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Abstract: The accurate detection of coal-fired power plants (CFPPs) is meaningful for environmental
protection, while challenging. The CFPP is a complex combination of multiple components with
varying layouts, unlike clearly defined single objects, such as vehicles. CFPPs are typically located in
industrial districts with similar backgrounds, further complicating the detection task. To address this
issue, we propose a MUltistage Recursive Enhanced Detection Network (MUREN) for accurate and
efficient CFPP detection. The effectiveness of MUREN lies in the following: First, we design a symmet-
rically enhanced module, including a spatial-enhanced subnetwork (SEN) and a channel-enhanced
subnetwork (CEN). SEN learns the spatial relationships to obtain spatial context information. CEN
provides adaptive channel recalibration, restraining noise disturbance and highlighting CFPP features.
Second, we use a recursive construction set on top of feature pyramid networks to receive features
more than once, strengthening feature learning for relatively small CFPPs . We conduct comparative
and ablation experiments in two datasets and apply MUREN to the Pearl River Delta region in
Guangdong province for CFPP detection. The comparative experiment results show that MUREN
improves the mAP by 5.98% compared with the baseline method and outperforms by 4.57–21.38%
the existing cutting-edge detection methods, which indicates the promising potential of MUREN in
large-scale CFPP detection scenarios.

Keywords: coal-fired power plant detection; composite object detection; deep learning; carbon
neutrality

1. Introduction

China has emerged as a key force in anthropogenic carbon emissions and reduction as a
result of the incredible development of China’s economy and society in recent decades [1–3].
During this process, the surge in electrical power consumption has contributed to the result
that the burning of fossil fuels (coal) has played the main part in anthropogenic carbon
emissions [4].

The Pearl River Delta (PRD) region has had the fastest pace of development [5],
while its ever-increasing energy consumption has led to a significant surge in air pollutant
emissions [6]. Since a coal-fired power plant (CFPP) is the primary source of carbon
dioxide emissions in thermal power, awareness of the precise location of CFPPs and their
working status is important for carbon dioxide emissions monitoring and air pollution
management. Identifying a combined complex with multiple objects and a nonrigid layout,
compounded by the challenges posed by complicated backgrounds and blurred boundaries
of CFPPs, is an exceedingly difficult research problem [7–10].
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High-resolution satellite images (HRSI) can offer us an orthographic image of CFPPs,
which could provide their location and working status from their latitude, longitude,
and whether they are smoking or not. However, manual manipulation for searching and
distinguishing in enormous pixels is time- and labor-consuming. Deep learning methods
are naturally adapted to this issue because of their high efficiency and accuracy. In recent
years, with the availability of many well-labeled datasets, such as ImageNet [11] and
PASCAL VOC [12], there now exist outstanding deep-learning-based object detection
methods such as SSD [13], RetinaNet [14] , YOLO [15], Fast R-CNN [16], Faster R-CNN [17],
Dynamic R-CNN [18], Libra R-CNN, [19] and Cascade R-CNN [20] . Specifically, SSD
adopts multiscale feature maps and prior boxes with different sizes to conduct multiscale
object detection. RetinaNet with Focal Loss can effectively handle sample imbalance
in training. Faster R-CNN adds a Region Proposal Network (RPN) into the structure
to realize true real-time object detection. Dynamic R-CNN points out the strategy of
dynamically adjusting training based on the change in sample distribution based on the
training characteristics of target detection. Cascade R-CNN consists of a sequence of
detectors to avoid problems of overfitting. These methods have been widely used in
many applications such as cancer detection [21,22], animal detection [23,24], traffic light
detection [25,26], and face detection [27–29], as well as many regular remote sensing
applications, such as tree detection [30–32], ship detection [33,34], car detection [35,36],
building detection [37,38], etc.

Nevertheless, using existing vanilla object detection methods for CFPP detection
remains challenging. First, the complex nature of the target, which consists of different
nonrigid components with blurred boundaries and complex composite spatial relationships,
leads to inaccurate detection and imprecise location. Compared with cars and ships, CFPP
is more challenging to detect due to similar and complex texture surroundings , resulting
in false positives. Figure 1a,b illustrates a CFPP’s blurred boundaries and the spatial
interrelationship of components, in contrast with the clear boundaries and lack of spatial
relationship between cars and ships in Figure 1c,d. The strong contrasts between cars and
ships make them easier to detect, while the similar or complex backgrounds of CFPPs hinder
accurate detection. Identifying the working status of CFPPs requires correct identification
of smoke, further complicating the task.

(a) (b)

(c) (d)

Figure 1. The differences between CFPPs and other objects, i.e., cars and ships, in optical HRSIs.
(a,b) are the optical images of CFPPs, while (c,d) are the optical images of ships and cars. Compared
with CFPP, cars and ships have clearer boundaries and simpler backgrounds. Additionally, their
regular shapes make them easier to detect.
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To address these problems in CFPP detection, we propose a (MUltistage Recursive
Enhanced Detection Network) to improve CFPP detection performance and apply it in
large-scale scenarios. Our contributions can be summarized as follows:

(a) We construct a new dataset of CFPPs, including the location and working status of over
300 CFPPs collected from Google Earth at 1-meter resolution. The dataset is published
in https://github.com/yuanshuai0914/MUREN (accessed on: 14 April 2023).

(b) We design two enhancement mechanisms, i.e., a channel-enhanced subnetwork
and a spatial-enhanced subnetwork embedded into the backbone of our detection
method. CEN enhances feature representation for CFPPs and restrains the effects
of noise for better training and testing performance. SEN learns the spatial relation-
ship of components in CFPP and enriches the semantic and context information for
better localization.

(c) We integrate the recursive connections and improved Atrous Spatial Pyramid Pooling
(ASPP) module into the Feature Pyramid Network (FPN). FPN fuses multilevel
semantic and spatial information for small object detection. Recursive connections
and the ASPP module make FPN receive features twice, boosting feature learning for
small and irregular CFPPs.

The remainder of this paper is organized as follows. First, we briefly introduce the
related work on object detection methods applied to remote sensing and coal-fired power
plant detection in Section 2. After that, we explain our MUREN in detail in Section 3, then
show the datasets and study area in Section 4. In Sections 5 and 6, we analyze and discuss
the CFPP detection performance of MUREN, including a comparative study and ablation
experiments. Finally, we conclude this paper and present future work.

2. Related Works

This section briefly introduces CFPP detection-related works. We introduce object
detection in remote sensing from dataset and algorithm aspects and introduce the recent
progress in CFPP detection.

2.1. Object Detection in Remote Sensing

Object detection has always been a crucial issue in remote sensing because of its valu-
able and irreplaceable interpretation on optical images [39,40]. However, object detection in
remote sensing images (RSIs) often faces many difficulties, such as the variations of sensors
on satellites, different application scenarios, complex backgrounds, etc. [41]. To handle
these problems, a lot of effort has been made to develop compatible methods for object
detection in RSIs, including algorithms and datasets.

2.1.1. Algorithms in Related Works

In the last one or two decades, considerable work has been conducted to develop
compatible algorithms for object detection in RSIs. We briefly divide them into two parts:
traditional algorithms and machine learning algorithms. In traditional methods, for exam-
ple, Peng and Liu [42] developed a shadow–context model to extract buildings in 229 dense
urban aerial images by combining shadow information with context to verify building re-
gions. Chaudhuri et al. [43] proposed a semiautomatic approach for road detection, whose
customized operators include directional morphological enhancement, segmentation, and
thinning. Eikvil et al. [44] proposed an automatic approach for vehicle detection consisting
of a segmentation step followed by two stages of object classification that utilized multi-
spectral images, panchromatic images, and road networks. In the machine learning field,
for example, Yao et al. [45] proposed a computational model to detect airports in optical
RSIs, which contained a target-oriented saliency model and a learned conditional random
field (CRF) model. earned condition random field Zhu et al. [46] focused on ship detection
and proposed a novel hierarchical complete and operational SDSOI approach based on
shape and texture features, which is considered a sequential coarse-to-fine elimination
process of false alarms. However, the aforementioned algorithms all utilize low-feature or
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middle-feature representation for object detection [47], which only achieve low accuracy or
limited application scenarios.

As a part of machine learning, deep learning has made remarkable progress recently.
With its development, the accuracy and efficiency of object detection has made significant
improvement. Compared with traditional methods, deep-learning-based object detection
algorithms can be quicker, more robust, and more generalized when encountering a huge
amount of data, complex backgrounds, and scenarios. Since these advantages of deep
learning methods are in accordance with the needs of remote sensing scenarios, remote
sensing images based object detection applications using deep learning methods have
also increased quickly [30,31,39,41,48–50]. For example, Li et al. [51] presented a rotation-
insensitive Region Proposal Network (RPN) by introducing multiangle anchors into the
existing RPN based on the Faster R-CNN pipeline, which can effectively handle the problem
of geospatial object rotation variations. Liu et al. [52] designed a framework-based YOLOv2
for detecting arbitrarily oriented ships, which can directly predict rotationally oriented
bounding boxes. Li et al. [53] designed a feature-attentioned end-to-end framework for
object detection in remote sensing imagery, which performed well on the DOTA and UCAS-
AOD datasets. Sun et al. [54] proposed a unified part-based convolutional neural network
called PBNet for composite object detection in remote sensing imagery, containing a part
localization module and a context refinement module.

2.1.2. Datasets in Related Works

Unlike natural scene images, optical RSIs usually provide overlook, sight, and profile
information, with larger scales and more spatial information. As a result, it is difficult
to directly translate trained recognition from natural scenes to RSIs. With the efforts in
research in object detection in RSIs, several object detection datasets of optical RSIs have
been collected and constructed. For example, Cheng and Han [39] developed a dataset
named NWPU-VHR10, which contains ten geospatial object classes, including airplane,
basketball court, baseball diamond, bridge, harbor, ground track field, ship, storage tank,
tennis court, and vehicle. It consists of 715 RGB images and 85 pan-sharpened color infrared
images, of which the resolution varies from 0.08 m to 2 m. Zhu et al. [55] collected a typical
dataset for airplane and vehicle detection, i.e., UCAS-AOD, which consists of 600 images
with 3210 airplanes and 310 images with 2819 vehicles. Zhang and Deng [7] constructed a
CFPP dataset named BUAA-FFPP60, which contains over 60 CFPPs, including not only
locations and class labels but also working status labels. The aforementioned datasets are
widely used in object detection in remote sensing research [53,56–59] and make outstanding
contributions to the Earth observation community.

2.2. Coal-Fired Power Plant Detection

CFPP monitoring has always been a crucial issue in emission estimates and air pollu-
tion management. However, precise CFPP detection has just received attention for a half
decade. Before the emergence of deep learning algorithms and the availability of HRSI
datasets, related work could only focus on qualitative and experiential analysis [60–62].
Along with the development of algorithms and HRSI datasets, progress has been made
on the issue of precise CFPP detection. For instance, Zhang and Deng [7] collected a
dataset named BUAA-FFPP60 and compared eight deep learning models in CFPP detec-
tion, comprehensively analyzing their performance on accuracy, speed, and hardware
cost. Yao et al. [10] presented a Faster-R-CNN-based network to reap chimney and con-
densing tower integrated detection. Han et al. [8] firstly trained a Faster R-CNN model
to detect CFPP, and then used two spatial analysis methods, the digital terrain model
(DTM) filtering and main direction test, to remove the false results and add missed targets.
Deng and Zhang [9] further increased the scale and level of feature pyramids based on the
vanilla Feature Pyramid Network (FPN) to improve the performance in CFPP detection.
Yin et al. [63] proposed a CFPP detection network designed for nonrigid components, in-
cluding a one-stage detector, a context attention multiscale feature extraction subnetwork,
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and a part-based attention module. The comparative detection results evaluated by the
average precision are shown in Figure 2.

Figure 2. The mAPs of the previous studies on CFPP detection on the BUAA-FFPP60 datasets [7,8,10,63].

Deep learning algorithms are widely used for CFPP detection, but efficiency and
accuracy are limited due to the complex nature of CFPPs, including multiple objects with
variable layouts and similar background patterns, as well as a lack of a generalized end-to-
end workflow for practical applications. To address these issues, we propose MUREN, a
multistage end-to-end CFPP detection algorithm that enhances accuracy and efficiency for
large-scale RSIs.

3. MUREN
3.1. Overview of Our Method

MUREN is a multistage detection network that functions in an end-to-end manner.
Designed for large-scale CFPP detection, MUREN first handles the enormous input pixels.
The massive input images are first cropped from 8000 × 8000 pixels to a much smaller
size, e.g., 600 × 600 pixels, with 20% overlap of each slice to reduce time and computation
consumption, and in the meantime, to save complete individual object information. Our
goal is to achieve accurate large-scale composite CFPP detection. Because a typical CFPP
consists of various components with nonrigid spatial relationships and blurred boundaries,
as well as similar complex textures surrounding it, it is necessary to enhance the feature
representation and channel–spatial relationships of these objects and cripple the noise
disturbance. As a result, our proposed detection framework includes (as shown in Figure 3)
a channel-enhanced sub-network, a spatial-enhanced sub-network, a recursive connection
added in the Feature Pyramid Network, and a multistage detector-based Cascade R-CNN.

(1) A channel-enhanced subnetwork (CEN) for tackling the similarity of background
patterns. In parallel with ResNet-50 [64], we add a channel-enhanced subnetwork
consisting of a global average pooling layer, a global max pooling layer, two fully con-
nected layers, and a batch normalization layer followed by an activation layer, which
reaps adaptive channel recalibration and improves the object feature representation.

(2) A spatial-enhanced subnetwork (SEN) for tackling the spatial interrelationship of
CFPPs’ complex components. In addition to CEN and ResNet-50, we propose a
symmetrical spatial-enhanced subnetwork consisting of a global average pooling layer,
a global max pooling layer, and a convolutional layer followed by an activation layer.
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(3) A recursive connection is added in FPN to strengthen the global feature and receptive
field. FPN constructs the feature pyramid to gain different scale features and build
connections between the same-scale feature map. We use a recursive connection from
the FPN layers to the backbone layers. This connection gives feedback received from
the FPN to the previous backbone to strengthen the object feature extraction.

(4) A multistage detector after Region of Interests (RoI) Pooling. We adopt a Cascade
R-CNN-based multistage detector in the end, containing three detectors with different
Intersection of Union (IoU) thresholds trained sequentially, using the output of a
detector as the training set for the next.

I
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Figure 3. The architecture of our proposed MUREN: the GREEN parts denote our main contribu-
tions, including a channel-enhanced subnetwork, a spatial-enhanced subnetwork, and a recursive
connection with an improved ASPP module embedded in the Feature Pyramid Network.

3.2. Symmetrically Enhanced Network

As a composite target, CFPP owns various components with a nonrigid spatial rela-
tionship and blurred boundaries. In addition, the complex backgrounds can create massive
obstructions when extracting features and generating RoIs, as well as increase false pos-
itives and decrease accuracy. To address this problem, it is essential to strengthen the
features of every part and weaken noise disturbance. Here, we propose a symmetrically en-
hanced network, containing both a channel-enhanced subnetwork and a spatial-enhanced
subnetwork, symmetrically located beside the backbone. The structure is shown in the
Residual Module in Figure 3.

3.2.1. Channel-Enhanced Subnetwork

As we can see, the channel-enhanced subnetwork has a squeeze-and-excitation block [65].
This subnetwork learns the relationship and importance of each input channel and repre-
sents the level of importance as different weights. Then, the weights are applied to matched
channels to achieve adaptive channel recalibration by strengthening the object feature and
constraining the noise.
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In the squeeze section, we first need to separate each channel and perform feature
compression on each channel, switching each two-dimensional channel feature information
into a real number, representing a global context to some extent. This procedure can
be achieved by a global average pooling layer (GAP) and a global max pooling layer
(GMP) [66]. GAP computes one real number to represent the global feature in one channel,
at the cost of blurred feature information after the average operation. GMP preserves the
most prominent information, with the possibility of noise rather than the object feature.
As a result, we maintain both GAP and GMP to keep both the global feature and the
most prominent signal. Specifically, the input feature map X ∈ RC×W×H represents
W × H features with C channels. The output feature map Oa ∈ RC×1×1 after global
average pooling represents the global average context information. The output feature
map Om ∈ RC×1×1 after global maximum pooling represents the global maximum context
information. ya

k ∈ R represents the GAP output Oa of the kth feature map in channel
dimension. ym

k ∈ R represents the GMP output Om of the kth feature map in channel
dimension. yk ∈ R presents the addition of ym

k and ya
k. xk(i, j) identify the element located

at (i, j) in the kth feature map. Y ∈ RC×1×1 represents the output queued up in channel
order. Then, we can define the squeeze operation as follows:

ya
k =

1
W × H

H

∑
i=1

W

∑
j=1

xk(i, j) (1)

ym
k = max{xk(i, j), i ∈ H, j ∈W} (2)

yk = ya
k ⊕ ym

k (3)

Y = array[y1, y2, . . . , yC] (4)

The ya
k can be identified as the typical representative of the entire feature map and

can also be used to extract global context information, which serves as a guide to further
enhance network performance. The global average pooling output may eliminate some
specific information by averaging; so, we also employ the global max pooling layer and
combine it in an addition manner, resulting in yk.

After the squeeze operation, we need to learn the relationship and importance in a
channel-wise manner, gain the weights of each channel, and match these weights with
the global average pooling output yk of the squeeze operation. In the excitation section,
we employ a bottleneck-like construction consisting of two fully connected layers, a batch
normalization layer followed by a ReLU activation layer, and a Sigmoid activation layer,
as shown in Figure 4. Two fully connected layers construct channel weights by two 1× 1
convolutions via input feature map fusion and generate a same-sized output as input Y.
The batch normalization layer is a feature normalization technique that is inserted into deep
learning architectures as a trainable process to reduce internal covariant shift [67], in which
the distribution of features often continuously changes over the training iterations. The
ReLU activation layer is used because of its capability of preventing gradient vanishing [68].
After the second fully connected layer, we set a Sigmoid activation layer to obtain a
normalization value in a range [0,1].

We define e ∈ RC×1×1 as a real number queue in (0,1) in channel order. σ is the
Sigmoid function. F1 ∈ RC×1×1 and F2 ∈ RC×1×1 refer to 2 fully connected layers. B is the
BN layer. δ represents the ReLU activation function, and ∗ is the convolution operation.
The whole procedure can be described as follows:

e = σ(F2δ(B ∗ F1 ∗ Y)) (5)
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where e indicates the importance of each channel, learned from the fully connected and
nonlinear layers before. Then, we conduct a channel-wise multiplication to achieve the
end-to-end adaptive channel recalibration.

Figure 4. The detailed architectures of CEN and SEN. Both of them are embedded into the residual
block of ResNet50.

3.2.2. Spatial-Enhanced Subnetwork

Symmetric with the CEN, the spatial-enhanced subnetwork lies beside the identity
shortcut in the backbone. Different from the CEN, this subnetwork focuses on the inter-
object spatial relationships of features. Different components of CFPPs in satellite images
contribute to the CFPP detection task differently, and each component has special spatial
interrelationships with one another. As a result, we still use GAP and GMP, but replace the
fully connected layers with convolutional layers. As shown in Figure 4, we first employ
GAP and GMP to obtain the global context from the average and the maximum perspec-
tives. Then, we concatenate both of them to generate a new spatial information descriptor.
This concatenation can use information from both the average and the maximum perspec-
tives, which has been proven to be efficient in previous efforts [69]. Afterward, we adopt a
convolutional layer to extract the feature map from the concatenation descriptor, and the
output can indicate the “whereabouts” of the object. Finally, three feature maps, the feature
map from the backbone, new feature map from CEN, and new feature map from SEN, are
aggregated together by multiplication.

Similarly, we can describe the SEN procedure as follows:

Fs = σ( f [Oa,Om]) (6)

Fs ∈ RC×W×H represents the output feature map of SEN. σ is the Sigmoid function,
and f refers to the convolutional layer. Oa,Om represent the output features of GAP and
GMP, respectively.

3.3. Recursive Connection in FPN

The recursive connection in FPN is designed for enhancing feature representations in
the feature extraction step. There is a reasonable assumption that human visual perception
does not process the entire image at once and needs feedback to capture more details in one
image [70]. Similarly, it is likely to miss important information in one shot when processing
images in neural networks. Therefore, designing a feedback mechanism in neural networks
can be efficient in object classification and location. Here, we follow Qiao et al. [71] to
employ a Recursive Feature Pyramid (RFP)-based structure, boosting training speed and
performance. This structure contains FPN, recursive connections, and an improved Atrous
Spatial Pyramid Pooling (ASPP) module.
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3.3.1. Feature Pyramid Network

FPN brings significant progress to multiscale object detection performance [72]. This
top-down, bottom-up structure with lateral connections can fuse features from different
levels to obtain abundant semantic information, achieving good performance in small
object detection. In the same way as Lin et al. [72], we define Ci as the ith feature level in
the bottom-up pathway, Mi as the ith feature level in the top-down pathway, and Pi as the
output feature map. f is the convolution operation. We can describe FPN as follows in
Formulas (7)–(9):

Ci+1 = f (Ci) (7)

Mi = f (Mi+1)⊕ f 1×1(Ci) (8)

Pi = f 3×3(Mi) (9)

3.3.2. Recursive Connection

As shown in Figure 3, the recursive connections are added into FPN. These connections
bring feedback received from FPN to the backbone, enhancing the FPN representation
capability. Here, we denote Ri as the feature transformation before transmitting from FPN
to the backbone, and we can obtain the recursive connection Formula (10):

Ci = f (Ci−1, Ri(Mi)) (10)

In order to be compatible with the recursive connections, we redesign the backbone, i.e.,
ResNet50, on the basis of the two aforementioned enhanced subnetworks. We additionally
design a branch road for recursive features in the first residual block in each stage, as shown
in Figure 3. To use the feature R(M), we add a 1× 1 convolutional layer before the merge.

3.3.3. Improved ASPP Module

As stated in Qiao et al. [71], ASPP [73] is used for the implementation of connections
between the FPN and backbone, in which there are four parallel branches taking Mi as
their inputs. Outputs denoted as Ri are the concatenation of four feature maps generated
from four branches, respectively. Since the 3× 3 convolution in the ASPP module will learn
some redundant information, the number of parameters is large, so it will take a long time
to train. Here, we decompose the 3× 3 atrous convolutional layers in ASPP into a 3× 1 and
a 1× 3 layer to maintain its atrous rate [74]. This improved ASPP module can efficiently
reduce the parameter amount and boost training speed. Figure 5 shows the improved
ASPP module architecture.

Figure 5. The architecture of the improved ASPP module. Four outputs generated by four branches
are concatenated along the channel dimension.
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3.4. Multistage Detector

Cascade R-CNN has proved its effectiveness in object detection, addressing the over-
fitting and inference–time mismatch problems and improving the bbox quality signifi-
cantly [20]. Here, we employ this cascade architecture as our detector. There are three
R-CNN stages using outputs from the current stage to train the next. The three stages
are performed in a sequential manner and have their own IoU thresholds, i.e., (0.5, 0.6,
and 0.7).

4. Datasets and Study Area

To the best of our knowledge, Yao et al. [10] collected the first dataset for CFPP
detection. Zhang and Deng [7] added 101 images to this dataset and named it BUAA-
FFPP60. This dataset is so far the most comprehensive and most popular dataset for CFPP
detection. However, this dataset is collected in the Beijing–Tianjin–Hebei Region and only
contains 318 original pictures, which is still not enough for large-scale applications in other
locations for both training and testing. To improve the diversity of dataset resources, we
collected and constructed a new dataset called HPGC-CFPP, which contains 300 original
CFPP HRSIs collected in the Guangzhou–Foshan–Zhaoqing region from 2015 to 2019,
covering over 25,000 km2. These 300 images contain over 70 CFPPs with 1 m resolution in
Google Earth, ranging in size from 500× 500 to 1000× 1500 pixels. We manually labeled
and interpreted four types of CFPPs, including two types of objects, i.e., chimney and
condensing tower, and tower working status, i.e., working and nonworking. By pairing
one type of object and one status, there are four labels in our datasets, i.e., working
chimney, nonworking chimney, working condensing tower, and nonworking condensing
tower. As Figure 6 shows, a CFPP’s location may contain several different components,
including chimneys and condensing towers with different working statuses. Different
constructions belonging to one CFPP are included in one labeled image. In this paper, we
use both BUAA-FFPP60 and HPGC-CFPP to realize robustness and avoid overfitting. After
rotation, mirroring, and blur operations, we obtained 1200 images as our training dataset
and 400 images as our test dataset, of which 200 images are for model evaluation, and
the 200 images collected in the Guangzhou–Foshan–Zhaoqing region are for large-scale
application evaluation.

Unworking Chinmey

Working Chinmey
Unworking Condensing Tower
Unworking Condensing Tower

Figure 6. Examples of our datasets, including working chimney, nonworking chimney, working
condensing tower, and nonworking condensing tower.

Our study area is the Guangzhou–Foshan–Zhaoqing region, located in the Pearl River
Delta (PRD) region, Guangdong province, China, consisting of Guangzhou and Foshan,
and Zhaoqing (See Figure 7). Images for large-scale detection are Google Earth’s smallest
outsourcing rectangles, containing the Guangzhou city, Foshan city, and Zhaoqing city
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boundaries, with 1-meter resolution . The 200 images collected in this region are used for
the evaluation of this large-scale application.

In this section, we discuss our experiment details and results. First, we introduce our
experiment parameter settings, platform, and evaluation metric in Section 5.1. Then, we
elaborate on the experimental results of MUREN in Sections 5.2 and 5.3. Section 5.4 is for
discussion of the comparative study.

Z
F G

(a)

(b)

(c)

Figure 7. (a) is the map of China, (b) is the map of Guangdong province and locations of the
Guangzhou–Foshan–Zhaoqing region, and (c) is our study area.

5. Experimental Results
5.1. Parameter Settings and Evaluation Metric

We conducted our experiment with the PyTorch deep learning framework [75] and
MMDetection framework [76], with four NVIDIA GeForce RTX 2080 Ti GPUs. The batch
size is set as 4 and the learning rate is 0.005. We use mini-batch stochastic gradient descent
(SGD) [77] as the optimizer for classifier training and set a momentum of 0.9 and a weight
decay of 0.0005. For the anchor scale, we set 8, and the ratio we set is [0.1, 0.2, 0.5, 1, 2, 5,
10], considering the shape of the chimney and condensing tower. Additionally, we also use
multiscale training with the long edge set to 2000 and the short edge randomly sampled
from [400, 1400], as well as online hard example mining (OHEM) [78] to handle hard exam-
ple learning. The loss function for the classifier is CrossEntropy Loss and the loss function
for bbox is SmoothL1 Loss. Additionally, we adopt CLAHE and IAASharpen in Albumen-
tations [79] to conduct online image augmentation, with a possibility of 0.5. Soft-NMS (Soft
Nonmaximum Suppression) is also used [80] to eliminate overlapping proposals.

There are four parts in the evaluation metric: recall, precision, average precision
(AP), and mAP. Recall indicates the model’s capability of detecting ground-truth CFPPs.
Precision represents the model’s capability of detecting CFPPs correctly. AP (average
precision) represents the average precision in the Precision–Recall (PR) curve, measuring
model performance more comprehensively. mAP is the mean AP, averaging all APs for
corresponding label types. They can be calculated from the following formulas:

recall =
TP

TP + FN
(11)

precision =
TP

TP + FP
(12)



Remote Sens. 2023, 15, 2200 12 of 23

AP50 =
∫ 1

0
p(r)dr (13)

mAP50 =
1
N

N

∑
i=1

APi (14)

TP means true positives, denoting the number of CFPP detected correctly; FP means
false positives, denoting the number of others detected as CFPPs by mistake; and FN means
false negatives, denoting the number of ground truths that are missing in detection results.
p(r) means the point on the PR curve. N means the total number of label types. AP50

represents that when the IoU metric value between the detected CFPP and a ground-truth
CFPP is greater than or equal to 0.5, a CFPP construction will be called as correctly detected.

5.2. MUREN Detection Results

We conduct our experiments on the datasets mentioned above, 1200 images for training
and 400 images for testing, and three cities’ Google Earth images for prediction. Table 1
shows the detection results of our MUREN, concerning TP, FP, FN, precision, recall, AP,
and mAP. We found that our MUREN achieved an mAP of 92.46%, with APs of 88.92%,
86.32%, 98.1%, and 96.49%, respectively, for working chimney, nonworking chimney,
working condensing tower, and nonworking condensing tower. Among these, the values
of the indexes of the “chimney” category are basically lower than those of the“condensing
tower” category; the values of the indexes of the “nonworking” category are basically lower
than those of the “working” one. The reasons for these two phenomenons are that first,
chimneys have much smaller features than condensing towers, and there is more similarity
confusion with chimneys than condensing towers, and second, the “working” status uses
smoke, which presents more features than the “nonworking” status, meaning it is easier
to detect. Appendix A displays some examples of detection results. We can figure out
that our MUREN displays strong ability in CFPP detection, both in dispersed and densely
clustered scenarios.

Table 1. The detection results evaluation of MUREN.

Index
Chimney Condensing Tower

Working Nonworking Working Nonworking

recall 88.17% 83.02% 98.32% 97.28%
precision 86.92% 80.46% 99% 92.23%

AP 88.92% 86.32% 98.10% 96.49%

mAP 92.46%

5.3. Large-Scale Applications

We applied MUREN on a large-scale application in three cities, Guangzhou, Foshan,
and Zhaoqing, with 1-meter Google Earth satellite images, and evaluated the detection
performance on the 200 labeled images collected in this region. We can find from Table 2 that
MUREN had good performance in the large-scale application, achieving an mAP of 87.58%.
However, all APs have some decrease compared with Table 1. We discuss this decrease
in Section 6.3. Figure 8 shows the visualization of the large-scale application. As we can
see, there are fifty-two CFPPs detected by MUREN in total. Additionally, considering
that a complete CFPP location must consist of chimneys and condensing towers, we set a
distance threshold of 100 m—which is 100 pixels in this image—between a chimney and
a condensing tower to identify whether this is a CFPP location. If the distance between a
chimney and a condensing tower is less than 100 pixels, we recognize it as a complete CFPP
location, denoted by a red point; otherwise, it is an incomplete CFPP location, denoted by
a blue point. It turns out that there are nine complete CFPPs and forty-three incomplete
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CFPPs in this region. Additionally, CFPPs tend to be located in more urbanized areas with
more industries and rivers. The time required for this investigation is about five hours,
which is very fast and efficient in large-scale applications. This efficiency guarantees our
future work on time series large-scale CFPP detection.

Complete CFPP Location
Incomplete CFPP Location

Figure 8. The visualization of large-scale detection in the Guangzhou–Foshan–Zhaoqing region. The
blue point denotes an incomplete CFPP location, and the red point denotes a complete CFPP location.
There are nine complete CFPPs and forty-three incomplete CFPPs in this region.

Table 2. The large-scale evaluation results of MUREN.

Index
Chimney Condensing Tower

Working Nonworking Working Nonworking

TP 66 89 43 57
FP 13 19 6 7
FN 11 14 1 4

precision 83.43% 82.41% 87.76% 89.06%
recall 85.71% 86.41% 97.73% 93.44%

AP 84.67% 82.72% 92.75% 90.19%

mAP 87.58%

5.4. Comparative Study between MUREN and Other Object Detection Methods

Precision comparison. We conducted comparative studies between our MUREN and
other state-of-the-art object detection methods, including Fast R-CNN, Faster R-CNN [16],
Cascade R-CNN [20], Dynamic R-CNN [18], Libra Faster R-CNN [19], SSD [13], and
RetinaNet [14]. We list the comparative results in Table 3 with respect to AP and mAP.
More detection results can be found in Appendix A. We find that our MUREN reaches an
mAP of 92.5%, which improves the mAP by 5.98% compared with the baseline (Cascade
R-CNN) and outperforms by 4.57–21.38% the other six deep-learning-based object detection
methods in respect to mAP. Specifically, MUREN takes the lead for the working chimney,
nonworking chimney, and working condensing tower, yet it is a little behind Libra Faster
R-CNN in the nonworking condensing tower. Our MUREN improves the most on chimney
detection performance, which presents with fewer pixels in RSIs and is more difficult to
detect. This indicates MUREN has good capabilities in small and dense object detection
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in RSIs. SSD, RetinaNet, and Fast R-CNN perform similarly, with an mAP lower than
75%. Dynamic R-CNN and Faster R-CNN achieve improvements compared with the last
three algorithms, with an mAP of around 80%. Cascade R-CNN and Libra Faster R-CNN
displayed great performance, achieving an mAP of about 87%. Figures 9 and 10 show
the detection results of this comparative study between seven deep-learning-based object
detection methods and our MUREN, showing the better performance of MUREN compated
with other state-of-the-art methods. We can observe that MUREN stands out mainly in
chimney detection and nonworking condensing tower detection. More detection results
are listed in Appendix A.

MUREN Libra R-CNN Cascade R-CNN Dynamic R-CNN

Faster R-CNN Fast R-CNN RetinaNet SSD300
Figure 9. The detection results of eight methods. The box denotes the location, and the text denotes
the category and working status. The number denotes the confidence value.

Table 3. The precision comparison between other methods and MUREN.

Method Working
Chimney

Nonworking
Chimney

Working
Condensing Tower

Nonworking
Condensing Tower mAP

SSD 55.31% 56.38% 88.41% 84.23% 71.08%
RetinaNet 59.78% 58.19% 89.90% 84.21% 73.02%

Fast R-CNN 62.02% 61.56% 90.67% 84.67% 74.73%
Dynamic R-CNN 71.29% 72.76% 92.31% 91.07% 81.85%

Faster R-CNN 70.73% 66.24% 93.44% 89.41% 79.95%
Cascade R-CNN 80.34% 79.92% 93.76% 91.93% 86.48%

Libra Faster R-CNN 82.23% 78.45% 94.32% 96.67% 87.89%
MUREN(Ours) 88.92% 86.32% 98.10% 96.49% 92.46%

Complexity comparison. We also compare the computational complexity regarding
the parameter amount, space occupancy, and training/testing time. These variables can
reflect the computational complexity of trained models. As can be seen in Table 4, SSD has a
comparatively small parameter amount and space occupancy. The two-stage methods, i.e.,
Fast R-CNN, Faster R-CNN, Dynamic R-CNN, Cascade R-CNN, and Libra Faster R-CNN,
have more parameter amounts and space occupancy. Among these, Dynamic R-CNN has
the most amount of parameters and space occupancy. Compared with these methods, our
MUREN has a comparatively average parameter amount and space occupancy, with a
slight increase compared with the baseline (Cascade R-CNN). The training and testing time
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are compared in Figure A2. MUREN has one of the longest training times, but the testing
time is comparatively short.

MUREN Cascade R-CNN Dynamic R-CNN

Faster R-CNN Fast R-CNN RetinaNet SSD300

Libra R-CNN

Figure 10. The detection results of eight methods. The box denotes the location, and the text denotes
the category and working status. The number denotes the confidence value.

Table 4. The complexity comparison between other methods and MUREN.

Method Parameter Amount Space Occupancy

SSD 35 million 224 MB
RetinaNet 40 million 633 MB

Fast R-CNN 42 million 428 MB
Dynamic R-CNN 47 million 631 MB

Faster R-CNN 42 million 437 MB
Cascade R-CNN 44 million 552 MB

Libra Faster R-CNN 45 million 575MB
MUREN(Ours) 45 million 587 MB

6. Discussion

In this part, we reap ablation studies for MUREN, discussing the effectiveness of
each strategy in our proposed MUREN, and discuss the limitations of MUREN by offering
missed and false detections. Typically, we first assessed the effect of the symmetrically
enhanced network in Section 6.1 . Then, we evaluated the contributions of recursive
connections in Section 6.2, with the improved ASPP module. These ablation studies explain
the effectiveness of every single strategy in our proposed MUREN and offer a deeper sight
into it. After that, we discuss the limitations of MUREN and offer some examples of error
detection, misdetection, and corresponding illustrations.

6.1. Ablation Study of the Symmetrically Enhanced Network

In this section, we evaluate the effectiveness of the symmetrically enhanced network
from two aspects: detection results and feature map visualization. As can be seen from
Figure11, we visualize the feature map extracted from the backbone and ResNet50, with and
without CEN and SEN. It is clear that ResNet50 with CEN can filter most noise disturbance,
but in the meantime, CEN can filter target features falsely to some extent.

Detection results. Table 5 displays the detection results’ evaluation. ResNet50 with
CEN outperformed ResNet50 without CEN by 1.35% in mAP. Especially, ResNet50 with
CEN achieved great improvements in chimney detection. The APs of working chimney
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detection and nonworking chimney detection increased by 1.96% and 2.23%, respectively,
compared with those detected by ResNet50 without CEN.

SEN contributes to the improvement in mAP by 0.4% against the baseline, with APs
of 0.99% on working chimneys and 0.52% on nonworking chimneys, respectively. When
combining the two enhanced networks, the mAP achieves a number of 89.27%, which
outperforms Libra Faster R-CNN. this indicates that both enhanced spatial and channel
networks can bring benefits to small object detection. Additionally, this confirms that the
richer and more accurate the semantic information, the better the detection performance.

Table 5. The ablation study of CEN and SEN.

Strategy Working
Chimney

Nonworking
Chimney

Working
Condensing Tower

Nonworking
Condensing Tower mAP

Baseline 80.34% 79.92% 95.76% 92.93% 87.23%
Baseline+CEN 82.30% 82.15% 96.12% 93.78% 88.58%
Baseline+SEN 81.33% 80.45% 96.25% 92.67% 87.63%

Baseline+CEN+SEN 83.91% 82.93% 96.17% 94.07% 89.27%

Feature map visualization. As can be seen from Figure 11, we visualized the feature
map extracted from the backbone and ResNet50, with and without CEN and SEN. It is
clear that ResNet50 with CEN can filter most noise disturbance, but in the meantime, CEN
can filter target features falsely to some extent. Moreover, it is clear to see from the SEN
column of Figure 11 that by adding SEN into the backbone, the spatial interrelationship
between components in CFPPs shows up, and more semantic information with richer and
accurate location details from the complex remote sensing scenario is extracted. CEN with
SEN makes the boundaries of components clear and the location accurate.

Figure 11. The visualization of feature maps from ResNet50, ResNet50+CEN, ResNet50+SEN, and
ResNet50+CEN+SEN. We visualized the feature maps of these four satellite images. Vanilla ResNet50
is seriously affected by surrounding textures, and the features of CFPP are vague and blurred. By
adding CEN into the backbone, most noise is eliminated and the features of CFPP are emphasized,
but some useful features are also removed. SEN finds more spatial relationship between components
in CFPPs. After employing SEN, the features of CFPPs become more comprehensive with clearer
boundaries and more accurate locations.
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6.2. Ablation Study of Recursive Connections

In the section, we show the ablation study of the recursive connections we propose in
Section 3.3. Table 6 shows the results. First, we tested the performance of the baseline (Cas-
cade R-CNN) with ResNet50 and vanilla FPN as its backbone. Then, we added recursive
connections and an improved ASPP module in the backbone, evaluating their contributions
to the improvements. As we can see, recursive connections can bring >2% improvements
in mAP compared with the baseline. The improved ASPP module outperforms the vanilla
ASPP module by about 0.5% mAP. Specifically, the APs of working and nonworking chim-
neys increased by 3.86% and 2.69%, which is higher than those of working and nonworking
condensing towers—1.56% and 2.4%, respectively. We can find that recursive connections
with the improved ASPP module boost the model ability of small and densely clustered
object detection.

Table 6. The ablation study of recursive connections.

Strategy Working
Chimney

Nonworking
Chimney

Working
Condensing Tower

Nonworking
Condensing Tower mAP

Baseline 80.34% 79.92% 95.76% 92.93% 87.23%

Recursive
Connections 82.38% 81.41% 96.83% 94.21% 88.71%

Recursive
Connections + Vanilla

ASPP 83.02% 82.19% 97.11% 94.76% 89.27%

Recursive
Connections + Improved

ASPP 83.98% 82.61% 97.32% 95.33% 89.81%

6.3. Limitations

Even though the superiority of MUREN has been validated through comparative
studies and ablation studies, there exist limitations. First, as shown in Section 5.3, the
APs all decrease compared with the local evaluation, which indicates the generalization
ability of MUREN should be strengthened. We recognize the training data are not that
sufficient to support good generalization ability, and this may lead to overfitting to a
certain extent. Because the number of CFPPs in specific regions is not as great as other
objects, such as trees and vehicles, there is a limit to collecting the same amount of data.
Additionally, some the training data were collected in the Beijing–Tianjin–Hebei region,
where the different scenarios, backgrounds, and features from the Guangzhou–Foshan–
Zhaoqing region may harm the generalization ability. Second, in Figure 12, we show
some examples of false detection and misdetection in MUREN results. The red rectangles
denote the false detection, and the green rectangles denote the misdetection. As we can
see, the main factors of misdetection and false detection are complex backgrounds and
similar textures, including pipes, snow, clouds, etc. These factors indicate that although
MUREN is designed for CFPP detection in complex scenarios, severe obstructions and
similar surroundings can still affect performance.
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Figure 12. The visualization of false detection and misdetection of MUREN results. The red rectangles
denote false detection, and the green rectangles denote the misdetection.

7. Conclusions

In this paper, we propose a MUltistage Recursive Enhanced Network (MUREN) to
tackle composite CFPP detection, which consists of three procedures: the symmetrically
enhanced networks embedded into a residual block, including a channel-enhanced subnet-
work (CEN) and a spatial-enhanced subnetwork (SEN), recursive connections in FPN, and
multistage detectors. We assess the MUREN method using the test datasets collected from
the Beijing–Tianjin–Hebei region and Guangzhou–Foshan–Zhaoqing region. Compared
with the other seven deep-learning-based object detection methods, MUREN achieved
the best performance with an mAP of 92.46%, which improves this index by 4.57–21.38%.
Moreover, we conducted a large-scale application in the Guangzhou–Foshan–Zhaoqing
region, which resulted in nine complete CFPPs and forty-three incomplete CFPPs . The
results indicate MUREN has great ability and potential in composite CFPP detection and
counting. MUREN could bring effectiveness to large-scale composite CFPP detection and
support carbon neutrality to the extent of CFPP monitoring. In the future, we will explore
domain adaptation methods in remote sensing to employ MUREN in more large-scale and
complex applications. We will also explore rotational object detection methods, continually
boosting performance in real large-scale applications.
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Some examples of detection results and comparisons by eight methods.

https://github.com/yuanshuai0914/MUREN
https://github.com/yuanshuai0914/MUREN


Remote Sens. 2023, 15, 2200 19 of 23

MUREN
Dynamic R-CNN
Fast R-CNN

Faster R-CNN

Libra R-CNN
SSD
RetinaNet

Cascade R-CNN

Iteration

Lo
ss

0 2,500 5,000 7,500 10,000 12,500 15,000 17,500

0.5

1.0

1.5

2.0

2.5

Figure A1. The training loss comparison of eight methods. Our MUREN achieves the best loss
convergence of about 0.15.

Figure A2. The time required by the eight methods in training and testing. Though MUREN has the
maximum total time spending, the testing time of each method is almost the same, which is the real
time consumption in large-scale applications.



Remote Sens. 2023, 15, 2200 20 of 23

MUREN Libra R-CNN Cascade R-CNN Dynamic R-CNN

SSD300RetinaNetFast R-CNNFaster R-CNN

Figure A3. The detection results of the eight methods. The box denotes the location, and the text
denotes the category and working status. The number denotes the confidence value.

MUREN Libra R-CNN Cascade R-CNN Dynamic R-CNN

SSD300RetinaNetFast R-CNNFaster R-CNN

Figure A4. The detection results of the eight methods. The box denotes, the location and the text
denotes the category and working status. The number denotes the confidence value.
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