
order to illustrate the effectiveness of our method, we compared both handcrafted and deep
feature methods, including SIFT [16], SURF [17], D2-Net [11], NCnet [21], SuperPoint [19],
SuperGlue [20], Patch2pix [22], RIFT [32], STM [33] and SAR-SIFT [34]. For the performance
evaluation of the different methods, we introduced the Precision (P), Recall (R) and root-
mean-square error (RMSE) to perform a quantitative analysis. They can be formulated
as follows:

P =
TP

TP + FP
(32)

R =
TP

TP + FN
(33)

RMSE =

√√√√ 1
TP

TP

∑
i=1

(
x′i − xi

)2
+
(
y′i − xi

)2 (34)

where P is Precision and R is Recall. TP, FN, FP and TN can be divided by the following rules:

TP: Matching error ≤ 3 pixels.
FN: Matching pairs ignored by the model.
FP: Matching error > 3 pixels.
TN: Remaining pixel pairs.

We also compared the inference times, counting the average time taken by each method
to process a single image on the test set. In our experiments, the error rate of a point being
less than 3 pixels was considered as the correct matching. In our work, we used the vectors
of the coordinates where the matching pairs were located as feature descriptors. For each
matching result, we could obtain a list of matching pairs, which could be recorded as
pairs = {[[i1, j1], [k1, l1]], . . . .[[in, jn], [kn, ln]]}. Furthermore, the vectors could be extracted
as pairs_vec =

{[
f 1
ij, f 1

kl

]
, . . .

[
f n
ij , f n

kl

]}
. Therefore, the distance between feature descriptors

could be defined as:
D
(

fij, fkl
)
=
∣∣∣∣ fij − fkl ||2 (35)

We sorted the distances and then used the 50th one as the threshold, and 50 matching
pairs were obtained to calculate the image transfer parameters. Suppose that the matched
pairs of feature points are {(x, y), (x̃, ỹ)}, and the transferred coordinates are (x′, y′), which
originate from (x̃, ỹ). MA represents the proportion of correctly matched pairs, and RMSE
indicates the deviation of TP from the ground truth.

3.3. Experimental Results of SAR to RGB

From the results in Table 2, it can be seen that deep-learning-based methods have
stronger adaptability and robustness compared to handcrafted methods in heterogeneous
and complex scenarios. SIFT [16] and SURF [17] use pixel intensity for feature point
matching; however, there are nonlinear intensity differences in heterogeneous images,
and handcrafted algorithms are sensitive to such variations. They are not suitable for
heterogeneous template matching.
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Table 2. Comparison of experimental results of SAR to RGB.

Methods P R RMSE Time

SIFT [16] 32.43% 31.28% 3.795 7.63 s
SURF [17] 33.47% 31.57% 3.783 2.40 s

SAR-SIFT [34] 39.73% 38.26% 3.658 4.48 s
STM [33] 43.77% 42.16% 3.364 0.95 s

D2Net [11] 62.16% 63.39% 2.393 1.62 s
RIFT [32] 64.81% 64.14% 2.327 5.32 s

NCnet [21] 74.02% 72.39% 1.824 0.82 s
SuperPoint [19] 72.48% 71.16% 1.867 0.12 s
SuperGlue [20] 76.14% 75.26% 1.761 0.14 s
Patch2pix [22] 78.68% 77.12% 1.603 0.76 s

Ours 81.49% 80.04% 1.528 0.09 s

Compared with handcrafted methods, deep-learning-based methods can extract high-
level information depending on the intensity of the pixels, which provides the model
with better adaptability. D2Net [11] and NCnet [21] extract a large number of feature
points in terrain types such as harbors and rivers, but when faced with landscapes such
as cities and mountains, the models extract many duplicate feature points. Because of the
large number of duplicate textures in these types of terrain, these models are misleading.
Relatively speaking, methods (SuperPoint [19], SuperGlue [20], Patch2pix [22] and ours) for
determining feature points using image patches have better performance. Image patches
provide more information than pixels, achieving a higher accuracy and robustness. Our
method obtained 81.49%, 80.04% and 1.528 of P, R and RMSE, respectively. Compared
with traditional methods (SIFT [16], SURF [17]), the metrics were increased by 49.06%,
48.76% and 2.267 and 48.02%, 48.47% and 2.255, respectively. On the other hand, our
method has better performance than other deep learning methods. For example, compared
with pixel-level methods (NCnet [21], SuperPoint [19] and SuperGlue [20]), we achieved
a higher P, with results of 7.47%, 9.01% and 5.35%, respectively. The main reason for this
phenomenon is that the model directly extracts feature points from global information.
Thus, it is difficult for the model to determine the exact position of the template image in the
search image when matching using feature points. Additionally, when the location of the
template image shows deviation, the generation of feature points will also show deviation.

Relative to pixel-level methods, the RMSE values of patch–pixel-level methods (Patch2pix [22]
and ours) are smaller, and the prediction deviation of feature points is less significant.
They have better adaptability to viewpoint changes. Compared with Patch2pix [22], we
achieved a higher P, R and RMSE of 2.81%, 2.92% and 0.075, respectively. Compared with
multi-modal matching methods, such as RIFT [32] and SAR-SIFT [34], the P was increased
by 16.68% and 41.76%, and the R was increased by 15.90% and 41.78%. SuperPoint [19],
SuperGlue [20], and our method are the fastest-running methods. Compared to the former
two methods, ours is approximately 0.05 s faster for inference. Our method has an advan-
tage in regard to the template image location due to the heterogeneous feature alignment.
Therefore, our method can extract more accurate feature points from the base mountain
with precise template positioning. From the analysis of the abovementioned experimental
results, including those of the deep methods and traditional methods, it can be seen that
the template matching capability of the proposed method for SAR to RGB is better than
that of the other methods.

3.4. Experimental Results of Infrared to RGB

The template image matching experiment was implemented on our own dataset. This
dataset consisted of infrared and visible light data. We used a drone to shoot vertically at
the altitude of 500 m for the template image and then took pictures at the altitude of 200 m
with a 30◦ RGB axis, which was different from the vertical direction, as the search image, as
shown in Figure 8. Table 3 shows that the traditional methods obtained better performance
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in this experiment than SAR-to-RGB template matching. The main reason for this is that
the background of our experimental site was a lake and shore, and the image background
was relatively clean and straightforward.

Table 3. Comparison of experimental results for infrared to RGB.

Methods P R RMSE Time

SIFT [16] 44.79% 43.28% 3.228 7.71 s
SURF [17] 42.16% 42.03% 3.297 2.37 s

SAR-SIFT [34] 45.31% 46.21% 3.101 4.54 s
STM [33] 52.61% 51.47% 2.851 0.97 s

D2Net [11] 53.34% 52.71% 2.814 1.61 s
RIFT [32] 57.62% 55.18% 2.723 5.35 s

NCnet [21] 58.03% 57.83% 2.678 0.80 s
SuperPoint [19] 59.31% 59.12% 2.573 0.11 s
SuperGlue [20] 66.17% 65.44% 2.215 0.14 s
Patch2pix [22] 75.13% 74.67% 1.783 0.77 s

Ours 78.33% 77.14% 1.614 0.08 s

However, for the pixel-level methods, the infrared to RGB matching performance
was lower than that for SAR-to-RGB matching, because although the image background
was simple, there were many repeated texture features, which led to erroneous match-
ing. The patch–pixel-level methods are more suitable for this situation. Compared with
Patch2pix [22], our method obtained 78.33%, 77.14% and 1.614 for P, R and RMSE and
achieved higher values of 3.20%, 2.47% and 0.169 for P, R and RMSE, respectively. Accord-
ing to the above experimental analysis, whether SAR to RGB or infrared to RGB, the crucial
aim is to achieve heterogeneous feature alignment. All of the methods captured low-level
information; however, this is not enough for heterogeneous image template matching. Due
to the spatial attention map, our method maintained good performance for heterogeneous
feature alignment.

3.5. Experimental Results for RGB to RGB

From the results in Table 4, it can be seen that all of the methods obtained better perfor-
mance than those described in Sections 3.3 and 3.4. The main reason for this phenomenon is
that the template image and the search image were homologous. There was little difference
between handcrafted and deep-learning-based methods in homologous image matching
because the homologous images had similar pixel intensities in the matched feature points.
However, the experiments still reflected the methods’ resistance capability for viewpoint
change. Our method obtained 85.16%, 86.32% and 1.397 for P, R and RMSE, respectively.
Compared with SuperGlue [20] and Patch2pix [22], we achieved higher values of 3.87%
and 1.68% for P, respectively. On the other hand, the traditional method, SIFT [16], which
does not involve training, obtained 64.16% and 65.43% for P and R, being approximately
10% lower than the values for the deep learning methods.

Compared with the previous experiments, this shows that the deep learning methods
have more advantages in more complex situations, such as repeated textures, complicated
image backgrounds and heterogeneous images. This requires that the model extract high-
level information about feature points to avoid errors. From the above analysis, although
there was no apparent gap between the methods in terms of performance, it still can be
seen that our method had higher performance in RGB-to-RGB template matching due to
the cross-viewpoint matching method of the pixel-wise consensus method.
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Table 4. Comparison of experimental results for RGB to RGB.

Methods P R RMSE Time

SIFT [16] 64.16% 65.43% 1.924 7.36 s
SURF [17] 61.47% 60.18% 2.416 2.32 s

SAR-SIFT [34] 67.42% 68.79% 1.902 4.52 s
STM [33] 72.02% 71.68% 1.887 0.96 s

D2Net [11] 73.67% 73.28% 1.761 1.58 s
RIFT [32] 74.48% 74.16% 1.748 5.32 s

NCnet [21] 75.93% 76.17% 1.682 0.78 s
SuperPoint [19] 78.41% 77.84% 1.603 0.13 s
SuperGlue [20] 81.29% 80.16% 1.519 0.13 s
Patch2pix [22] 83.48% 83.73% 1.451 0.76 s

Ours 85.16% 86.32% 1.397 0.09 s

3.6. Experimental Results for Different Viewpoints

In the previous experiments, we evaluated the performance of our method on each
of the three datasets. However, it was unclear how well the model performed at specific
viewing angles. Therefore, we conducted an additional experiment on the infrared to RGB
dataset to simulate a range of angular differences using both a fixed camera and a movable
camera to mimic space-based observations. The process is illustrated in Figure 9.

As shown in Table 5, we conducted experiments for six angles increasing every 5◦, and
the maximum angle difference was 30◦. In each angle experiment, our method obtained the
best performance. In the experiments with a slight angle difference, such as 5◦ and 10◦, the
performance of the different methods was not clear. Our method achieved higher values of
3.89% and 2.33% for P than Patch2pix [22] and Super-Glue [20], and the performance of
the traditional methods was very close to some deep learning methods. However, in the
experiments with a large angle difference, our proposed method demonstrated stability
and robustness. In particular, in the experiments with 25◦ and 30◦ angle differences, our
method obtained 74.81% and 73.43% for P and 73.64% and 72.57% for R, respectively, while
the performance of the remaining methods was severely degraded. It can be seen from
Figure 11 that our method had the least performance degradation as the angle difference
increased, which demonstrates the better robustness and adaptability of our proposed
method. Some matching results can be seen in Figure 12, which shows the matching effects
of different methods on SAR to RGB, Infrared to RGB, and RGB to RGB. We visualized the
checkerboard mosaic for each of the three matching types, and the results are shown in
Figure 13. From the results in the figure, we can see that the template image effectively
covered the corresponding region in the search image, indicating that our method rendered
a template image highly suitable for the matching of the correct position.
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Table 5. Comparison of experimental results for different viewpoints.

Angle/Metrics

Methods

SIFT
[16]

SURF
[17]

SAR-
SIFT
[34]

STM
[33]

D2-Net
[11]

RIFT
[32]

NCnet
[21]

SuperPoint
[19]

SuperGlue
[20]

Patch2pix
[22] Ours

5◦
P 68.08% 64.62% 69.91% 71.13% 72.11% 73.81% 72.72% 76.53% 78.68% 77.12% 81.01%
R 67.52% 63.18% 68.82% 70.16% 71.68% 72.93% 71.67% 75.83% 77.15% 76.88% 80.57%

RMSE 1.911 1.957 1.914 1.817 1.792 1.732 1.818 1.594 1.478 1.524 1.439

10◦
P 62.17% 51.42% 68.74% 67.43% 68.28% 69.27% 70.13% 75.16% 76.46% 76.92% 77.53%
R 61.72% 50.73% 67.93% 66.81% 67.65% 68.12% 69.65% 74.83% 75.93% 75.36% 76.57%

RMSE 2.071 2.928 1.953 1.968 1.924 1.876 1.857 1.602 1.569 1.581 1.517

15◦
P 44.21% 43.96% 53.03% 54.62% 55.38% 56.72% 58.02% 69.41% 75.48% 74.37% 76.31%
R 43.82% 43.15% 53.67% 53.73% 54.91% 56.87% 57.68% 68.16% 74.37% 73.68% 75.29%

RMSE 3.191 3.372 2.984 2.869 2.731 2.713 2.792 2.134 1.593 1.663 1.561

20◦
P 37.93% 36.74% 45.92% 47.83% 47.17% 48.36% 48.18% 51.37% 65.74% 72.28% 75.03%
R 36.58% 35.73% 44.78% 46.37% 46.82% 49.21% 47.62% 50.19% 64.43% 71.37% 74.62%

RMSE 4.278 4.391 3.167 3.061 3.093 3.012 3.167 2.861 1.921 1.718 1.585

25◦
P 32.01% 24.93% 38.13% 39.14% 40.93% 38.46% 39.78% 40.81% 48.73% 68.52% 74.81%
R 32.14% 23.69% 37.82% 38.76% 39.63% 37.53% 38.64% 39.73% 47.92% 67.68% 73.64%

RMSE 4.829 5.847 3.568 3.481 3.468 3.578 3.483 3.479 3.105 1.852 1.671

30◦
P 27.82% 18.45% 29.68% 30.15% 32.15% 33.78% 34.64% 30.67% 45.28% 67.28% 73.43%
R 26.82% 17.67% 28.52% 29.27% 31.76% 32.41% 33.71% 29.68% 44.62% 66.69% 72.57%

RMSE 5.581 6.686 4.836 4.712 4.696 4.659 4.613 4.752 3.217 1.873 1.692
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4. Conclusions

In this work, we proposed a novel method for cross-view heterogeneous template
matching that can be applied to both air- and space-based platforms. However, due to the
inherent differences in their working environments and payloads, we faced three significant
challenges that needed to be addressed. Firstly, the images produced by different sensors
were heterogeneous. Secondly, we observed scale variations caused by different heights.
Lastly, feature distortion was caused by different viewing angles. To tackle these issues, we
proposed the following methods:

(1) To address the first challenge of the heterogeneous images produced by different
sensors, we proposed a method called the heterogeneous feature alignment method
based on the spatial attention map. In this approach, we added a two-dimensional
Gaussian distribution to the loss function to minimize the distance between the
distributed heterogeneous features. By doing so, we can effectively match the features
of the template image with those of the search image, allowing them to correspond to
each other.

(2) To address the second challenge of the scale variation caused by different heights,
we proposed a multi-scale matching method based on multi-layer sampling point
regression. With this approach, we perform regression on the matching points at
different down-sampling scales to preserve the result with the smallest distance error.
By doing so, we can effectively match the template and search images at different
scales, overcoming the challenge of scale variation caused by different heights.

(3) To address the third challenge of feature distortion caused by different viewing
angles, we proposed a pixel-wise consensus method based on the correlation layer.
With this method, we use a correlation layer to extract the pixel points with the
highest correlation between the feature maps of the search image and the template
image, thus obtaining the matching feature points. By doing so, we can effectively
overcome the feature distortion caused by different viewing angles and achieve
accurate template matching.

Furthermore, considering the complexity and time-consuming nature of annotation,
we proposed a weakly supervised learning method to minimize the annotation efforts
required. With this method, we only need to label one point to indicate the location of the
template image in the search image, thereby completing the entire training process. Four
parts of the experiment demonstrated the robustness and effectiveness of our proposed
methods. In the experiment on different viewpoints, our method showed good adaptability
to changes in viewpoint and maintained a high level of accuracy. Specifically, when the
maximum viewpoint difference was 30 degrees, our method achieved a precision of 73.43%,
a recall of 72.57%, and an RMSE of 1.692. These results demonstrate that our proposed
method is well-suited for cross-view heterogeneous template matching with air- and space-
based platforms.
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