
Citation: Panhuber, R. Fast, Efficient,

and Viable Compressed Sensing,

Low-Rank, and Robust Principle

Component Analysis Algorithms for

Radar Signal Processing. Remote Sens.

2023, 15, 2216. https://doi.org/

10.3390/rs15082216

Academic Editor: Lorenzo Capineri

Received: 14 March 2023

Revised: 13 April 2023

Accepted: 18 April 2023

Published: 21 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing

Article

Fast, Efficient, and Viable Compressed Sensing, Low-Rank,
and Robust Principle Component Analysis Algorithms for
Radar Signal Processing
Reinhard Panhuber

Fraunhofer FHR, Fraunhofer Institute for High Frequency Physics and Radar Techniques FHR,
53343 Wachtberg, Germany; reinhard.panhuber@fhr.fraunhofer.de

Abstract: Modern radar signal processing techniques make strong use of compressed sensing, affine
rank minimization, and robust principle component analysis. The corresponding reconstruction
algorithms should fulfill the following desired properties: complex valued, viable in the sense of not
requiring parameters that are unknown in practice, fast convergence, low computational complexity,
and high reconstruction performance. Although a plethora of reconstruction algorithms are available
in the literature, these generally do not meet all of the aforementioned desired properties together.
In this paper, a set of algorithms fulfilling these conditions is presented. The desired requirements
are met by a combination of turbo-message-passing algorithms and smoothed `0-refinements. Their
performance is evaluated by use of extensive numerical simulations and compared with popular
conventional algorithms.

Keywords: compressed sensing; affine rank minimization; robust principle component analysis;
complex valued; radar signal processing

1. Introduction

The compressive sensing (CS), affine rank minimization (ARM), and compressed
robust principal component analysis (CRPCA) methods are enjoying great popularity in
terms of their application in modern radar signal processing. At present, they are being
applied in almost every possible field of application ranging from basic radar signal pro-
cessing [1–4] to more sophisticated applications such as multiple-input multiple-output
(MIMO) radar [5,6], ground moving target indication (GMTI) [7–11], synthetic aperture
radar (SAR) [12–14], inverse synthetic aperture radar (ISAR) [15–18], interference and
clutter mitigation [19–22], or SAR-GMTI [23–25], imaging [26], and passive radar [27], to
name a few—this list is far from being exhaustive. Many more examples of CS applied
to radar signal processing can be found e.g., in [28]. Alongside the specific properties of
the application at hand, the success of these methods depends also on the algorithms for
solving the emerging linear inverse problems. Many CS, ARM, and CRPCA algorithms
found in the literature do not consider the practical requirements of radar signal processing.
They either suffer from restrictions to real numbers, a slow convergence rate, or low recon-
struction performance. Furthermore, many fast converging algorithms assume knowledge
of generally unknown parameters, such as the precise number of sparse entries or the exact
rank of a low-rank matrix. An overview of available algorithms is given in [29,30]. In this
paper, a complete set of algorithms to solve general CS, ARM, and CRPCA problems is
introduced that have the aforementioned properties. Due to the structural similarity of CS
and ARM problems, a unified framework to solve them as well as the combined CRPCA
problem can be formulated. The desirable properties are achieved by combining, aug-
menting, and extending turbo-message-passing algorithms and smoothed `0-refinements.
The turbo-message-passing framework provides a fast converging approach to obtain
an initial `1- or convex solution. The smoothed `0-approach further improves upon the

Remote Sens. 2023, 15, 2216. https://doi.org/10.3390/rs15082216 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15082216
https://doi.org/10.3390/rs15082216
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-7712-9599
https://doi.org/10.3390/rs15082216
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15082216?type=check_update&version=3

Remote Sens. 2023, 15, 2216 2 of 41

convex solution by enforcing a stricter sparsity or rank measure and as such improves the
reconstruction performance. The presented algorithms are termed

• Turbo shrinkage-thresholding (TST)
• Complex successive concave sparsity approximation (CSCSA)
• Turbo singular value thresholding (TSVT)
• Complex smoothed rank approximation (CSRA)
• Turbo compressed robust principal component analysis (TCRPCA)

where TST and CSCSA apply to CS problems, TSVT and CSRA to ARM problems, and
TCRPCA allows for solving combined CS and ARM problems. These algorithms are
designed such that no parameters that are unknown in practice are required, and for
unavoidable parameters, equations for their determination are given. The only parameter
assumed to be known is noise power Pn, which is a reasonable assumption in the field
of radar applications. Furthermore, these algorithms offer a very high convergence rate
alongside low computational complexity due to the use of closed solutions of subsequent
optimization problems.

In this paper, the presented algorithms are evaluated in terms of extensive numerical
simulations. These focus on comparing the algorithms, as generally as possible, to popular
algorithms from the literature. For this purpose, phase transition plots, convergence and
computation speed, and reconstruction performance in terms of signal to noise ratio (SNR)
are suitable. The application of the presented algorithms to radar applications with real
measurement data is a subject for future publications.

1.1. Background

Since CS, ARM, and CRPCA frameworks are very similar in structure, it is convenient
to present them in a combined way. Their corresponding objectives are to recover solutions
from limited noisy observations of the respective forms [31–33]

y = As̃ + n

y = A(L̃) + n

y = A(S̃ + L̃) + n,

where s̃ ∈ Cn is an unknown sparse vector with κ � n entries, S̃ ∈ CN1×N2 is a corre-
sponding sparse matrix with κ � n = N1N2 entries, L̃ ∈ CN1×N2 is an unknown matrix
whose rank(L̃) = ρ � nmin = min(N1, N2), A ∈ Cm×n (m < n) and A : CN1×N2 → Cm

(m < N1N2 = n) are known affine transformations, y ∈ Cm is a measurement vector, and
n ∈ Cm is additive noise with complex normal i. i. d. coefficients of zero mean and variance
Pn. To find a solution to these under-determined linear systems, the closest sparse and
low-rank solutions consistent with the measurements are sought via

min
s
‖s‖0 subject to h(s) ≤ ε2 (1)

min
L

rank(L) subject to h(L) ≤ ε2 (2)

min
S,L

λ‖S‖0 + rank(L) subject to h(S + L) ≤ ε2, (3)

where
h(s) = ‖As− y‖2

2 (4)

and
h(X) = ‖A(X)− y‖2

2 (5)

are the data fidelity terms with ‖·‖p denoting the `p-norm, and ε2 ≥ ‖n‖2
2 is some constant

error energy. It is well known that, in general, (1)–(3) are NP-hard to solve [33]. This has
given rise to the plethora of algorithms that seek approximate formulations of (1) to (3) in
order to find solutions in a computationally tractable manner.

Remote Sens. 2023, 15, 2216 3 of 41

1.2. State of the Art

The most popular relaxations to the respective problems (1) to (3) can be categorized
into the families of convex relaxation and greedy algorithms [34]. Further approaches
comprise hard thresholding (HT), smoothed-`0, and approximated message passing (AMP)
algorithms.

All of the aforementioned approaches require the restricted isometry property (RIP)
and restricted rank isometry property (RRIP) conditions

(1− δK(A))‖s‖2
2 ≤ ‖As‖2

2 ≤ (1 + δK(A))‖s‖2
2 (6)

(1− δR(A))‖L‖2
F ≤ ‖A(L)‖2

F ≤ (1 + δR(A))‖L‖2
F, (7)

To be fulfilled for all ‖s‖0 ≤ K and rank(L) ≤ R by the sensing operators A and A for
some constants δK and δR [33,35]. Basically, (6) and (7) ensure that the sensing operators A
and A keep different sparse vectors with at most K entries and different matrices of rank
ρ ≤ R distinguishable. Furthermore, for CRPCA, the sparse and low-rank matrices S̃ and
L̃ must be distinguishable to allow for (3) to have a unique solution. This means that the
sparse matrix S̃ must not be low ranking and, likewise, the low-rank matrix L̃ must not
be of sparse nature. This condition is known as the rank-sparsity incoherence condition,
which is fulfilled if the maximum number of nonzero entries per row and column in S̃ and
the incoherence of L with respect to the standard basis are sufficiently small [36]. The first
condition not only limits the total number of sparse entries in S̃ but also demands that its
support is not clustered. The second condition demands that the singular vectors of L̃ are
not sparse, i.e., are reasonably spread out. This entails the consequence that the maximum
entry in magnitude of the dyadic UVH for a given upper µ-incoherence is bounded as [32]∥∥∥UVH

∥∥∥
∞
≤ µρ√

N1N2
, (8)

where L̃ = UΣVH is the singular value decomposition (SVD) of L̃. This means L̃ must not
contain spiky entries. In the following, the individual approaches and their advantages
and disadvantages are briefly discussed.

1.2.1. Greedy Algorithms

The idea of greedy algorithms is to apply some heuristic approach that locally op-
timizes the objective functions (1) to (3) in an iterative procedure. Famous examples
of CS greedy algorithms are orthogonal matching pursuit (OMP) [37], stagewise OMP
(StOMP) [38], regularized OMP (ROMP) [39], its improved version compressive sampling
matching pursuit (CoSaMP) [40], and subspace pursuit (SP) [41], though this list is far from
exhaustive. The famous OMP algorithm and its improved version StOMP have a very sim-
ple structure that, however, goes along with the disadvantage that some incorrect sample
index, once added to the support (which may happen in general), cannot be removed any
more [42]. The CoSaMP and SP algorithms circumvent this problem by adding a backward
step to prune wrongly selected support. This, however, requires knowledge of the sparsity
level κ and rank ρ. Famous ARM and CRPCA greedy algorithms are atomic decomposition
for minimum rank approximation (ADMiRA) and SpaRCS, respectively, where ADMiRA
was inspired by CoSaMP and SpaRCS combines CoSaMP and ADMiRA [43,44]. Depending
on the problem size, greedy algorithms are fast and of low computational complexity.
However, they are known to be sensitive to noise [45,46]. Another issue arises in the context
of closely spaced radar targets, for which greedy algorithms tend to merge such targets
into a single one.

Remote Sens. 2023, 15, 2216 4 of 41

1.2.2. Hard Thresholding Algorithms

The objective functions of HT algorithms are [47–49]

min
s

h(s) subject to ‖s‖0 ≤ K (9)

min
L

h(L) subject to rank(L) ≤ R (10)

min
L

h(S + L) subject to rank(L) ≤ R, ‖S‖0 ≤ K, (11)

where K ∈ N and R ∈ N are some chosen constants. Famous examples are, e.g., normalized
iterative hard thresholding (NIHT) for CS tasks [47], singular value projection (SVP) for
ARM problems [48], and an extended combination of the aforementioned algorithm termed
nonconvex free lunch (NFL) for CRPCA problems [49]. These algorithms have a very
simple structure. They consist of a gradient update step followed by a HT operation as

si+1 = Hs,K(si − µi∇sh(si)) (12)

Li+1 = Hl,R(Li − µi∇Lh(Li)). (13)

Within (12),

[Hs,K(x)]i =

{
xi, if |xi| ≥ x[K]

0, else
(14)

denotes the sparsity HT operator with [x]i being the ith entry and x[K] the Kth biggest entry
in magnitude in vector x. As such,Hs,K(x) sets all but the K largest elements in magnitude
of x to zero. Likewise, in (13),

Hl,R(X) =
R

∑
i=1

σiuivH
i (15)

denotes the low-rank HT operator, where X = U diag(σ)VH is the SVD of X with ui and vi

denoting the ith column vector of U and V , and σ =
[
σ1 · · · σnmin

]T is a vector holding
the singular values of X in decreasing order. As such, Hl,R(X) sets all but the R largest
singular values of X to zero. The step sizes µi in the update steps need to be updated
per iteration, which is crucial for reconstruction success [47]. This approach shows a high
convergence rate and offers guaranteed reconstruction performance provided K ≈ κ and
R ≈ ρ. In the case of wrongly chosen parameters K and R, however, the reconstruction
performance deteriorates significantly, as will be illustrated further below. The convergence
rate was found to be higher than for the abovementioned greedy algorithms, although its
reconstruction performance is slightly worse [50].

1.2.3. Convex Relaxations Algorithms

Another famous family comprises convex relaxations via the basis pursuit denoise
(BPDN) and stable principal component pursuit (SPCP) approach [51,52]. The objective
Functions (1) to (3) are relaxed to

min
s
‖s‖1 subject to h(s) ≤ ε2 (16)

min
L
‖L‖∗ subject to h(L) ≤ ε2 (17)

min
L

λs‖S‖1 + ‖L‖∗ subject to h(S + L) ≤ ε2, (18)

where ‖·‖∗denotes the nuclear norm. Famous examples that solve the regularized uncon-
strained formulations of (16) to (18)

Remote Sens. 2023, 15, 2216 5 of 41

ŝ = arg min
s

λs‖s‖1 + h(s) (19)

L̂ = arg min
L

λl‖L‖∗ + h(L) (20)

Ŝ, L̂ = arg min
S,L

λl‖L‖∗ + λs‖S‖1 + h(S + L) (21)

are fast iterative shrinkage-thresholding algorithm (FISTA) and spectral projected gradient
for `1 (SPGL1) for CS [51,53], singular value thresholding (SVT) for ARM [31], and the
variational approaches from [52] termed as SPCP. The respective underlying algorithm to
FISTA, iterative shrinkage-thresholding algorithm (ISTA), and SVT show a similar structure
as the HT algorithms, where a solution is obtained via the iterative procedures

si+1 = Ss,µλ(si − µi∇sh(si)) (22)

Li+1 = Sl,µλ(Li − µi∇Lh(Li)). (23)

Within (22), Ss,a(x) denotes the sparsity soft thresholding (ST) operator, which in this
work is defined for complex numbers as

[Ss,a(x)]i = (|xi| − a)+ sgn(xi), (24)

where (·)+ = max(0, ·) and

sgn(z) =

{
0 if z = 0
z
|z| else

is the complex sign function [54]. Likewise, in (23),

Sl,a(X) =
nmin

∑
i=1

(σi − a)+uivH
i (25)

denotes the low-rank ST operator. Similar to the HT operators, the ST operators also possess
an unknown parameter, namely the shrinkage parameter a. This shrinkage parameter,
however, can be heuristically determined from the noise power Pn, as will be shown further
below. The convex relaxation approach thus does not suffer from requiring parameters
that are hard to determine but, however, are known for their slow convergence and low
reconstruction performance. A famous acceleration approach offers FISTA, which boosts the
convergence of ISTA,O(1/i), up toO(1/i2) without increasing the computational complexity
notably [53].

1.2.4. Approximated Message-Passing Algorithms

In recent years, another form of acceleration technique has gained huge interest,
namely AMP, from which the so-called turbo algorithms emerged [55–59]. This technique
further improves the convergence rate of ST and HT approaches for suitable sensing
operators A and A. The turbo algorithms presented in this work are inspired by these. To
the best of the author’s knowledge, Refs. [55–59] presented their algorithms for generic
and in particular HT operators but do not elaborate on ST operators, which are of major
interest in this work. Utilizing the turbo approach in combination with a ST operator, a
convex relaxed solution for CS and ARM problems can be found. Closed form solutions for
required parameters of the turbo approach are presented in this work.

1.2.5. Smoothed `0-Algorithms

The `1- and nuclear norms are the tightest convex approximations of the `0-norm and
rank function, respectively [45,60]. However, it was found that the reconstruction error
of solutions derived from convex relaxed approaches can be further reduced by applying

Remote Sens. 2023, 15, 2216 6 of 41

smoothed `0- and smoothed rank approximation frameworks [45,46,61–64]. Their purpose
is to enforce a stricter sparsity or rank measure compared to the `1- and nuclear norm. Doing
so yields a refinement algorithm which allows for an improved reconstruction performance.
Among the smoothed `0-approaches, successive concave sparsity approximation (SCSA)
appeals through its simplicity and efficiency due to the availability of closed form solutions
of subsequent optimization steps. This algorithm was extended to the complex case named
CSCSA [54] and serves, in the algorithm collection presented in this work, as the final
refinement approach of CS applications. In the work presented here, a similar approach
is applied to the smoothed rank approximation (SRA) algorithm from [64] to extend it
into the complex case and to improve its efficiency due to the use of closed form solutions
of subsequent minimization steps. The result called CSRA serves as the final refinement
algorithm of ARM.

1.3. Contribution

In this paper, a set of algorithms applicable to radar signal processing tasks is pre-
sented. This is achieved by combining turbo-message-passing principles and smoothed
`0-refinements. Available approaches from the literature are extended to the complex case
and closed form solutions for required parameters and subsequent minimization problems
are derived. The resulting algorithms have a high convergence rate and low computational
complexity, offer high reconstruction performance, and are easy to implement and free of
unknown parameters. The performance in terms of reconstruction error, convergence rate,
computation time, etc., is compared with classical standard algorithms.

1.4. Outline of the Paper

In Section 2, the `1-norm minimization algorithm TST and its smoothed `0-refinement
algorithm CSCSA are presented. Section 3 provides the nuclear norm minimization algo-
rithm TSVT and the corresponding refinement algorithm CSRA. In Section 4, the CRPCA
algorithm as a combination of the aforementioned algorithm is presented. Within all
aforementioned sections, numerical simulations are presented to evaluate the proposed
algorithms and to compare them with popular alternative algorithms. Finally, concluding
remarks are drawn in Section 5.

2. Compressed Sensing

In the following section, the TST and CSCSA algorithms are introduced. The TST
algorithm obtains an initial sparse `1- or convex solution, which is further refined by the
CSCSA algorithm. Their combination yields all the desired properties of fast convergence,
high reconstruction performance, no knowledge of generally unknown parameters etc.

2.1. Turbo Shrinkage Thresholding

The TST algorithm is inspired by the turbo algorithms presented in [55–57,59], which
describe general reconstruction algorithms for CS and ARM problems applying the message-
passing principle. This principle allows for a drastic improvement in the convergence speed
of right-orthogonally invariant linear (ROIL) sensing operators to which random and dis-
crete Fourier transform (DFT) sensing operators belong (consider a linear operator A with
matrix form A, the SVD of A is A = UAΣAVH

A . If VA is a Haar-distributed random matrix
independent of ΣA, then A is a right-orthogonally invariant linear (ROIL) operator [57]).
The two main contributions presented in this paper are (1) the provision of required formu-
las for the complex case and (2) a closed form solution of the required divergence of the ST
denoiser, hence the name TST algorithm.

The TST algorithm attempts to find a solution to (1) by solving the convex relaxed
regularized optimization problem (19). This is achieved using the turbo-framework iterative
procedure [57]

Remote Sens. 2023, 15, 2216 7 of 41

ri = si−1 − µ∇sh(si−1)

zi = Ss,µλ(ri) (26)

si = ci(zi − αiri),

where µ is some step size, i is the iteration index, and Ss,a is the soft thresholding operator
given by (24). The required parameters {µ, αi, ci} are chosen according to the turbo principle
such that

(ri − s̃)H(si−1 − s̃) = 0, (27)

(ri − s̃)H(si − s̃) = 0, (28)

and further that for a given si−1,
∥∥si − s̃

∥∥2
2 is minimized under (27) and (28) [57]. In

the above, (27) ensures that the input and output error of the gradient update step are
uncorrelated. Equally, (28) ensures a decorrelation of the input and output error of the
denoising or ST step. This strategy allows for an improved convergence rate compared with
classical gradient approaches. In order to fulfill (27) and (28), the true solution s̃ is required
to determine exact values for {µ, αi, ci}. Since s̃ is unknown, asymptotic formulations for
{µ, αi, ci} for n→ ∞ were derived in [57] for the real valued case. In the general complex
case, these parameters can be adapted to

µ =
n

m‖A‖2
2

(29)

αi =

{
1
n div

(
Ss,µλ(ri)

)
if s ∈ Rn

1
2n div

(
Ss,µλ(ri)

)
if s ∈ Cn (30)

ci =
(zi − αiri)

Hri

‖zi − αiri‖2
2

, (31)

where div(·) is the weak divergence operator. For small scene sizes n, it was found from
simulations that the step size µ required for convergence has to be reduced to µ < 1/‖A‖2

2,
which corresponds to the stable step size of the FISTA algorithm. This phenomena was not
discussed in [55–57,59]; however, since the parameter Equations (29)–(31) are asymptotic
approximations, their validity requires the scene size to be sufficiently large. Nevertheless,
TST still shows superior convergence speed even in the reduced step size case. The required
weak divergence is derived in Appendix A in closed form as

div(SS,a(r)) =
n

∑
i=1

(
2− a
|ri|

)
I(|ri| > a), (32)

where I(·) denotes the indicator function. The next question of course is how to choose the
regularization parameter λ and thus which shrinkage a = µλ should be applied. The usage
of a ST operator causes the optimal solution sopt generated by the turbo framework (26) to
possess an offset of a for every sparse entry compared with the true solution s̃. Too much
shrinkage results therefore in a large bias, while too little results in a slow convergence rate.
As such, an optimal constant λ does not exist; rather, λ would need to be adjusted in every
iteration. Unfortunately, to the best of the author’s knowledge, a closed form solution to
determine such an optimal λ is not known to exist. A reasonable choice for a constant
parameter λ is a scaled version of the formula of [65]

λ = 1/4cr
√

PnΦ−1
(

1− αr

2n

)
, (33)

Remote Sens. 2023, 15, 2216 8 of 41

which was found from simulations to perform well as illustrated further below. The
parameter cr > 1 in (33) is some constant, Φ is the cumulative density function (CDF) of
N (0, 1), and αr ∈ [0, 1] is some parameter. With this choice, a least absolute shrinkage and
selection operator (LASSO) estimator achieve a so-called near-oracle performance with a
probability of at least 1− αr [53]. For further details, e.g., proof of convergence, interested
readers may refer to the proofs given in [55–57,59], which also hold for the TST version
presented here.

Putting all the above steps together, the final TST algorithm is listed in Algorithm 1. It
is aborted either after a maximum number of iterations I, or if the relative improvement
from iteration to iteration

di = ‖si − si−1‖2/‖si−1‖2 (34)

drops below a certain threshold ε. The particular values to determine ε in Algorithm 1 are
taken from [63] and proven to work well in every case.

Algorithm 1 The TST algorithm.
Input: A, y, λ, I
Initialization:

1: ε← min
(
10−4, 5 · 10−3λ

)
, i← 0, d← ∞, s0 ← 0

2: µ← (0.99/‖A‖2
2, n/(m‖A‖2

2))

Body:
1: while d > ε and i < I do
2: i← i + 1
3: ri ← si−1 − µ∇sh(si−1)
4: zi ← Ss,µλ(ri)

5: αi ←
{

1
n div

(
Ss,µλ(ri)

)
if s ∈ Rn

1
2n div

(
Ss,µλ(ri)

)
if s ∈ Cn

6: ci ← (zi − αiri)
Hri/‖zi − αiri‖2

2
7: si ← ci(zi − αiri)
8: d← ‖si − si−1‖2/‖si−1‖2
9: end while

Output: ŝ← ri

In the following, simulation results are shown to illustrate the performance of TST.
For all the following simulations presented, the SNR is defined as

SNR =
∥∥As̃

∥∥2
2/‖n‖2

2 (35)

and the recovery quality is measured as squared reconstruction error (SRE)

SRE =
∥∥s̃− ŝ

∥∥2
2/
∥∥s̃
∥∥2

2. (36)

The reconstruction performance is evaluated by use of phase transition plots [66]. For
a given type of sensing operator A (random or DFT), a number of sparse vectors s̃ are to be
reconstructed for different measurement ratios m/n ∈ (0, 1] and sparsity ratios κ/m ∈ (0, 1].
The resulting SRE is averaged over Nmc = 100 Monte Carlo runs as 1

Nmc
∑Nmc

i=1 SREi with
SREi denoting the SRE of the ith reconstruction. In general, the higher the measurement
rate m/n is, the easier it is to find a solution to (1). Likewise, the higher the sparsity ratio
κ/m is, the more difficult the reconstruction problem becomes. Hence, the phase transition
plot is rendered into a collection of reconstruction problems of varying difficulty. Vari-
ous reconstruction algorithms now compete on how many problems of varying difficulty
they can successfully reconstruct. Usually, a sharp transition of reconstructable from non-
reconstructable problems arise for a given algorithm, hence the name phase transition
diagram. For a single reconstruction problem, the sparse vector s̃ is set up by first deter-

Remote Sens. 2023, 15, 2216 9 of 41

mining κ and m from the given measurement and sparsity ratios. Then, κ support indices
are drawn from an i. i. d. U (1, n) distribution. The entries at the determined indices are
drawn from an i. i. d. complex Gaussian distribution. Next, the sensing operators A of size
m× n are set up, where for random sensing operators A ∼ CN (0, 1) or for DFT operators
A is set up from m randomly selected rows of an n× n DFT matrix. Finally, the elements of
the noise vector n are drawn from an i. i. d. standard complex Gaussian distribution and
scaled to the given SNR according to (35). For the simulation results shown in the following
n = 1250, SNR = 40 dB, and I = 300 is used. It should be noted that random sensing
matrices are of limited interest in radar engineering and serve here merely as a comparison
benchmark, since many algorithms in the literature are stated for random sensing matrices
alone. The DFT sensing operator servers as a representative for radar applications, since it
often occurs there. Naturally, many more exist, a thorough evaluation of the TST algorithm
for the CS applications mentioned in Section 1 is, however, beyond the scope of this text.

As comparison benchmarks, the aforementioned simulations are also conducted for
SPGL1, FISTA, and NIHT. The SPGL1 algorithm is set up to solve the BPDN problem and
as such is equipped with the true noise power Pn. Its implementation is taken from its
official Github repository (https://github.com/mpf/spgl1, accessed on 20 December 2022,
version v1.9). The maximum number of iterations is set to I = 300 iterations, and for all
remaining parameters, the default setting is used. The FISTA algorithm is implemented
according to [53] and its regularization parameter λ is set to (33). The NIHT algorithm is
likewise implemented according to [47] and equipped once with the true number of sparse
entries κ and once with twice the number of sparse entries 2κ. Both algorithms are aborted
after a maximum number of I = 300 iterations or if the relative improvement di, as defined
in (34), is below a threshold similar to the TST algorithm.

The phase transition diagrams of the TST algorithm for random and DFT sensing
operators are shown in Figure 1a,b. Its overall reconstruction performance is higher than
for SPGL1 shown in Figure 1c,d. Only for a very low sparsity ratio does SPGL1 achieve
better performance. The reconstruction performance of FISTA is shown in Figure 1e,f. Its
performance is inferior to that of the aforementioned algorithms. Figure 1g,h show the
reconstruction performance of NIHT, where the parameter K was set to the true number
of sparse entries κ. The result in the case of a wrongly chosen parameter K = 2κ is
shown in Figure 2. As can be seen, the reconstruction success depends heavily on K.
Compared with FISTA and NIHT, TST exhibits better performance overall. A comparison
of the convergence speed is shown in Figure 3, which shows the intermediate SREs. The
convergence speed of NIHT in the case of K = κ outperforms that of the TST algorithm;
however, it drops significantly in the case of K = 2κ. A comparison of the computation
time is shown in Figure 4 for a region where all algorithms perform equally well, except for
FISTA. The simulations are conducted using Matlab® R2022b on an Ubuntu 20.04 LTS OS
equipped with an Intel® Xeon(R) CPU E5-2687W v3 @ 3.10 GHz × 10. The fastest algorithm
is TST, followed by FISTA and NIHT, provided K = κ is used. The reason why NIHT
is not the fastest algorithm, despite its superior convergence rate, is its costly line search
procedure. The slowest algorithm is SPGL1; however, it should be noted that no effort
in optimizing its performance was made. Finally, the SRE for various SNRs is shown in
Figure 5 for all tested algorithms. As can be seen, the best SRE offers NIHT in the case
of K = κ. For SNR = 0 dB, FISTA outperforms TST, but for higher SNR, however, TST
achieves better performance. SPGL1 closely follows the available SNR level. In summary,
TST is very easy to implement (in contrast to SPGL1), shows a state-of-the-art convergence
rate, has low computational complexity as there are closed form solutions available for all
required parameters, and finally does not generally require any unknown parameters such
as NIHT. Hence, it is well suited for practical applications.

https://github.com/mpf/spgl1

Remote Sens. 2023, 15, 2216 10 of 41

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

m/n in 1

κ
/
m

in
1

−40

−30

−20

−10

0

(a) TST for A ∼ CN (0, 1).

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

m/n in 1

κ
/
m

in
1

−40

−30

−20

−10

0

(b) TST for DFT operator.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

m/n in 1

κ
/
m

in
1

−40

−30

−20

−10

0

(c) SPGL1 for A ∼ CN (0, 1).

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

m/n in 1

κ
/
m

in
1

−40

−30

−20

−10

0

(d) SPGL1 for DFT operator.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

m/n in 1

κ
/
m

in
1

−40

−30

−20

−10

0

(e) FISTA for A ∼ CN (0, 1).

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

m/n in 1

κ
/
m

in
1

−40

−30

−20

−10

0

(f) FISTA for DFT operator.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

m/n in 1

κ
/
m

in
1

−40

−30

−20

−10

0

(g) NIHT for A ∼ CN (0, 1) and K = κ.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

m/n in 1

κ
/
m

in
1

−40

−30

−20

−10

0

(h) NIHT for DFT operator and K = κ.

Figure 1. Phase transition of CS algorithms in SRE in dB.

Remote Sens. 2023, 15, 2216 11 of 41

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

m/n in 1

κ
/
m

in
1

−40

−30

−20

−10

0

(a) NIHT for A ∼ CN (0, 1).

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

m/n in 1

κ
/
m

in
1

−40

−30

−20

−10

0

(b) NIHT for DFT operator.

Figure 2. Phase transition plot for NIHT in the case of wrongly chosen parameter K = 2κ.

0 20 40 60 80 100

−40

−20

0

Iteration in 1

SR
E

in
dB

TST
FISTA
SPGL1
NIHT

(a)

0 20 40 60 80 100

−40

−20

0

Iteration in 1

SR
E

in
dB

TST
FISTA
SPGL1
NIHT

(b)

Figure 3. Comparison of convergence speed for κ/m = 0.25 and m/n = 0.5. The solid line shows NIHT
for K = κ and the dashed line K = 2κ. (a) Random sensing operators A ∼ CN (0, 1). (b) DFT sensing
operators with random rows.

5 · 10−2 0.1 0.15 0.2 0.25 0.3
10−2

10−1

100

κ/m in 1

C
om

pu
ta

tio
n

Ti
m

e
in

s

TST FISTA
SPGL1 NIHT

(a)

5 · 10−2 0.1 0.15 0.2 0.25 0.3

10−2

10−1

κ/m in 1

C
om

pu
ta

tio
n

Ti
m

e
in

s

TST FISTA
SPGL1 NIHT

(b)

Figure 4. Comparison of computation time m/n = 0.8. The solid line shows NIHT for K = κ and the
dashed line K = 2κ. (a) Random sensing operators A ∼ CN (0, 1). (b) DFT sensing operators with
random rows.

The reconstruction performance of `1-relaxed minimization approaches can be further
improved by the use of smoothed `0-techniques. A suitable and convenient version thereof
is presented in the following section.

Remote Sens. 2023, 15, 2216 12 of 41

5 · 10−2 0.1 0.15 0.2 0.25 0.3

0

5

10

15

κ/m in 1

1/
SR

E
in

dB

TST FISTA
SPGL1 NIHT

(a)

5 · 10−2 0.1 0.15 0.2 0.25 0.3

0

5

10

15

κ/m in 1

1/
SR

E
in

dB

TST FISTA
SPGL1 NIHT

(b)

5 · 10−2 0.1 0.15 0.2 0.25 0.3

10

20

30

κ/m in 1

1/
SR

E
in

dB

TST FISTA
SPGL1 NIHT

(c)

5 · 10−2 0.1 0.15 0.2 0.25 0.3

10

20

30

κ/m in 1
1/

SR
E

in
dB

TST FISTA
SPGL1 NIHT

(d)

5 · 10−2 0.1 0.15 0.2 0.25 0.3

20

30

40

κ/m in 1

1/
SR

E
in

dB

TST FISTA
SPGL1 NIHT

(e)

5 · 10−2 0.1 0.15 0.2 0.25 0.3

20

30

40

κ/m in 1

1/
SR

E
in

dB

TST FISTA
SPGL1 NIHT

(f)

5 · 10−2 0.1 0.15 0.2 0.25 0.3

30

40

50

κ/m in 1

1/
SR

E
in

dB

TST FISTA
SPGL1 NIHT

(g)

5 · 10−2 0.1 0.15 0.2 0.25 0.3

30

40

50

κ/m in 1

1/
SR

E
in

dB

TST FISTA
SPGL1 NIHT

(h)

Figure 5. Comparison of SRE vs. SNR for m/n = 0.8. The solid line for NIHT shows K = κ and the
dashed line K = 2κ. (a) Random sensing operators A ∼ CN (0, 1) for SNR = 0 dB. (b) DFT sensing
operator for SNR = 0 dB. (c) Random sensing operators A ∼ CN (0, 1) for SNR = 10 dB. (d) DFT sens-
ing operator for SNR = 10 dB. (e) Random sensing operators A ∼ CN (0, 1) for SNR = 20 dB. (f) DFT
sensing operator for SNR = 20 dB. (g) Random sensing operators A ∼ CN (0, 1) for SNR = 30 dB.
(h) DFT sensing operator for SNR = 30 dB.

Remote Sens. 2023, 15, 2216 13 of 41

2.2. Complex Successive Concave Sparsity Approximation

The reconstruction error of `1-relaxed minimization approaches can be further reduced
by smoothed `0-frameworks. The key idea is to approximate the `0-quasi-norm in the
original objective Function (1) by a smooth function. The CSCSA algorithm does so, which
is the author’s extension of the SCSA algorithm from [63], capable of handling complex
numbers. The CSCSA algorithm was published in [54] and is summarized in the following
in brevity. Simulation results illustrating the performance of CSCSA in combination with
the TST, SPGL1, and FISTA algorithms are presented in the following. Due to the structural
similarity between CS and ARM problems, the idea of CSCSA can also be applied on ARM
problems as presented in Section 3.2.

The idea of CSCSA is to substitute the `0-quasi-norm of s = [s1 · · · sn]T by a more
tractable approximation. In general, the `0-quasi-norm is defined as the number of nonzero
elements in s. Let

δ(x) =

{
1 if x = 0
0 else

(37)

be the Kronecker delta function, then the `0-quasi-norm of s can be defined as

‖s‖0 =
n

∑
i=1

[1− δ(|si|)], (38)

where |si| denotes the magnitude of si. To make (38) smooth, it may be approximated by

1− δ(|s|) ≈ fγ(|s|) = 1− exp
(
−|s|

γ

)
, (39)

where γ determines how accurately the Kronecker function is approximated. An illustration
of this approximation and other common approximations to the `0-quasi-norm are shown
in Figure 6. As shown in [63], the series { fγ(|s|)} converges pointwise to 1− δ(|s|) as

lim
γ→0+

fγ(|s|) =
{

0 if |s| = 0
1 else.

0 0.5 1 1.5 2
0

1

2

3

x in 1

f(
x)

in
1

f(x) = 1− δ(|x|)
f(x) = 1− e−|x|/γ

f(x) = |x|p
f(x) = |x|
f(x) = |x|2

Figure 6. Common approximations to the `0-quasi-norm.

An approximation to the `0-quasi-norm is therefore

‖s‖0 ≈
n

∑
i=1

fγ(|si|) = Fγ(|s|), (40)

Remote Sens. 2023, 15, 2216 14 of 41

where |s| denotes a vector, which holds the magnitudes of the elements of s. The optimiza-
tion Problem (1) may now be relaxed to

min
s

Fγ(|s|) subject to h(s) ≤ ε2, (41)

where the residual term h(s) was defined in (4) and ε2 ≥ ‖n‖2
2 is some constant noise

energy. The constrained optimization Problem (41) can, for a fixed γ, be converted to an
unconstrained optimization problem by use of regularization as

ŝ = arg min
s

λγFγ(|s|) + h(s). (42)

At this point, it should be noted that the Program (42) is not convex anymore but,
rather, a sum of a concave and a convex function. As such, (42) does not possess a unique
minimum, and it is possible to get stuck in local minimum. To circumvent this problem,
the graduated non-convexity (GNC) approach is used. The idea of GNC is to start the
Program (42) with a solution ŝ0 that is somewhat close to the true solution s̃ obtained from a
convex algorithm, e.g., FISTA or TST. Then, (42) is minimized for a γ large enough such that
the solution ŝ is closer to s̃ yet does not get stuck in a wrong local minimum. Subsequently,
γ is reduced by a constant factor γ← cγ to further approximate the `0-quasi-norm, and (42)
is minimized using the solution from the previous iteration. The procedure is conducted
until a stop criterion is met.

For a fixed γ, the optimization Problem (42) can be solved by use of the iterative
thresholding (IT) approach, similar to ISTA (22), by iteratively conducting

si+1 = T (γ)
µλγ

(si − µ∇sh(si)), (43)

where µ is some step size and

T (γ)
µλγ

(x) =

0 |x| < γ

(
1 + ln

(
2λγµ

γ2

))
0 L′(0, |x|) < L′(|s1|, |x|)
s1 otherwise

, (44)

is again an elementwise thresholding operator. Furthermore,

L′(p, q) =
1

2µ
(p− q)2 + λγ fγ(p)

s1 = γW0(z) sgn(x) + x

z = −
2λγµ

γ2 exp
(
−|x|

γ

)
and W0(·) denotes the upper branch of the multi-valued Lambert W function [54]. It should
be noted that T (γ)

µλγ
is a closed form solution of a subsequent minimization problem emerging

from the IT approach. This closed form is possible only through the special choice of the
`0-quasi-norm approximation (39), which leads to the possibility of applying the Lambert
W function. For different choices, the subsequent minimization problem would require an
additional minimization loop increasing the computational complexity. The regularization
parameter is set to λγ = 2γλ, where (33) is used for λ. Furthermore, the initial value γ0
is set to γ0 = max(|s0|)/10, where s0 denotes the convex relaxed initial solution. More
details regarding the CSCSA algorithm and the special selections of λγ and γ0 are given
in [54]. Finally, to further improve the convergence speed of the applied IT approach, a
FISTA-like technique can be used as in [53], which does not increase the computational
complexity but boosts the convergence rate fromO(1/i) up toO(1/i2). Putting all the above
steps together, the final CSCSA algorithm is listed in Algorithm 2. It consists of two loops,

Remote Sens. 2023, 15, 2216 15 of 41

an inner and an outer one. In the outer loop γ is decreased gradually according to the
GNC technique. The inner loop solves (42) by using a FISTA-like technique. The loops are
aborted after a maximum number of iterations J and P or if the solution change, measured
by the relative distance between consecutive solutions, drops below certain thresholds εo
and εi. The threshold selections given in Algorithm 2 are taken from [63] and shown to
work well in the following simulations.

Algorithm 2 The CSCSA algorithm.
Input: A, y, λ, I, J
Initialization:

1: c← (0, 0.5), µ← 0.99/‖A‖2
2

2: εo ← min
(
10−4, 5 · 10−3λ

)
3: εi ← min

(
10−3, 5 · 10−3λ

)
4: ŝ← TST(A, y, λ, εi, J), γ← max(|ŝ|)/10

Body:
1: i← 0, do ← ∞
2: while do > εo and i < I do
3: i← i + 1, j← 0 , di ← ∞
4: t1 ← 1, z1 ← ŝ, s0 ← ŝ, λγ ← 2λγ
5: while di > εi and j < J do
6: j← j + 1
7: sj ← T

(γ)
µλγ

(
zj − µAH(Azj − y

))
8: tj+1 ←

(
1 +

√
1 + 4t2

j

)
/2

9: zj+1 ← sj +
(
tj − 1

)(
sj − sj−1

)
/tj+1

10: di ←
∥∥sj − sj−1

∥∥
2/
∥∥sj−1

∥∥
2

11: end while
12: do ←

∥∥sj − ŝ
∥∥

2/‖ŝ‖2
13: ŝ← sj
14: γ← cγ
15: end while
Output: ŝ

Simulation results of a CSCSA update onto FISTA, SPGL1, and TST for random and
DFT sensing operators are shown in Figure 7. For λ, (33) was used and the decreasing factor
for γ was set to c = 0.1. As can be seen, CSCSA significantly improves upon the convex
results shown in Figure 1. A comparison of the reconstruction performances is shown
in Figure 8, in which the curves indicate the 50 % success rate with respect to the Monte
Carlo runs. Success is defined as SRE ≤ − SNR. In addition, the 25 % and 75 % success
rate confidence intervals are indicated as shaded areas. The CSCSA refinement algorithm
basically obtains similar reconstruction performance for every initialization algorithm as
shown in Figure 8.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

m/n in 1

κ
/
m

in
1

−40

−30

−20

−10

0

(a) FISTA + CSCSA for A ∼ CN (0, 1).

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

m/n in 1

κ
/
m

in
1

−40

−30

−20

−10

0

(b) FISTA + CSCSA for DFT operator.

Figure 7. Cont.

Remote Sens. 2023, 15, 2216 16 of 41

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

m/n in 1

κ
/
m

in
1

−40

−30

−20

−10

0

(c) SPGL1 + CSCSA for A ∼ CN (0, 1).

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

m/n in 1

κ
/
m

in
1

−40

−30

−20

−10

0

(d) SPGL1 + CSCSA for DFT operator.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

m/n in 1

κ
/
m

in
1

−40

−30

−20

−10

0

(e) TST + CSCSA for A ∼ CN (0, 1).

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

m/n in 1
κ
/
m

in
1

−40

−30

−20

−10

0

(f) TST + CSCSA for DFT operator.

Figure 7. Phase transition of refined CS algorithms in SRE in dB.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

m/n in 1

κ
/
m

in
1

TST SPGL1
FISTA NIHT K = κ

NIHT K = 2κ

(a) A ∼ CN (0, 1)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

m/n in 1

κ
/
m

in
1

TST SPGL1
FISTA NIHT K = κ

NIHT K = 2κ

(b) Random row DFT sensing operator.

Figure 8. Comparison of reconstruction performances for CSCSA update. Reconstruction success is
defined as SRE ≤ − SNR.

3. Affine Rank Minimization

In the following section, the TSVT and CSRA algorithms are introduced. Due to the
structural similarity of CS and ARM algorithms, the TSVT and CSRA algorithms are also
similar in structure to their CS counterparts from the former section. The TSVT algorithm
obtains an initial low-rank convex solution, which is further refined by the CSRA algorithm.
Their combination, likewise, yields all the desired properties of fast convergence and high
reconstruction performance with no knowledge of generally unknown parameters, e.g., the
true rank ρ of L̃ etc.

3.1. Turbo Singular Value Thresholding

The TSVT algorithm is inspired by turbo affine rank minimization (TARM) presented
in [57], which is solved for ARM problems applying the turbo principle. This principle
allows for a drastic improvement in convergence speed for ROIL sensing operators to
which random and DFT sensing operators belong. Within TARM, a HT operator is applied.

Remote Sens. 2023, 15, 2216 17 of 41

Therefore, TARM was reworked here to use a ST operator. After finalizing TSVT, it came
to the author’s attention, that a similar approach was formerly published in [56] called
singular value thresholding-turbo-compressive sensing (SVT-Turbo-CS), conducting the
same reconstruction as TSVT. The contributions of this work beyond SVT-Turbo-CS are
twofold: (1) expansion into the complex case and (2) providing an equation to select the
regularization parameter λ.

The TSVT algorithm attempts to find a solution to (2) by solving the convex relaxed
regularized optimization Problem (20). This is achieved using the iterative procedure

Ri = Li−1 − µ∇Lh(Li−1)

Zi = Sl,µλ(Ri)

Li = ci(Zi − αiRi)

(45)

where µ is some step size, i is the iteration index, and Sl,a(X) is the ST operator given
by (25). The required parameters {µ, αi, ci} are chosen according to the turbo principle such
that [57] 〈

Ri − L̃, Li−1 − L̃
〉

F
= 0 (46)〈

Ri − L̃, Li − L̃
〉

F
= 0 (47)

and that, furthermore, for a given Li−1,
∥∥Li − L̃

∥∥2
F is minimized under (46) and (47). In the

above equations, 〈X, Y〉F denotes the Frobenius product. Equation (46) ensures that the
input and output error of the gradient update step are uncorrelated. Equally, (47) ensures
a decorrelation of the input and output error of the denoising step. This strategy allows
for an improved convergence rate compared to classical gradient approaches. In order to
fulfill (46) and (47), the true solution L̃ is required to determine exact values for {µ, αi, ci}.
Since L̃ is unknown, approximate formulations for {µ, αi, ci} were derived in [57] for the
real valued case. In the general case these parameters are

µ =
n

m‖A‖2
2

(48)

αi =

1
n div

(
Sl,µλ(Ri)

)
if X ∈ RN1×N2

1
2n div

(
Sl,µλ(Ri)

)
if X ∈ CN1×N2

(49)

ci =
〈Zi − αiRi, Ri〉F
‖Zi − αiRi‖2

F

. (50)

For small scene sizes N1 × N2, it was found from simulations that the step size µ

required for convergence has to be reduced to µ < 1/‖A‖2
2, which corresponds to the stable

step size of the SVT algorithm. This phenomena was not discussed in [57,59], however,
since the parameter Equations (48) to (50) are asymptotic approximations, and their validity
requires the scene size to be sufficiently large. Nevertheless, TSVT still shows superior
convergence speed even in the case of reduced step size. For the required divergence
operator in (49), which is to be interpreted in the weak sense, i.e., it can fail to exist on
negligible sets, a closed form solution exists [67] as

div(Sl,a(X)) =
nmin

∑
j=1

[
I
(
σj > a

)
+ Aj

]
+ 2B (51)

for X ∈ RN1×N2 or

div(Sl,a(X)) =
nmin

∑
i=j

[
I
(
σj > a

)
+ Aj

]
+ 4B (52)

Remote Sens. 2023, 15, 2216 18 of 41

for X ∈ CN1×N2 , when X is simple, i.e., X has no repeated singular values, and 0 otherwise.
In (51) and (52), I(·) denotes the indicator function and

Aj =

|N1 − N2|
(

1− a
σi

)
+

if X ∈ RN1×N2

(2|N1 − N2|+ 1)
(

1− a
σi

)
+

if X ∈ CN1×N2

B =
nmin

∑
i 6=j,i,j=1

σi(σi − a)+
σ2

i − σ2
j

.

For more details on the derivation of {µ, αi, ci}, the reader is referred to [57]. The
next question of course is how to choose the regularization parameter λ and thus which
shrinkage a = µλ should be applied. The usage of a ST operator causes the singular values
of the optimal solution Lopt generated by the turbo framework (45) to possess an offset of a
for every singular value compared with the true solution L̃. Too much shrinkage results in
a large bias, while too little results in a slow convergence rate. As such, an optimal constant
λ does not exists, rather λ would need to be adjusted in every iteration. Unfortunately, to
the best of the author’s knowledge, a closed form solution to determine such a λ is known
to exist only for the signal model X = L̃ + E with the entries of E being i. i. d. normally
distributed [67]. However, this does not apply here, since the gradient update step as
input to SL,a(·) is not of such form. We therefore follow another approach and set the
regularization parameter λ in a similar manner to (33) as

λ = 1/4crΦ−1
(

1− αr

2n

)√
Pn max(N1, N2), (53)

where cr > 1 is some constant, Φ is the CDF of N (0, 1), and αr ∈ [0, 1] is some parameter.
The additional factor of

√
max(N1, N2) adjusts the threshold from (33) for singular values.

For proofs of convergence, unique solutions, etc., of TARM and thus TSVT, the interested
reader may have a look into [57].

Putting all the above steps together, the final TSVT algorithm is listed in Algorithm 3.
It is aborted if an upper limit of iterations I is reached or if the relative change of the
intermediate solutions

di = ‖Li − Li−1‖F/‖Li−1‖F (54)

is below a predefined threshold ε. The threshold selection given in Algorithm 3 was
evaluated numerically and proven to work well in every case.

In the following, simulation results are shown to illustrate the performance of TSVT.
For all the following ARM algorithms presented, the SNR is defined as

SNR =
∥∥A(L̃)

∥∥2
2/‖n‖2

2 (55)

and the recovery success is measured as SRE

SRE =
∥∥L̃− L̂

∥∥2
F/
∥∥L̃
∥∥2

F. (56)

The reconstruction performance is evaluated by use of phase transition plots, where
for a given type of sensing operator A (random or DFT) a number of low-rank matrices
L̃ are to be reconstructed for different measurement ratios m/n ∈ (0, 1] and degree of
freedom ratios dρ/m ∈ (0, 1], where dρ = ρ(N1 + N2 − ρ) denotes the number of degrees
of freedom in a rank-ρ matrix. The low-rank matrices L̃ are set up by first determining
ρ and m from the given ratios. Here, it should be mentioned that since the rank ρ has to
be a whole number, it is not possible to clearly find a suitable integer ρ for every possible
dρ. Instead, ρ is determined by the closest integer to give the desired dρ. Obviously, this
only approximates the desired dρ, where the approximation becomes better for larger
dimensions N1 × N2. This, however, results in very high computation time. With this

Remote Sens. 2023, 15, 2216 19 of 41

approach, the resulting ρ may also result to zero, especially for small dρ. In this case, no
simulations were conducted, which are indicated by blank white entries in the following
phase transition plots. A true low-rank matrix is set up as L̃ = XrXH

l , where Xr ∈ CN1×ρ

and Xl ∈ CN2×ρ are two orthonormalized matrices with elements drawn from an i. i. d.
complex Gaussian distribution. Next, the sensing operatorsA are set up, where for random
sensing operators A ∼ CN (0, 1) or for DFT operators A is set up from m randomly
selected rows of an N1N2 × N1N2 DFT matrix following the identity y = A(L) = A vec(L).
Finally, the elements of the noise vector n are drawn from an i. i. d. standard complex
Gaussian distribution and scaled the given SNR according to (55). For every combination
of measurement and rank ratio, 100 Monte Carlo runs were conducted and averaged to
generate the phase transition plot. For the simulation results shown in the following
N1 = 80, N2 = 24, SNR = 40 dB, and I = 300 is used.

Algorithm 3 The TSVT algorithm.
Input: A, y, λ, I
Initialization:

1: ε← min
(
10−4, 5 · 10−3λ

)
, i← 0, d← ∞, L0 ← 0

2: µ← (0.99/‖A‖2
2, n/(m‖A‖2

2))

Body:
1: while d > ε and i < I do
2: i← i + 1
3: Ri ← Li−1 − µ∇Lh(Li−1)
4: Zi ← Sl,µλ(Ri)

5: αi ←

1
n div

(
Sl,µλ(Ri)

)
if X ∈ RN1×N2

1
2n div

(
Sl,µλ(Ri)

)
if X ∈ CN1×N2

6: ci ← 〈Zi − αiRi, Ri〉F/‖Zi − αiRi‖2
F

7: Li ← ci(Zi − αiRi)
8: d← ‖Li − Li−1‖F/‖Li−1‖F
9: end while

Output: L̂← Ri

As comparison benchmarks, the aforementioned simulations are also conducted for
SVT, SVP, and TARM. The SVT algorithm is implemented according to [31], and its regular-
ization parameter λ is set to (53). The SVP and TARM algorithms are likewise implemented
according to [48,57] and equipped once with the true rank ρ and once with 2ρ. Both al-
gorithms are aborted after a maximum number of I = 300 iterations or if the relative
improvement di as defined in (54) is below a threshold similar to the TSVT algorithm.

The phase transition diagrams of the TSVT algorithm for random and DFT sensing
operators are shown in Figure 9a,b. Its reconstruction performance is higher than SVT and
SVP as shown in Figure 9c–f. The reconstruction performance of TARM in the case of the
correctly chosen parameter R = ρ is comparable to TSVT, as can be seen in Figure 9g,h.
Interestingly, the DFT sensing operator reveals unfavorable properties for TARM in the
upper right part of the phase transition plot shown in Figure 9h. This effect is also visible
for TSVT as shown in Figure 9b, though less pronounced. The reason therefore is the rather
structured nature of the DFT sensing operator, especially in the case of only a few randomly
removed rows for a high measurement ratio m/n. In [56], a similar effect is shown, but for
CS and for correlated sparse signals. To fix this issue, the sensing operator was “improved”
in [56] by adding more “randomness” to the DFT transformation by applying random
signs to the columns of the glsdft matrix. In [57], such an augmented DFT matrix was also
directly chosen. For radar, however, this approach is usually not possible, since the Fourier
transform is inherently contained in the signal model. The reconstruction performance
of TARM in the case of wrongly chosen parameter R = 2ρ is shown in Figure 10. As can
be seen, it depends heavily on R. The same holds for the convergence speed shown in

Remote Sens. 2023, 15, 2216 20 of 41

Figure 11, which shows the intermediate SREs. The convergence speed of SVT is inferior
and merely servers as a comparison benchmark. The convergence speed of SVP and TARM
depend on the parameter R, where TARM outperforms SVP in any case. The convergence
speed of TARM in the case of R = ρ outperforms the TSVT algorithm, although it drops
significantly in the case of R = 2ρ. Compared with SVP, TSVT shows a faster or comparable
convergence speed, depending on the sensing operator. For DFT sensing operators, the
TSVT algorithm shows slower convergence speed than TARM and SVP. This is again due to
the structured nature of the DFT sensing operator. While TARM and SVP can leverage the
knowledge of R = ρ to achieve fast convergence, TSVT requires more iterations. However,
TARM and SVP are very sensitive to the selected value of R as illustrated by the dashed
lines in Figure 11. A comparison of the computation time is shown in Figure 12 for a region
where all algorithms perform equally well, except for SVT. The system specifications are
the same as given in Section 2. The fastest algorithm is TARM provided R = ρ is used. The
second fastest is TSVT, followed by SVT and SVP. The computation time of TARM and
SVP obviously increase in the case of R > ρ, rendering TSVT a good choice in the case ρ is
unknown. Finally, the SRE for various SNRs is shown in Figure 13 for all tested algorithms.
As can be seen, the best SREs offer TARM and SVP provided R = ρ. Interestingly, the
higher the available SNR, the worse is the achievable SRE in the case of R = 2ρ. The
TSVT algorithm follows the SRE of SVP and NIHT with an average loss of 2 dB. The SVT
algorithm provides a comparable SRE only for SNR = 0 dB. In summary, TSVT is very easy
to implement, shows a state-of-the-art convergence rate, has low computational complexity
as there are closed form solutions available for all required parameters, and finally it does
not require any unknown parameters, e.g., as the true rank ρ of L̃, in general. Hence, it is
well suited for practical applications.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

m/n in 1

d
ρ
/
m

in
1

−40

−30

−20

−10

0

(a) TSVT for A ∼ CN (0, 1).

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

m/n in 1

d
ρ
/
m

in
1

−40

−30

−20

−10

0

(b) TSVT for DFT operator.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

m/n in 1

d
ρ
/
m

in
1

−40

−30

−20

−10

0

(c) SVT for A ∼ CN (0, 1).

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

m/n in 1

d
ρ
/
m

in
1

−40

−30

−20

−10

0

(d) SVT for DFT operator.

Figure 9. Cont.

Remote Sens. 2023, 15, 2216 21 of 41

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

m/n in 1

d
ρ
/
m

in
1

−40

−30

−20

−10

0

(e) SVP for A ∼ CN (0, 1) and R = ρ.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

m/n in 1

d
ρ
/
m

in
1

−40

−30

−20

−10

0

(f) SVP for DFT operator and R = ρ.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

m/n in 1

d
ρ
/
m

in
1

−40

−30

−20

−10

0

(g) TARM for A ∼ CN (0, 1) and R = ρ.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

m/n in 1
d
ρ
/
m

in
1

−40

−30

−20

−10

0

(h) TARM for DFT operator and R = ρ.

Figure 9. Phase transition of ARM algorithms in SRE in dB.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

m/n in 1

d
ρ
/
m

in
1

−40

−30

−20

−10

0

(a) TARM for A ∼ CN (0, 1).

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

m/n in 1

d
ρ
/
m

in
1

−40

−30

−20

−10

0

(b) TARM for DFT operator.

Figure 10. Phase transition plot for TARM in the case of wrongly chosen parameter R = 2ρ.

0 10 20 30 40 50

−40

−20

0

Iteration in 1

SR
E

in
dB

TSVT
SVT
SVP
TARM

(a)

0 10 20 30 40 50

−40

−20

0

Iteration in 1

SR
E

in
dB

TSVT
SVT
SVP
TARM

(b)

Figure 11. Comparison of convergence speed for dρ/m = 0.25 and m/n = 0.5. The solid lines show SVP
and TARM for R = ρ and the dashed lines for R = 2ρ. (a) Random sensing operators A ∼ CN (0, 1).
(b) DFT sensing operators with random rows.

Remote Sens. 2023, 15, 2216 22 of 41

0.1 0.15 0.2 0.25 0.3
10−2

10−1

100

101

dρ/m in 1

C
om

pu
ta

tio
n

Ti
m

e
in

s

TSVT SVT
SVP TARM

(a)

0.1 0.15 0.2 0.25 0.3
10−2

10−1

100

101

dρ/m in 1

C
om

pu
ta

tio
n

Ti
m

e
in

s

TSVT SVT
SVP TARM

(b)

Figure 12. Comparison of computation time for m/n = 0.8 in an interval where all algorithms perform
equally well. The solid lines show SVP and TARM for R = ρ and the dashed lines for R = 2ρ.
(a) Random sensing operators A ∼ CN (0, 1). (b) DFT sensing operators with random rows.

0.1 0.15 0.2 0.25 0.3

0

5

10

dρ/m in 1

1/
SR

E
in

dB

TSVT SVT
SVP TARM

(a)

0.1 0.15 0.2 0.25 0.3

0

5

10

dρ/m in 1

1/
SR

E
in

dB

TSVT SVT
SVP TARM

(b)

0.1 0.15 0.2 0.25 0.3
10

15

20

dρ/m in 1

1/
SR

E
in

dB

TSVT SVT
SVP TARM

(c)

0.1 0.15 0.2 0.25 0.3

10

15

20

dρ/m in 1

1/
SR

E
in

dB

TSVT SVT
SVP TARM

(d)

0.1 0.15 0.2 0.25 0.3

20

25

30

dρ/m in 1

1/
SR

E
in

dB

TSVT SVT
SVP TARM

(e)

0.1 0.15 0.2 0.25 0.3

20

25

30

dρ/m in 1

1/
SR

E
in

dB

TSVT SVT
SVP TARM

(f)

Figure 13. Cont.

Remote Sens. 2023, 15, 2216 23 of 41

0.1 0.15 0.2 0.25 0.3
30

35

40

dρ/m in 1

1/
SR

E
in

dB

TSVT SVT
SVP TARM

(g)

0.1 0.15 0.2 0.25 0.3

20

30

40

dρ/m in 1

1/
SR

E
in

dB

TSVT SVT
SVP TARM

(h)

Figure 13. Comparison of SRE vs. SNR for m/n = 0.8. The solid line for SVP and TARM
show R = ρ and the dashed line R = 2ρ. (a) Random sensing operators A ∼ CN (0, 1) for
SNR = 0 dB. (b) DFT sensing operator for SNR = 0 dB. (c) Random sensing operators A ∼ CN (0, 1)
for SNR = 10 dB. (d) DFT sensing operator for SNR = 10 dB. (e) Random sensing operators
A ∼ CN (0, 1) for SNR = 20 dB. (f) DFT sensing operator for SNR = 20 dB. (g) Random sensing
operators A ∼ CN (0, 1) for SNR = 30 dB. (h) DFT sensing operator for SNR = 30 dB.

The reconstruction performance of the nuclear norm relaxed approaches can be further
improved by use of smoothed rank techniques. A suitable and convenient version thereof
is presented in the following section.

3.2. Complex Smoothed Rank Approximation

Although the performance of TSVT is already good, it can be improved in a similar
manner as CSCSA does for TST results. The CSRA algorithm does so by enforcing a stricter
rank measure than the nuclear norm used in (20). The CSRA algorithm is our extension
based on the smoothed rank function (SRF) algorithm [61] and the SRA approach in [64].
CSRA is applicable to complex valued problems and in contrast to [64], has a closed form
solution to a subsequent optimization problem, hence, reduced computational complexity.
In the following, an overview of CSRA is given, while additional details can be found in
the Appendix B.

To enforce a stricter rank measure, a different replacement for the rank function is
proposed. The rank of L = UΣVH, where Σ = diag(σ(L)), is defined as the number
of nonzero elements in σ, where the vector σ(L) =

[
σ1 · · · σnmin

]T holds the singular
values of L. The rank of L can thus be defined as

rank(L) =
nmin

∑
i=1

[1− δ(σi(L))], (57)

where σi(L) is the ith largest singular value of L and δ(x) is the Kronecker delta function.
Similar to CSCSA, (57) can be relaxed as

fγ(x) = 1− δ(x) ≈ 1− exp
(
−|x|

γ

)
. (58)

As can be seen, γ determines how close the rank function is approximated. Thus, an
approximation to the rank function can be define as

rank(L) ≈
nmin

∑
i=1

fγ(σi(L)) = F′γ(σ(L)) = Fγ(L). (59)

The optimization problem (2) may now be relaxed to

min
L

Fγ(L) subject to h(L) ≤ ε2, (60)

Remote Sens. 2023, 15, 2216 24 of 41

where the data fidelity term h(L) was defined in (5). The constrained optimization prob-
lem (60) can be converted to an unconstrained one by use of regularization, which yields

min
L

λγFγ(L) + h(L), (61)

where λ again is some regularization parameter. The minimization in (61) constitutes
an alternative to the original `1 problem given by (20). In this approach, Fγ(L) is not
concave nor convex (since fγ(x) is defined also for negative numbers due to evidential
requirements) and not smooth, i.e., not differentiable at the origin. In order to avoid getting
stuck in local minimum, the GNC approach is again applied similar to CSCSA. At first an
initial solution L0 is obtained from a convex optimization algorithm such as TSVT and γ is
chosen big enough such that (62) does not get stuck in a local minimum. After convergence,
γ is subsequently reduced until a stopping criterion is met. For a fixed γ, the optimization
Problem (61) can be solved by the IT method, by iteratively solving

L0i = Li − µ∇Lh(Li)

Li+1 = U0i diag
(
T (γ)

µλγ
(σ0i)

)
VH

0i
(62)

where L0i = U0i diag(σ0i)VH
0i is the SVD of the output of the gradient update step L0i

and T (γ)
µλγ

is again a thresholding operator, which is given by (A25). In contrast to [64], a
difference of convex (D.C.) optimization strategy to solve (61) is not needed; rather, the
closed form solution T (γ)

µλγ
(·) is available. The regularization parameter is set to λγ = 16γλ,

where (53) is used for λ. This value was found from extensive numerical simulations to
nicely balance the data fidelity error h(L) and the approximated rank function Fγ(L) and
perform well in any case. Furthermore, the initial value γ0 is set to γ0 =

∥∥L0
∥∥

2/10, where
L0 denotes the convex relaxed initial solution. More details regarding the special selection
of γ0 are given in the Appendix B. Finally, the convergence rate of the CSRA algorithm is
accelerated using a FISTA-like technique [53]. Putting all the above steps together, the final
CSRA algorithm is listed in Algorithm 4. The algorithm consists of two loops, an inner and
an outer one. In the outer loop γ is decreased gradually according to the GNC technique.
The inner loop solves (62) by using a FISTA-like technique. The loops are aborted after
a maximum number of iterations J and P or if the solution changes, measured by the
relative distance between consecutive solutions, drop below certain thresholds εo and εi.
The threshold selections given in Algorithm 4 were found numerically as in [63] and were
proven to work well in every case.

Simulation results for random and DFT sensing operators are shown in Figure 14. The
decreasing factor for γ was set to c = 0.5. As can be seen, CSRA improves upon the the
convex results shown in Figure 9. If SVT was used as initialization algorithm for CSRA, the
additional gain is dramatic for the random as well as the DFT sensing operator. If TSVT
was used as an initialization algorithm, the improvements are not as high, because TSVT
already achieves high reconstruction performance especially for random sensing operators.
Nevertheless, especially for DFT sensing operators, CSRA helps to boost the reconstruction
performance.

A comparison of the reconstruction performance of TSVT + CSRA to TARM is shown
in Figure 15, in which the curves indicate a 50% success rate with respect to the Monte
Carlo runs. Success is defined twofold as either SRE ≤ − SNR for a strict success definition
and SRE ≤ −(SNR−5 dB) for a less strict success definition. In addition, the 25 % and
75 % success rate confidence intervals are indicated as shaded areas. As can be seen,
the combination of TSVT + CSRA follows and even outperforms TARM despite its non-
awareness of the true rank ρ.

Remote Sens. 2023, 15, 2216 25 of 41

Algorithm 4 The CSRA algorithm.
Input: A, y, λ, J, P
Initialization:

1: c← (0, 0.5), µ← 0.99/‖A‖2
2

2: εo ← min
(
10−4, 5 · 10−3λ

)
3: εi ← min

(
10−3, 5 · 10−3λ

)
4: L̂← TSVT(A, y, λ, εi, J), γ←

∥∥L̂
∥∥

2/10

Body:
1: p← 0, do ← ∞
2: while do > εo and p < P do
3: p← p + 1, j← 0 , di ← ∞
4: t1 ← 1, Z1 ← L̂, L0 ← L̂, λγ ← 16λγ
5: while di > εi and j < J do
6: j← j + 1
7: Lj ← T

(γ)
µλγ

(
Zj − µAH(A(Zj

)
− y

))
8: tj+1 ← (1 +

√
1 + 4t2

j)/2

9: Zj+1 ← Lj +
(
tj − 1

)(
Lj − Lj−1

)
/tj+1

10: di ←
∥∥Lj − Lj−1

∥∥
F/
∥∥Lj−1

∥∥
F

11: end while
12: do ←

∥∥Lj − L̂
∥∥

F/
∥∥L̂
∥∥

F
13: L̂← Lj
14: γ← cγ
15: end while
Output: L̂

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

m/n in 1

d
ρ
/
m

in
1

−40

−30

−20

−10

0

(a) SVT + CSRA for A ∼ CN (0, 1).

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

m/n in 1

d
ρ
/
m

in
1

−40

−30

−20

−10

0

(b) SVT + CSRA for DFT operator.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

m/n in 1

d
ρ
/
m

in
1

−40

−30

−20

−10

0

(c) TSVT + CSRA for A ∼ CN (0, 1).

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

m/n in 1

d
ρ
/
m

in
1

−40

−30

−20

−10

0

(d) TSVT + CSRA for DFT operator.

Figure 14. Phase transition of refined ARM algorithms in SRE in dB.

Remote Sens. 2023, 15, 2216 26 of 41

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

m/n in 1

d
ρ
/
m

in
1

CSRA TARM R = ρ

TARM R = 2ρ

(a) A ∼ CN (0, 1)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

m/n in 1

d
ρ
/
m

in
1

CSRA TARM R = ρ

TARM R = 2ρ

(b) Random row DFT sensing operator.

Figure 15. Comparison of reconstruction performances of TSVT + CSRA to TARM. The solid lines
show the 50% success rate for a strict reconstruction success, defined as SRE ≤ − SNR, and the
dashed lines the success rate for a less strict success definition, i.e., SRE ≤ −(SNR−5 dB).

In summary, CSRA in combination with TSVT is very easy to implement, shows a
similar convergence rate and reconstruction performance as TARM equipped with the true
rank of the unknown low-rank matrix in estimation, and has low computational complexity,
as there are closed form solutions available for all required parameters and subsequent
optimization problems. Finally, both do not generally require any unknown parameters.
Hence, they are well suited for practical applications.

4. Compressed Robust Principle Component Analysis
Turbo Compressed Robust Principle Component Analysis

For TCRPCA, all of the aforementioned reconstruction algorithms for CS and ARM
problems are combined together. Following the GNC approach described in Section 2.2, the
corresponding relaxed convex Problem (21) is solved via a combination of TST and TSVT
by iteratively updating

Rs,i = Si−1 − µs∇Sh(Si−1, Li−1)

Zs,i = Ss,µsλs0(Rs,i)

Si = Qκs(cs,i(Zs,i − αs,iRs,i))

Rl,i = Li−1 − µl∇Lh(Si−1, Li−1)

Zl,i = Sl,µl λl
(Rl,i)

Li = Pϕl (cl,i(Zl,i − αl,iRl,i)).

The required parameters µs, cs,i, and αs,i are determined as for the TST algorithm
explained in Section 2.1 and µl , λl , cl,i, and αl,i as for the TSVT algorithm explained in
Section 3.1. The regularization parameter λs0 is chosen as defined in (33). The combination
of TST and TSVT is inspired by the turbo algorithms presented in [58,59]. In contrast to
those works, only ST operators are used in the TCRPCA algorithm, whose parameters
are not learned or determined via excessive grid search. Furthermore, in order to support
the incoherence condition of the sparse and low-rank matrices S and L, the sparsity ratio
operator Qκs : CN1×N2 → CN1×N2 and infinity norm operator Pϕl : CN1×N2 → CN1×N2

may be applied [49]. The usage of Qκs prevents clustering of sparse entries and is defined
element-wise as

[Qκs(S)]ij =

{
sij if

∣∣sij
∣∣ ≥ S[bκs N2c]

i: &
∣∣sij
∣∣ ≥ S[bκs N1c]

:j

0 else,
(63)

Remote Sens. 2023, 15, 2216 27 of 41

where κs ∈ (0, 1), sij denotes the (i, j)-th entry of S, Si: the i-th row, S:j the j-th column of
S in Matlab notation, and x[a] the a-th biggest entry in magnitude in x. The usage of Pϕ

prevents spikiness in the low-rank reconstruction and is defined element-wise as

[
Pϕ(L)

]
ij =

{
ϕ exp

(
j arg

(
lij
))

, if
∣∣lij
∣∣ ≥ ϕ

lij, else
. (64)

Unfortunately, the required parameters κs and ϕl are unknown in general. For κs, a
reasonable guess is required and ϕl can be determined from

ϕl =
µρcϕ

∥∥L̃
∥∥

2√
N1N2

, (65)

where cϕ is a parameter set manually usually < 1 [32,49]. Most parameters in (65) are
unknown, since knowledge of the true low-rank matrix L̃ is required. As a rough estimate,
we may use

∥∥L̃
∥∥

2 ≈
∥∥AH(y)

∥∥
2, µ = 1, and ρ ≈ min(N1, N2)/2. Certainly, this estimate is

not justified to be anywhere close to an optimal value, but it was found from simulations
that it is sufficient to applyQκs and Pϕl only for a limited number of iterations, e.g., the first
10 iterations. The intermediate results Si and Li then lie in a surrounding of a diffuse sparse
and low-rank solution, and subsequent iterations do not need any further “guidance” by
the projection operators. This also circumvents the problem of not knowing the optimal
parameters κs and ϕl .

Once a suitable convex solution was obtained, a refinement is conducted by solving

Ŝ, L̂ = arg min
S,L

λsF0,γs(S) + λl Fr,γl (L) + h(S, L), (66)

where F0,γs(·) is the `0-approximation function (40) and Fr,γl (·) is the rank approximation
Function (59). Program (66) is solved via a combination of CSCSA and CSRA by iteratively
updating

Si = T (γs)
0,µsλs,γs

(Zs,i − µs∇Sh(Zs,i, Zl,i))

Li = T (γl)
r,µlλl

(Zl,i − µl∇Lh(Zs,i, Zl,i))

ti+1 =
1 +

√
1 + 4t2

i

2

Zs,i+1 = Si +
(ti − 1)

ti+1
(Si − Si−1)

Zl,i+1 = Li +
(ti − 1)

ti+1
(Li − Li−1),

where T (a)
0,b (·) is the thresholding operator as defined in CSCSA in Section 2.2 and T (a)

r,b (·)
is the thresholding operator as defined in CSRA in Section 3.2. The required parameters λs,
γs, and γl are also the same as defined in CSCSA and CSRA.

Putting all the above steps together, the final TCRPCA algorithm is listed in Algorithm5,
which delivers a solution to program (21), and Algorithm 6 which solves for Program (66).

Remote Sens. 2023, 15, 2216 28 of 41

Algorithm 5 Part 1 of TCRPCA algorithm delivering convex solution.
Input: A, y, λs, λl , κs, ϕl , I
Initialization:

1: εs ← min
(
10−4, 5 · 10−3λs

)
2: εl ← min

(
10−4, 5 · 10−3λl

)
3: S0 ← 0, L0 ← 0, µs ← n/(m‖A‖2

2)

4: µl ← n/(m‖A‖2
2), i← 0, ds ← ∞, dl ← ∞

Body:
1: while (ds > εs or dl > εl) and i < I do
2: i← i + 1
3: Rs,i ← Si−1 − µs∇Sh(Si−1, Li−1)
4: Zs,i ← Ss,µsλs(Rs,i)
5: αs,i ←(30)
6: cs,i ←(31)
7: Si ← Qκs(cs,i(Zs,i − αs,iRs,i))
8: Rl,i ← Li−1 − µl∇Lh(Si−1, Li−1)
9: Zl,i ← Sl,µlλl

(Rl,i)
10: αl,i ←(49)
11: cl,i ←(50)
12: Li ← Pϕl (cl,i(Zl,i − αl,iRl,i))
13: ds ← ‖Si − Si−1‖F/‖Si−1‖F
14: dl ← ‖Li − Li−1‖F/‖Li−1‖F
15: end while
Output: Ŝ← Rs,i, L̂← Rl,i

In the following, simulation results are shown to illustrate the performance of TCRPCA
for a DFT and a noiselet sensing operator instead of a random sensing operator for reasons
of computational load. The sparse and low-rank matrices S̃ and L̃ are generated similar as
for the aforementioned algorithms in Sections 2 and 3, however, for a size of N1 = N2 = 128.
The performance evaluation follows an approach similar as in [44]. The low-rank matrices
L̃ are set up for fixed ranks ρ = {3, 5, 7, 9} and the phase transition plots are evaluated over
the sparsity rate κ/m > 0; hence, the sparse matrices S̃ are accordingly set up. The resulting
phase transition plots illustrated in Figure 16 indicate the 50 % success rate with respect to
the Monte Carlo runs, where 20 runs are conducted. Success is defined as SRE ≤ − SNR,
where the SRE of the reconstructed low-rank matrices L̂ is used. These transition plots thus
provide information of up to which sparsity rate or “corruption rate” the low-rank matrices
can still be reconstructed.

As comparison benchmarks, the aforementioned simulations are also conducted for
SpaRCS, NFL, and turbo message passing for CRPCA (TMP-CRPCA) algorithm, which
uses HT instead of ST denoisers. Additional comparisons of CRPCA algorithms are given
in [68]. The SpaRCS algorithm is equipped with the true number of sparse entries κ and
rank ρ. Its implementation is taken from its official Github repository (https://github.com/
image-science-lab/SpaRCS, accessed on 20 December 2022). The maximum number of
iterations is set to I = 300, and for all remaining parameters the default setting is used.
The NFL and TMP-CRPCA algorithms are implemented according to [44,59] and, likewise,
equipped with the true number of sparse entries κ and rank ρ. For the NFL algorithm, only
the initial phase algorithm is used as the gradient descent phase algorithm merely serves
as a final fast refinement step. For the initial phase algorithm, the maximum number of
iterations of the Dykstra projection step are set to I = 5, and its corresponding infinity
threshold value ϕl , as defined in (65), is chosen similar to the TCRPCA algorithm. The
abortion criteria of NFL and TMP-CRPCA are also set as for the TCRPCA algorithm.

https://github.com/image-science-lab/SpaRCS
https://github.com/image-science-lab/SpaRCS

Remote Sens. 2023, 15, 2216 29 of 41

Algorithm 6 Part 2 of TCRPCA algorithm delivering refined solution.

Input: A, y, λs, λl , Ŝ0, L̂0, I, J
Initialization:

1: c← (0, 0.5), µs ← 0.99/‖A‖2
2, µl ← 0.99/‖A‖2

2
2: γs ← max(|Ŝ|)/10, γl ←

∥∥L̂
∥∥

2/10
3: εsi ← min

(
10−3, 5 · 10−3λs

)
4: εso ← min

(
10−4, 5 · 10−3λs

)
5: εli ← min

(
10−3, 5 · 10−3λl

)
6: εlo ← min

(
10−4, 5 · 10−3λl

)
Body:

1: i← 0, dso ← ∞, dlo ← ∞
2: while (dso > εso or dlo > εlo) and i < I do
3: i← i + 1, j← 0 , dsi ← ∞, dli ← ∞
4: t1 ← 1, Zs,1 ← Ŝ, Zl,1 ← L̂, S0 ← Ŝ, L0 ← L̂
5: λs,γs ← 2λsγs, λl,γl

← 16λlγl
6: while (dsi > εsi or dli > εli) and j < J do
7: j← j + 1
8: Sj ← T

(γs)
0,µsλs,γs

(
Zs,j − µs∇Sh

(
Zs,j, Zl,j

))
9: Lj ← T

(γl)
r,µl λl,γl

(
Zl,j − µl∇Lh

(
Zs,j, Zl,j

))
10: tj+1 ← (1 +

√
1 + 4t2

j)/2

11: Zs,j+1 ← Sj +
(
tj − 1

)(
Sj − Sj−1

)
/tj+1

12: Zl,j+1 ← Lj +
(
tj − 1

)(
Lj − Lj−1

)
/tj+1

13: dsi ←
∥∥Sj − Sj−1

∥∥
F/
∥∥Sj−1

∥∥
F

14: dli ←
∥∥Lj − Lj−1

∥∥
F/
∥∥Lj−1

∥∥
F

15: end while
16: dso ←

∥∥Sj − Ŝ
∥∥

F/
∥∥Ŝ
∥∥

F
17: dlo ←

∥∥Lj − L̂
∥∥

F/
∥∥L̂
∥∥

F
18: Ŝ← Sj, L̂← Lj
19: γs ← cγs, γl ← cγl
20: end while
Output: Ŝ,L̂

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

m/n in 1

κ
/
m

in
1

ρ = 3
ρ = 5
ρ = 7
ρ = 9

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

m/n in 1

κ
/
m

in
1

ρ = 3
ρ = 5
ρ = 7
ρ = 9

(b)

Figure 16. Cont.

Remote Sens. 2023, 15, 2216 30 of 41

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

m/n in 1

κ
/
m

in
1

ρ = 3
ρ = 5
ρ = 7
ρ = 9

(c)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

m/n in 1

κ
/
m

in
1

ρ = 3
ρ = 5
ρ = 7
ρ = 9

(d)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

m/n in 1

κ
/
m

in
1

ρ = 3
ρ = 5
ρ = 7
ρ = 9

(e)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

m/n in 1

κ
/
m

in
1

ρ = 3
ρ = 5
ρ = 7
ρ = 9

(f)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

m/n in 1

κ
/
m

in
1

ρ = 3
ρ = 5
ρ = 7
ρ = 9

(g)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

m/n in 1

κ
/
m

in
1

ρ = 3
ρ = 5
ρ = 7
ρ = 9

(h)

Figure 16. Comparison of reconstruction performance. Dashed lines illustrate results of Part 1 of the
TCRPCA algorithm given by Algorithm 5 and solid lines the refined results achieved by Part 2 the
TCRPCA algorithm given by Algorithm 6. (a) TCRPCA for noiselet operator. (b) TCRPCA for DFT
operator. (c) TMP-CRPCA for noiselet operator with K = κ and R = ρ. (d) TMP-CRPCA for DFT
operator with K = κ and R = ρ. (e) NFL for noiselet operator with K = κ and R = ρ. (f) NFL for DFT
operator with K = κ and R = ρ. (g) SpaRCS for noiselet operator with K = κ and R = ρ. (h) SpaRCS
for DFT operator with K = κ and R = ρ.

As can be seen in Figure 16a,b, the reconstruction performance of TCRPCA gracefully
degrades with increasing rank ρ. For the generation of these phase transition plots, no
sparsity ratio operator Qκs and infinity norm operator Pϕl are applied, since these have
turned out to be unnecessary for κ > 0, ρ > 0, and SNR ≥ 10 dB. The special cases of
κ = 0 or ρ = 0 are treated further below. The performance gain of the refinement step
achieved by Part 2 of the TCRPCA algorithm appears moderate compared with the gains
achieved in the pure CS and ARM applications. The reason therefore is that Part 1 of the
TCRPCA algorithm shows a rather sharp transition in SRE, and thus Part 2 of TCRPCA
lacks a sufficiently good initial solution to improve upon (not shown here). Nevertheless,
the refinement step constitutes a computationally efficient and fast procedure offering
increased reconstruction performance. In comparison, TMP-CRPCA and NFL shown in
Figure 16c–f offer higher reconstruction performance for lower measurement rates m/n,

Remote Sens. 2023, 15, 2216 31 of 41

with NFL offering the highest. The results for SpaRCS illustrated in Figure 16g,h show a
comparable performance in the case the rank of the low-rank matrix is as low as ρ = 3.
Its performance, however, rapidly degrades with increasing rank ρ. The reason therefore
is that SpaRCS, in contrast to the remaining algorithms, lacks a sharp phase transition as
illustrated in Figure 17. In this simulation, TMP-CRPCA, NFL, and SpaRCS are equipped
with the true sparsity and rank parameters of the unknown matrices to reconstruct, namely
K = κ and R = ρ. In the case the parameters are set to K = 2κ and R = 2ρ, all algorithms
completely fail and, as such, are not shown here. A comparison of the convergence speed
is shown in Figure 18, which shows the intermediate SREs. In this comparison, only Part
1 of the TCRPCA algorithm is shown. As can be seen, TMP-CRPCA, NFL, and SpaRCS
show altogether a superior convergence rate compared with Part 1 of TCRPCA. This is in
stark contrast to the pure CS and ARM counterparts shown in Sections 2.1 and 3.1. Further
evaluations revealed that Part 1 of TCRPCA requires ∼ 1/4 of its iterations to correctly
identify κ and ρ, and the remaining iterations are used to minimize the reconstruction
error. A comparison of the computation time is shown in Figure 19 for a region where
all algorithms perform equally well. The system specifications are the same as given in
Section 2. The overall fastest algorithm is TMP-CRPCA. In cases where the sensing operator
can be implemented in an efficient manner, as is the case for the DFT sensing operator,
the Part 1 TCRPCA algorithm offers the slowest computation time. In cases where the
sensing operator is computationally more expansive to evaluate, Part 1 TCRPCA becomes
more efficient and is faster than SpaRCS. The NFL algorithm is overall faster than in Part 1
TCRPCA. It should be noted that Part 1 TCRPCA can be aborted and Part 2 TCRPCA started
sooner in order to reduce its overall computation time. This, however, is not done here for
sake of clear evaluation. Finally, the SRE for various SNRs is shown in Figure 20 for all
tested algorithms. For Part 1 of TCRPCA, the performance is shown with and without the
spikiness operator Pϕ(L) defined in (65) for cϕ = 1/4. As can be seen, for SNR = 0 dB, the
spikiness operator is required to support the reconstruction, especially for higher sparsity
ratios κ/m. In the case of higher SNRs, no supporting operator is required anymore; in
fact, it is obstructive at high SNR. For these simulations, no sparsity ratio operator Qκs is
required. The best SRE offer TMP-CRPCA and NFL provided K = κ and R = ρ.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

m/n in 1

κ
/
m

in
1

−40

−30

−20

−10

0

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

m/n in 1

κ
/
m

in
1

−40

−30

−20

−10

0

(a) Simulation result for TCRPA (b) Simulation result for TMP-CRPCA

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

m/n in 1

κ
/
m

in
1

−40

−30

−20

−10

0

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

m/n in 1

κ
/
m

in
1

−40

−30

−20

−10

0

(c) Simulation result for NFL (d) Simulation result for SpaRCS

Figure 17. In detail reconstruction performance comparison for a DFT sensing operator and ρ = 9.
The red line indicates the success boundary or the phase transitions shown in Figure 16.

Remote Sens. 2023, 15, 2216 32 of 41

0 50 100 150 200

−40

−20

0

Iteration in 1

SR
E

in
dB

TCRPCA Part 1 NFL
SpaRCS TMP-CRPCA

(a) Noiselet sensing operator.

0 50 100 150 200

−40

−20

0

Iteration in 1

SR
E

in
dB

TCRPCA Part 1 NFL
SpaRCS TMP-CRPCA

(b) DFT sensing operator.

Figure 18. Comparison of convergence speed for ρ = 3, κ/m = 0.2 and m/n = 0.8. The solid lines
show NFL, SpaRCS, and TMP-CRPCA for K = κ and R = ρ and the dashed lines for K = 2κ and
R = 2ρ.

For CRPCA, S̃ = 0 and L̃ = 0 represent special cases. In order to allow for successful
reconstructions in the case of S̃ = 0, it is found from simulations that the sparsity ratio
operatorQκs is required for all iterations with a setting of κs ≤ 0.25 to allow for a successful
identification of Ŝ = 0. Likewise, the infinity norm operator Pϕl with a setting of cϕ ≤ 0.5
is found to be required for all iterations to successfully identify the special case of L̂ = 0.
The use of the sparsity ratio and infinity norm operators incur restrictions regarding the
possible reconstruction performance of the TCRPCA algorithm. Obviously, the use of Qκs

with κs = 0.25 prohibits successful reconstructions in the case of κ/ min(N1, N2) > 0.25.
In a similar manner, the use of Pϕl with cϕ = 0.5 prohibits successful reconstructions in
the case ρ/ min(N1, N2) > 0.25. How to treat the special cases of either S̃ = 0 or L̃ = 0 in
a satisfactory manner, i.e., how to relax κs and cϕ conveniently, is an open question and
subject to further investigation. The obvious approach of conducting a CS, an ARM, and an
CRPCA reconstruction separately and comparing the resulting residual errors to determine
if either S̃ = 0 or L̃ = 0 does not work. Particularly in the case of low n/m, the CRPCA
approach always yields the lowest residual error regardless if the scene is strictly sparse or
low-rank due to its larger degree of freedom.

0.1 0.2 0.3 0.4

100

101

102

κ/m in 1

C
om

pu
ta

tio
n

Ti
m

e
in

s

TCRPCA Part 1 NFL
SpaRCS TMP-CRPCA

(a)

0.1 0.2 0.3 0.4
10−1

100

101

κ/m in 1

C
om

pu
ta

tio
n

Ti
m

e
in

s

TCRPCA Part 1 NFL
SpaRCS TMP-CRPCA

(b)

Figure 19. Comparison of computation time for ρ = 3 and m/n = 0.8, i.e., in an interval where all
algorithms perform equally well. For NFL, SpaRCS, and TMP-CRPCA, the results are shown for
K = κ and R = ρ only. For κ/m > 0.3, TMP-CRPCA did not converge and is thus not shown here.
(a) Noislet sensing operators. (b) DFT sensing operators with random rows.

Remote Sens. 2023, 15, 2216 33 of 41

0.1 0.2 0.3 0.4

−5

0

5

10

κ/m in 1

1/
SR

E
in

dB
TCRPCA Part 1
NFL
SpaRCS
TMP-CRPCA

(a) Noislet sensing operator for SNR = 0 dB.

0.1 0.2 0.3 0.4
−10

0

10

κ/m in 1

1/
SR

E
in

dB

TCRPCA Part 1 NFL
SpaRCS TMP-CRPCA

(b) DFT sensing operator for SNR = 0 dB.

0.1 0.2 0.3 0.4
10

15

20

25

κ/m in 1

1/
SR

E
in

dB

TCRPCA Part 1 NFL
SpaRCS TMP-CRPCA

(c) Noislet sensing operator for SNR = 10 dB.

0.1 0.2 0.3 0.4
10

15

20

25

κ/m in 1
1/

SR
E

in
dB

TCRPCA Part 1 NFL
SpaRCS TMP-CRPCA

(d) DFT sensing operator for SNR = 10 dB.

0.1 0.2 0.3 0.4
20

25

30

35

κ/m in 1

1/
SR

E
in

dB

TCRPCA Part 1 NFL
SpaRCS TMP-CRPCA

(e) Noislet sensing operator for SNR = 20 dB.

0.1 0.2 0.3 0.4
20

25

30

35

κ/m in 1

1/
SR

E
in

dB

TCRPCA Part 1 NFL
SpaRCS TMP-CRPCA

(f) DFT sensing operator for SNR = 20 dB.

0.1 0.2 0.3 0.4
30

35

40

45

κ/m in 1

1/
SR

E
in

dB

TCRPCA Part 1
NFL
SpaRCS
TMP-CRPCA

(g) Noislet sensing operator for SNR = 30 dB.

0.1 0.2 0.3 0.4
30

35

40

45

κ/m in 1

1/
SR

E
in

dB

TCRPCA Part 1 NFL
SpaRCS TMP-CRPCA

(h) DFT sensing operator for SNR = 30 dB.

Figure 20. Comparison of the low-rank SRE vs. SNR for m/n = 0.8. The solid line for TCRPCA shows
the performance without and the dashed line with the spikiness operator Pϕ(L) defined in (64),
respectively.

Remote Sens. 2023, 15, 2216 34 of 41

In summary, TCRPCA offers comparable reconstruction performance to its greedy
and HT counterparts despite its unawareness of the true sparsity and rank values. It is
very easy to implement and has low computational complexity, as there are closed form
solutions available for all required parameters and subsequent optimization problems. In
the case of S̃ 6= 0 and L̃ 6= 0, no generally unknown parameters are required for successful
reconstruction. Hence, TCRPCA is well suited for practical applications. In the special cases
S̃ = 0 or L̃ = 0, TCRPCA is capable of a successful reconstruction if κ/ min(N1, N2) ≤ 0.25
or ρ/ min(N1, N2) ≤ 0.25, respectively.

5. Conclusions

In this paper, fast, efficient, and viable CS, ARM, and CRPCA algorithms suitable for
radar signal processing are proposed. They are designed such that no parameters unknown
in practice, e.g., the number of sparse entries or the rank of the unknown low-rank matrix,
are required. The only parameter that is needed to be known is the noise power, which in
the field of radar signal processing is usually available. For all remaining parameters, either
suitable heuristic formulas or closed form solutions are given. The general reconstruction
scheme comprises two steps: First, a convex solution is calculated for which the turbo-
message-passing framework is utilized. This initial solution is in a second step refined
by use of smoothed `0-refinements. The proposed algorithms for CS are termed TST and
CSCSA, for ARM problems TSVT and CSRA, and TCRPCA for the combined CS and
ARM problems. All algorithms show state-of-the-art reconstruction performance and are
of high computational efficiency, as closed form solutions are available for subsequent
optimization tasks.

Funding: This research was funded by Hensoldt Sensor GmbH.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflicts of interest. In addition, the funders had no role
in the writing of the manuscript.

Appendix A. Divergence of the Complex Soft-Thresholding Operator

In this section, the weak divergence of the complex soft thresholding operator is
derived in closed form, which is defined as [69]

S (a)
S (z) = sgn(z)max(0, |z| − a), (A1)

where z ∈ C, a ∈ R+, and

sgn(z) =

{
0 if z = 0
z
|z| else

(A2)

is the complex sign function. A useful alternative formulation of the second term in (A1) is

max(0, |z| − a) =

{
0 if |z| ≤ a
|z| − a if |z| > a

. (A3)

Furthermore, for some matrix Z ∈ CN1×N2 , the complex soft thresholding operator is
defined as an element-wise operation as[

S (a)
S (Z)

]
ij
= S (a)

S

(
zij
)

(A4)

with i = 1, 2, . . . , N1 and j = 1, 2, . . . , N2. Finally, the definition of the divergence for a
scalar complex function f : C→ C is

div f = 2 Re
(

∂ f (z)
∂z

)

Remote Sens. 2023, 15, 2216 35 of 41

and for a multidimensional function F : CN → CN [70]

div F =
N

∑
i=1

2 Re
(

∂Fi(Z)
∂zi

)
. (A5)

The mapping f or F may not be differentiable everywhere. Fortunately, in the case
of weak divergence, only weak differentiability is required. For such, sets of Lebesgue
measure zero can be discarded [67]. Combining (A4) and (A5) yields the desired divergence

div
(
S (a)

S (Z)
)
=

N1,N2

∑
i,j=1

2 Re

∂
[
S (a)

S (Z)
]

ij

∂zij

. (A6)

Using (A3), the required derivative is

∂
[
S (a)

S (Z)
]

ij

∂zij
=

∂ sgn
(
zij
)

∂zij
max

(
0,
∣∣zij
∣∣− a

)
︸ ︷︷ ︸

T1

+ sgn(z)
∂ max

(
0,
∣∣zij
∣∣− a

)
∂zij︸ ︷︷ ︸

T2

.

After a few steps, the derivative in T1 results in

∂ sgn
(
zij
)

∂zij
=

0 if zij = 0
1

2|zij| else , (A7)

where the discontinuity at zij = 0 can be discarded since S (a)
S (z) = 0 for |z| < a. The

derivative in T2 yields

∂ max
(
0,
∣∣zij
∣∣− a

)
∂zij

=

0 if

∣∣zij
∣∣ < a

not differentiable if
∣∣zij
∣∣ = a

z∗ij
2|zij| if

∣∣zij
∣∣ > a.

The set {z : |z| = a} has Lebesgue measure zero and can be discarded due to weak
differentiability. Combining (A2), (A3), and (A7) yields after a few steps

T1 =

0 if
∣∣zij
∣∣ ≤ a

|zij|−a
2|zij| if

∣∣zij
∣∣ > a

(A8)

and

T2 =

{
0 if

∣∣zij
∣∣ ≤ a

1
2 if

∣∣zij
∣∣ > a

. (A9)

Finally, combining (A6), (A8), and (A9) yields for the divergence

div
(
S (a)

S (Z)
)
=

N1,N2

∑
i,j=1

(
2− a∣∣zij

∣∣
)
I
(∣∣zij

∣∣ > a
)
,

where I(·) denotes the indicator function.

Remote Sens. 2023, 15, 2216 36 of 41

Appendix B. Complex Smoothed Rank Approximation

In this section, a minimization procedure to acquire a solution to the regularized
smoothed rank Problem (61)

min
L

λγFγ(L) + h(L) (A10)

is derived. The smoothed rank function was defined in (59) as

Fγ(L) = F′γ(σ(L)) =
nmin

∑
i=1

fγ(σi(L)) ≈ rank(L), (A11)

where fγ(x) is given by (58). In program (A10), h(L) is convex and differentiable with
Lipschitz continuous gradient whereas Fγ(L) is neither concave nor convex (since fγ(x) is
also defined for negative numbers due to evidential requirements) and not differentiable at
the origin. Nevertheless, the IT method can be utilized to conduct the desired minimization:
For a fixed γ, a solution to program (A10) can be obtained by iteratively solving

Lj+1 = arg min
L

{
1

2µ

∥∥L− L0j
∥∥2

F + λγFγ(L)
}

, (A12)

until convergence, where µ > 0 is some step size and

L0j = Lj − µ∇h
(

Lj
)

(A13)

is the result of a gradient update step [63]. In order to minimize (A12), the following two
theorems are useful.

Theorem A1. The function F(Z) is unitarily invariant if F(Z) = F′(σ(Z)) = F′ ◦ σ(Z)
provided F′(z) is absolutely symmetric, i.e., F′(z) is invariant under arbitrary permutations and
sign changes of the elements of z [60].

This property applies to the rank approximation function F′γ(x) defined in (A11).

Theorem A2. For unitarily invariant functions F(Z) = F′ ◦ σ(Z) the optimal solution to the
problem

min
Z

F(Z) + c‖Z− A‖2
F

is
Ẑ = UΣ̂ZVH,

where A = UΣAVH is the SVD decomposition of A and Σ̂Z = diag(σ̂) is obtained by solving the
separable minimization problem

σ̂ = arg min
σ

{
F′(σ) + c‖σ − σA‖2

2

}
,

where σA = σ(A) [60].

It should be noted that Theorem A2 also works if F(Z) would not be a unitarily
invariant function, provided F(Z) = F(ΣZ), where ΣZ = diag(σ(Z)), which is inherently
fulfilled since ΣZ is a real positive diagonal matrix. By use of Theorem A2, a solution to
(A12) is obtained as

Lj+1 = U0jΣ̂LVH
0j , (A14)

where
L0j = U0jΣ0jVH

0j (A15)

Remote Sens. 2023, 15, 2216 37 of 41

is the SVD of L0j, Σ̂L = diag(σ̂), and

σ̂ = arg min
σ≥0

{
λγF′γ(σ) +

1
2µ

∥∥σ − σ0j
∥∥2

2

}
, (A16)

where σ0j = σ
(

L0j
)
. The objective function (A16) is the sum of a concave and convex

function (since σ ≥ 0). To the contrary of [64], we do not solve (A16) by applying a D.C.
optimization strategy which would require multiple iterations. An alternative approach,
first shown in [63], is to utilize the Lambert W function

W(z)eW(z) = z, (A17)

which allows for a closed form solution of (A16). We start by noticing that the minimization
in (A16) is separable and as such can be conducted element wise as

σ̂i = arg min
σ≥0

{
λγ fγ(σ) +

1
2µ

(
σ− σ0j,i

)2
}

. (A18)

Defining the argument of (A18) as

L
(
σ, σ0j,i

)
= λγ fγ(σ) +

1
2µ

(
σ− σ0j,i

)2, (A19)

taking its derivative with respect to σ and setting it to zero yields after short manipulation

σ− σ0j,i

µ
= −

λγ

γ

σ

|σ| exp
(
−σ

γ

)
= −

λγ

γ
exp

(
−σ

γ

)
, (A20)

where we used the fact that σ ≥ 0. To apply the Lambert W function we modify (A20) to

σ− σ0j,i

γ
exp

(
σ− σ0j,i

γ

)
= −

λγµ

γ2 exp
(
−

σ0j,i

γ

)
. (A21)

Applying the Lambert W function on both sides of (A21) gives two solutions

σ1 = γW0(z) + σ0j,i (A22)

σ2 = γW−1(z) + σ0j,i, (A23)

where

z = −
λγµ

γ2 exp
(
−

σ0j,i

γ

)
(A24)

and W0(·) denotes the upper branch and W−1(·) the lower branch of the multi-valued
Lambert W function. As shown in [63], it can be proven that σ2 from (A23) cannot be the
minimizer of (A18). The rest of the derivation, which establishes conditions under which
σ1 is the true minimizer of (A18), is left to look up in [63]. In consequence, the solution to
(A18) is the shrinkage operator

T (γ)
µλγ

(x) =

0 x < γ

(
1 + ln

(
µλγ

γ2

))
0 L(0, x) < L(σ1, x)
σ1 otherwise

, (A25)

where σ1 is defined in (A22) and L(·, ·) in (A19). The solution to (A12) is therefore

Lj+1 = U0j diag
(
T (γ)

µλγ

(
σ0j
))

VH
0j ,

Remote Sens. 2023, 15, 2216 38 of 41

where T (γ)
µλγ

(
σ0j
)
=
[
T (γ)

µλγ

(
σ0j,1

)
· · · T (γ)

µλγ

(
σ0j,nmin

)]T
is the vector operator version of

(A25), σ0j = σ
(

L0j
)
, L0j is (A13), and U0j and VH

0j are defined in (A15).
The structure of the CSRA algorithm is similar to the SCSA algorithm presented in [63],

which was designed for real valued CS problems. Hence, the convergence proof given
in [63] can readily be adapted to the CSRA algorithm and is therefore not recapitulated here.
Only the following theorem stating the convergence shall be given, in which h denotes the
data fidelity term defined in (5).

Theorem A3. Let M > 0 denote the smallest Lipschitz constant of ∇h and M′ the smallest
constant such that for all X ∈ CN1×N2 and Y ∈ CN1×N2

λFγ(X) ≤ λFγ(Y) + Re
{
〈X − Y ,∇λFγ(X)〉F

}
+

M′

2
‖X − Y‖2

F.

For any step size µ ∈ (0, 1/(M + M′)), the sequence {Lj} generated by (A12) converges to a
stationary point of (A10).

The proof of Theorem A3 is equivalent to the proof given in [63] when replacing all `2
norms and inner products with the Frobenius norm and Frobenius product. The Lipschitz
constant of∇h is given by the squared operator norm M = ‖A‖2

2. However, a formal proof
of the existence of M′, which would need to fulfill

‖∇λFγ(X)−∇λFγ(Y)‖F ≤ M′‖X − Y‖F,

is open. Nevertheless, a step size of µ ∈ (0, 1/M) resulted in converging behavior in all
conducted simulations. An alternative proof of convergence is given in [64], however for a
decreasing step size.

Finally, a few words on the initialization of γ are in order. Let L̂ be the unique
solution to

min
L
‖L‖∗ subject to A(L) = y, (A26)

which is the equivalent nuclear norm minimization (NNM) noiseless optimization problem
to (17). In [62] it was shown, that for γ→ ∞, the following statement holds

lim
γ→∞

arg min
L
{ Fγ(L)|A(L) = y} =

= arg min
L
{‖L‖∗|A(L) = y} = L̂, (A27)

provided that (A26) has a unique solution. Therefore, (60), for γ → ∞, can be optimized
by solving (17) for which SVT or TSVT may be used. According to [62], γ0 = 8‖L0‖2 is a
reasonable choice such that (A27) approximately holds. For CSRA, γ0 = ‖L0‖2/10 was
found to work well in every case.

References
1. Ender, J.H. On compressive sensing applied to radar. Signal Process. 2010, 90, 1402–1414. [CrossRef]
2. Weng, Z.; Wang, X. Low-rank matrix completion for array signal processing. In Proceedings of the 2012 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), Kyoto, Japan, 25–30 March 2012; pp. 2697–2700. [CrossRef]
3. Ender, J. A brief review of compressive sensing applied to radar. In Proceedings of the 2013 14th International Radar Symposium

(IRS), Dresden, Germany, 19–21 June 2013; Volume 1, pp. 3–16.
4. de Lamare, R.C. Low-Rank Signal Processing: Design, Algorithms for Dimensionality Reduction and Applications. arXiv 2015,

arxiv:1508.00636.
5. Sun, S.; Mishra, K.V.; Petropulu, A.P. Target Estimation by Exploiting Low Rank Structure in Widely Separated MIMO Radar. In

Proceedings of the 2019 IEEE Radar Conference (RadarConf), Boston, MA, USA, 22–26 April 2019; pp. 1–6. [CrossRef]
6. Xiang, Y.; Xi, F.; Chen, S. LiQuiD-MIMO Radar: Distributed MIMO Radar with Low-Bit Quantization. arXiv 2023.

http://doi.org/10.1016/j.sigpro.2009.11.009
http://dx.doi.org/10.1109/ICASSP.2012.6288473
http://dx.doi.org/10.1109/RADAR.2019.8835745

Remote Sens. 2023, 15, 2216 39 of 41

7. Rangaswamy, M.; Lin, F. Radar applications of low rank signal processing methods. In Proceedings of the Thirty-Sixth
Southeastern Symposium on System Theory, Atlanta, GA, USA, 16 March 2004; pp. 107–111. [CrossRef]

8. Prünte, L. GMTI on short sequences of pulses with compressed sensing. In Proceedings of the 2015 3rd International Workshop
on Compressed Sensing Theory and Its Applications to Radar, Sonar and Remote Sensing (CoSeRa), Pisa, Italy, 17–19 June 2015;
pp. 66–70. [CrossRef]

9. Sen, S. Low-Rank Matrix Decomposition and Spatio-Temporal Sparse Recovery for STAP Radar. IEEE J. Sel. Top. Signal Process.
2015, 9, 1510–1523. [CrossRef]

10. Prünte, L. Compressed sensing for the detection of moving targets from short sequences of pulses: Special section “sparse
reconstruction in remote sensing”. In Proceedings of the 2016 4th International Workshop on Compressed Sensing Theory and Its
Applications to Radar, Sonar and Remote Sensing (CoSeRa), Aachen, Germany, 19–22 September 2016; pp. 85–89. [CrossRef]

11. Prünte, L. Detection of Moving Targets Using Off-Grid Compressed Sensing. In Proceedings of the 2018 19th International Radar
Symposium (IRS), Bonn, Germany, 20–22 June 2018; pp. 1–10. [CrossRef]

12. Dao, M.; Nguyen, L.; Tran, T.D. Temporal rate up-conversion of synthetic aperture radar via low-rank matrix recovery. In
Proceedings of the 2013 IEEE International Conference on Image Processing, Melbourne, VIC, Australia, 15–18 September 2013;
pp. 2358–2362. [CrossRef]

13. Cerutti-Maori, D.; Prünte, L.; Sikaneta, I.; Ender, J. High-resolution wide-swath SAR processing with compressed sensing.
In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014;
pp. 3830–3833. [CrossRef]

14. Mason, E.; Son, I.-Y.; Yazici, B. Passive synthetic aperture radar imaging based on low-rank matrix recovery. In Proceedings of the
2015 IEEE Radar Conference (RadarCon), Arlington, VA, USA, 10–15 May 2015; pp. 1559–1563.

15. Kang, J.; Wang, Y.; Schmitt, M.; Zhu, X.X. Object-Based Multipass InSAR via Robust Low-Rank Tensor Decomposition. IEEE
Trans. Geosci. Remote Sens. 2018, 56, 3062–3077. [CrossRef]

16. Hamad, A.; Ender, J. Three Dimensional ISAR Autofocus based on Sparsity Driven Motion Estimation. In Proceedings of the
2020 21st International Radar Symposium (IRS), Warsaw, Poland, 5–8 October 2020; pp. 51–56. [CrossRef]

17. Qiu, W.; Zhou, J.; Fu, Q. Jointly Using Low-Rank and Sparsity Priors for Sparse Inverse Synthetic Aperture Radar Imaging. IEEE
Trans. Image Process. 2020, 29, 100–115. [CrossRef]

18. Wagner, S.; Ender, J. Scattering Identification in ISAR Images via Sparse Decomposition. In Proceedings of the 2022 IEEE Radar
Conference (RadarConf22), New York, NY, USA, 21–25 March 2022; pp. 1–6. [CrossRef]

19. Tang, V.H.; Bouzerdoum, A.; Phung, S.L.; Tivive, F.H.C. Radar imaging of stationary indoor targets using joint low-rank and
sparsity constraints. In Proceedings of the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Shanghai, China, 20–25 March 2016; pp. 1412–1416. [CrossRef]

20. Sun, Y.; Breloy, A.; Babu, P.; Palomar, D.P.; Pascal, F.; Ginolhac, G. Low-Complexity Algorithms for Low Rank Clutter Parameters
Estimation in Radar Systems. IEEE Trans. Signal Process. 2016, 64, 1986–1998. [CrossRef]

21. Wang, J.; Ding, M.; Yarovoy, A. Interference Mitigation for FMCW Radar with Sparse and Low-Rank Hankel Matrix Decomposi-
tion. IEEE Trans. Signal Process. 2022, 70, 822–834. [CrossRef]

22. Brehier, H.; Breloy, A.; Ren, C.; Hinostroza, I.; Ginolhac, G. Robust PCA for Through-the-Wall Radar Imaging. In Proceedings of
the 2022 30th European Signal Processing Conference (EUSIPCO), Belgrade, Serbia, 29 August–2 September 2022; pp. 2246–2250.
[CrossRef]

23. Yang, D.; Yang, X.; Liao, G.; Zhu, S. Strong Clutter Suppression via RPCA in Multichannel SAR/GMTI System. IEEE Geosci.
Remote Sens. Lett. 2015, 12, 2237–2241. [CrossRef]

24. Guo, Y.; Liao, G.; Li, J.; Chen, X. A Novel Moving Target Detection Method Based on RPCA for SAR Systems. IEEE Trans. Geosci.
Remote Sens. 2020, 58, 6677–6690. [CrossRef]

25. A Clutter Suppression Method Based on NSS-RPCA in Heterogeneous Environments for SAR-GMTI. IEEE Trans. Geosci. Remote
Sens. 2020, 58, 5880–5891. [CrossRef]

26. Yang, J.; Jin, T.; Xiao, C.; Huang, X. Compressed Sensing Radar Imaging: Fundamentals, Challenges, and Advances. Sensors 2019,
19, 3100. [CrossRef]

27. Zuo, L.; Wang, J.; Zhao, T.; Cheng, Z. A Joint Low-Rank and Sparse Method for Reference Signal Purification in DTMB-Based
Passive Bistatic Radar. Sensors 2021, 21, 3607. [CrossRef] [PubMed]

28. De Maio, A.; Eldar, Y.; Haimovich, A. Compressed Sensing in Radar Signal Processing; Cambridge University Press: Cambridge,
UK, 2019.

29. Amin, M. Compressive Sensing for Urban Radar; CRC Press: Boca Raton, FL, USA, 2017.
30. Manchanda, R.; Sharma, K. A Review of Reconstruction Algorithms in Compressive Sensing. In Proceedings of the 2020

International Conference on Advances in Computing, Communication Materials (ICACCM), Dehradun, India, 21–22 August
2020; pp. 322–325. [CrossRef]

31. Cai, J.F.; Candès, E.J.; Shen, Z. A Singular Value Thresholding Algorithm for Matrix Completion. arXiv 2008.
32. Candès, E.J.; Li, X.; Ma, Y.; Wright, J. Robust Principal Component Analysis? CoRR 2009, abs/0912.3599.
33. Eldar, Y.; Kutyniok, G. Compressed Sensing: Theory and Applications; Cambridge University Press: Cambridge, UK, 2012.
34. Pilastri, A.; Tavares, J. Reconstruction Algorithms in Compressive Sensing: An Overview. In Proceedings of the FAUP-11th

edition of the Doctoral Symposium in Informatics Engineering, Porto, Portugal, 3 February 2016.

http://dx.doi.org/10.1109/SSST.2004.1295629
http://dx.doi.org/10.1109/CoSeRa.2015.7330265
http://dx.doi.org/10.1109/JSTSP.2015.2464187
http://dx.doi.org/10.1109/CoSeRa.2016.7745705
http://dx.doi.org/10.23919/IRS.2018.8448273
http://dx.doi.org/10.1109/ICIP.2013.6738486
http://dx.doi.org/10.1109/IGARSS.2014.6947319
http://dx.doi.org/10.1109/TGRS.2018.2790480
http://dx.doi.org/10.23919/IRS48640.2020.9253747
http://dx.doi.org/10.1109/TIP.2019.2927458
http://dx.doi.org/10.1109/RadarConf2248738.2022.9764208
http://dx.doi.org/10.1109/ICASSP.2016.7471909
http://dx.doi.org/10.1109/TSP.2015.2512535
http://dx.doi.org/10.1109/TSP.2022.3147863
http://dx.doi.org/10.23919/EUSIPCO55093.2022.9909960
http://dx.doi.org/10.1109/LGRS.2015.2461654
http://dx.doi.org/10.1109/TGRS.2020.2978496
http://dx.doi.org/10.1109/TGRS.2020.2972060
http://dx.doi.org/10.3390/s19143100
http://dx.doi.org/10.3390/s21113607
http://www.ncbi.nlm.nih.gov/pubmed/34067247
http://dx.doi.org/10.1109/ICACCM50413.2020.9212838

Remote Sens. 2023, 15, 2216 40 of 41

35. Park, D.; Kyrillidis, A.; Caramanis, C.; Sanghavi, S. Finding Low-Rank Solutions via Non-Convex Matrix Factorization, Efficiently
and Provably. arXiv 2016, arXiv:1606.03168.

36. Chandrasekaran, V.; Sanghavi, S.; Parrilo, P.A.; Willsky, A.S. Rank-Sparsity Incoherence for Matrix Decomposition. SIAM J.
Optim. 2011, 21, 572–596. [CrossRef]

37. Tropp, J.A.; Gilbert, A.C. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory
2007, 53, 4655–4666. [CrossRef]

38. Donoho, D.L.; Tsaig, Y.; Drori, I.; Starck, J.L. Sparse solution of underdetermined systems of linear equations by stagewise
orthogonal matching pursuit. IEEE Trans. Inf. Theory 2012, 58, 1094–1121. [CrossRef]

39. Needell, D.; Vershynin, R. Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching
pursuit. IEEE J. Sel. Top. Signal Process. 2010, 4, 310–316. [CrossRef]

40. Needell, D.; Tropp, J.A. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmon. Anal.
2009, 26, 301–321. [CrossRef]

41. Dai, W.; Milenkovic, O. Subspace pursuit for compressive sensing signal reconstruction. IEEE Trans. Inf. Theory 2009, 55, 2230–2249.
[CrossRef]

42. Boche, H.; Calderbank, R.; Kutyniok, G.; Vybiral, J. A Survey of Compressed Sensing; Springer: Berlin/Heidelberg, Germany, 2014.
[CrossRef]

43. Lee, K.; Bresler, Y. ADMiRA: Atomic Decomposition for Minimum Rank Approximation. IEEE Trans. Inf. Theory 2010,
56, 4402–4416. [CrossRef]

44. Waters, A.; Sankaranarayanan, A.; Baraniuk, R. SpaRCS: Recovering low-rank and sparse matrices from compressive measure-
ments. In Proceedings of the Advances in Neural Information Processing Systems; Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira, F.,
Weinberger, K., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2011; Volume 24.

45. Xiang, J.; Yue, H.; Xiangjun, Y.; Guoqing, R. A Reweighted Symmetric Smoothed Function Approximating L0-Norm Regularized
Sparse Reconstruction Method. Symmetry 2018, 10, 583. [CrossRef]

46. Xiang, J.; Yue, H.; Xiangjun, Y.; Wang, L. A New Smoothed L0 Regularization Approach for Sparse Signal Recovery. Math. Probl.
Eng. 2019, 2019, 1978154. [CrossRef]

47. Blumensath, T.; Davies, M.E. Normalized Iterative Hard Thresholding: Guaranteed Stability and Performance. IEEE J. Sel. Top.
Signal Process. 2010, 4, 298–309. [CrossRef]

48. Meka, R.; Jain, P.; Dhillon, I.S. Guaranteed Rank Minimization via Singular Value Projection. arXiv 2009.
49. Zhang, X.; Wang, L.; Gu, Q. A Unified Framework for Low-Rank plus Sparse Matrix Recovery. arXiv 2017, arxiv:1702.06525.
50. Blanchard, J.D.; Tanner, J. Performance comparisons of greedy algorithms in compressed sensing. Numer. Linear Algebra Appl.

2015, 22, 254–282. [CrossRef]
51. Mansour, H. Beyond `1-norm minimization for sparse signal recovery. In Proceedings of the 2012 IEEE Statistical Signal

Processing Workshop (SSP), Ann Arbor, MI, USA, 5–8 August 2012; pp. 337–340. [CrossRef]
52. Aravkin, A.; Becker, S.; Cevher, V.; Olsen, P. A variational approach to stable principal component pursuit. arXiv 2014,

arxiv:1406.1089.
53. Beck, A.; Teboulle, M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2009,

2, 183–202. [CrossRef]
54. Panhuber, R.; Prünte, L. Complex Successive Concave Sparsity Approximation. In Proceedings of the 2020 21st International

Radar Symposium (IRS), Warsaw, Poland, 5–8 October 2020; pp. 67–72. [CrossRef]
55. Ma, J.; Yuan, X.; Ping, L. Turbo Compressed Sensing with Partial DFT Sensing Matrix. IEEE Signal Process. Lett. 2015, 22, 158–161.

[CrossRef]
56. Xue, Z.; Ma, J.; Yuan, X. Denoising-Based Turbo Compressed Sensing. IEEE Access 2017, 5, 7193–7204. [CrossRef]
57. Xue, Z.; Yuan, X.; Ma, J.; Ma, Y. TARM: A Turbo-Type Algorithm for Affine Rank Minimization. IEEE Trans. Signal Process. 2019,

67, 5730–5745. [CrossRef]
58. Xue, Z.; Yuan, X.; Yang, Y. Turbo-Type Message Passing Algorithms for Compressed Robust Principal Component Analysis. IEEE

J. Sel. Top. Signal Process. 2018, 12, 1182–1196. [CrossRef]
59. He, X.; Xue, Z.; Yuan, X. Learned Turbo Message Passing for Affine Rank Minimization and Compressed Robust Principal

Component Analysis. IEEE Access 2019, 7, 140606–140617. [CrossRef]
60. Kang, Z.; Peng, C.; Cheng, J.; Cheng, Q. LogDet Rank Minimization with Application to Subspace Clustering. Comput. Intell.

Neurosci. 2015, 2015, 824289. [CrossRef] [PubMed]
61. Malek-Mohammadi, M.; Babaie-Zadeh, M.; Amini, A.; Jutten, C. Recovery of Low-Rank Matrices Under Affine Constraints via a

Smoothed Rank Function. IEEE Trans. Signal Process. 2014, 62, 981–992. [CrossRef]
62. Malek-Mohammadi, M.; Babaie-Zadeh, M.; Skoglund, M. Iterative Concave Rank Approximation for Recovering Low-Rank

Matrices. IEEE Trans. Signal Process. 2014, 62, 5213–5226. [CrossRef]
63. Malek-Mohammadi, M.; Koochakzadeh, A.; Babaie-Zadeh, M.; Jansson, M.; Rojas, C. Successive Concave Sparsity Approximation

for Compressed Sensing. IEEE Trans. Signal Process. 2016, 64, 5657–5671. [CrossRef]
64. Ye, H.; Li, H.; Yang, B.; Cao, F.; Tang, Y. A Novel Rank Approximation Method for Mixture Noise Removal of Hyperspectral

Images. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4457–4469. [CrossRef]
65. Bickel, P.J.; Ritov, Y.; Tsybakov, A.B. Simultaneous analysis of Lasso and Dantzig selector. arXiv 2008, arXiv:0801.1095.

http://dx.doi.org/10.1137/090761793
http://dx.doi.org/10.1109/TIT.2007.909108
http://dx.doi.org/10.1109/TIT.2011.2173241
http://dx.doi.org/10.1109/JSTSP.2010.2042412
http://dx.doi.org/10.1016/j.acha.2008.07.002
http://dx.doi.org/10.1109/TIT.2009.2016006
http://dx.doi.org/10.1007/978-3-319-16042-9_1
http://dx.doi.org/10.1109/TIT.2010.2054251
http://dx.doi.org/10.3390/sym10110583
http://dx.doi.org/10.1155/2019/1978154
http://dx.doi.org/10.1109/JSTSP.2010.2042411
http://dx.doi.org/10.1002/nla.1948
http://dx.doi.org/10.1109/SSP.2012.6319697
http://dx.doi.org/10.1137/080716542
http://dx.doi.org/10.23919/IRS48640.2020.9253770
http://dx.doi.org/10.1109/LSP.2014.2351822
http://dx.doi.org/10.1109/ACCESS.2017.2697978
http://dx.doi.org/10.1109/TSP.2019.2944740
http://dx.doi.org/10.1109/JSTSP.2018.2876621
http://dx.doi.org/10.1109/ACCESS.2019.2942204
http://dx.doi.org/10.1155/2015/824289
http://www.ncbi.nlm.nih.gov/pubmed/26229527
http://dx.doi.org/10.1109/TSP.2013.2295557
http://dx.doi.org/10.1109/TSP.2014.2340820
http://dx.doi.org/10.1109/TSP.2016.2585096
http://dx.doi.org/10.1109/TGRS.2019.2891288

Remote Sens. 2023, 15, 2216 41 of 41

66. Donoho, D.; Tanner, J. Observed universality of phase transitions in high-dimensional geometry, with implications for modern
data analysis and signal processing. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2009, 367, 4273–4293. [CrossRef]

67. Candès, E.J.; Sing-Long, C.A.; Trzasko, J.D. Unbiased Risk Estimates for Singular Value Thresholding and Spectral Estimators.
IEEE Trans. Signal Process. 2013, 61, 4643–4657. [CrossRef]

68. Bouwmans, T.; Sobral, A.; Javed, S.; Jung, S.K.; Zahzah, E.H. Decomposition into low-rank plus additive matrices for back-
ground/foreground separation: A review for a comparative evaluation with a large-scale dataset. Comput. Sci. Rev. 2017,
23, 1–71.
[CrossRef]

69. Foucart, S.; Rauhut, H. A Mathematical Introduction to Compressive Sensing; Springer: Berlin/Heidelberg, Germany, 2013. [CrossRef]
70. Zill, D.; Wright, W. Differential Equations with Boundary-Value Problems; Cengage Learning: Boston, MA, USA, 2012.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1098/rsta.2009.0152
http://dx.doi.org/10.1109/TSP.2013.2270464
http://dx.doi.org/10.1016/j.cosrev.2016.11.001
http://dx.doi.org/10.1007/978-0-8176-4948-7

	Introduction
	Background
	State of the Art
	Greedy Algorithms
	Hard Thresholding Algorithms
	Convex Relaxations Algorithms
	Approximated Message-Passing Algorithms
	Smoothed 0-Algorithms

	Contribution
	Outline of the Paper

	Compressed Sensing
	Turbo Shrinkage Thresholding
	Complex Successive Concave Sparsity Approximation

	Affine Rank Minimization
	Turbo Singular Value Thresholding
	Complex Smoothed Rank Approximation

	Compressed Robust Principle Component Analysis
	Conclusions
	Appendix A
	Appendix B
	References

