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Abstract: Recognizing and classifying natural or artificial geo-objects under complex geo-scenes
using remotely sensed data remains a significant challenge due to the heterogeneity in their spa-
tial distribution and sampling bias. In this study, we propose a deep learning method of surface
complexity analysis based on multiscale entropy. This method can be used to reduce sampling bias
and preserve entropy-based invariance in learning for the semantic segmentation of land use and
land cover (LULC) images. Our quantitative models effectively identified and extracted local surface
complexity scores, demonstrating their broad applicability. We tested our method using the Gaofen-2
image dataset in mainland China and accurately estimated multiscale complexity. A downstream
evaluation revealed that our approach achieved similar or better performance compared to several
representative state-of-the-art deep learning methods. This highlights the innovative and significant
contribution of our entropy-based complexity analysis and its applicability in improving LULC
semantic segmentations through optimal stratified sampling and constrained optimization, which
can also potentially be used to enhance semantic segmentation under complex geo-scenes using other
machine learning methods.

Keywords: remote sensing; land use; land cover; surface complexity; sampling bias; stratification;
samples; deep learning; constrained optimization; semantic segmentation

1. Introduction

Remote sensing monitoring technology, because of its advantages of non-contact
long-distance detection and identification [1], has played an important role in the real-
time dynamic monitoring of forest resources [2,3], air quality monitoring and assess-
ment [4,5], land surveying and dynamic monitoring [6], and crop growth monitoring [7],
etc. Deep learning can efficiently extract features from data, and its combination with
remote sensing technology greatly saves the time required with manual investigation and
interpretation [8–10]; with the support of deep learning, multiband, multitemporal, and
hyperspectral remote sensing data are increasingly being used to improve the accuracy of
object recognition and classification [11,12].

However, studies have shown that the complexity of Earth surface elements has
considerably affected the accuracy of ground object recognition and classification using
remotely sensed data [13–16]. The information extraction accuracy of remote sensing
images depends on the measurement accuracy of the sensor itself [17] as well as the context
surrounding the target object [13]. For hyperspectral or multispectral remote sensing
images, it is difficult to distinguish ground objects with similar spectra but different spatial
structures [18]. There exist many phenomena of different objects with the same spectra
(e.g., trees and shrubs) or the same objects with different spectra (crop identification) [19].
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In addition, the reflectivity of a ground object is affected by its surface roughness, and the
recognition accuracy of remote sensing data is not high in areas with rugged terrain [14], a
wide variety of ground objects [20], and severely fragmented ground surfaces [21], or in the
rural–urban fringe [22,23]. Under complex geo-scenes, the complexity of surface features
can significantly affect sampling, prediction accuracy and generalization in remote sensing
information extraction.

In geosciences, the Earth is composed of the geosphere, hydrosphere, lithosphere,
atmosphere, cryosphere, and biosphere, and its complexity comes from multiple interac-
tions and nonlinear feedback loops between or within each sphere [24,25]. The Earth’s
surface refers to the part of the Earth’s environment most directly related to human beings,
and the surface complexity refers to the complexity of the surface features. The surface
complexity has the following three salient characteristics: (1) Scale dependence: the tempo-
ral and spatial patterns of surface elements at different scales are different, and the laws
of low spatiotemporal scales cannot be equal to those of high spatiotemporal scales [26].
(2) Non-linear driving: surface elements are interconnected and mutually constrained, and
they have complex nonlinear interactions [27,28]. (3) High uncertainty of the evolution
trend: small changes in surface systems may alter the overall evolutionary trends of the
system [29]. The Earth’s surface is a very complex giant system [30]. Geographers have
realized that surface complexity is a feature that should not be ignored [31]. There is no
doubt that the higher the surface complexity, the more information content it contains, so it
should be given more focus in the corresponding research. Nevertheless, a literature review
indicates that providing a standardized and quantitative definition of surface complexity
that is both accurate and applicable to enhance remote sensing information extraction
remains a challenge [32–34]. From the perspective of machine learning, randomly selected
samples under complex geo-scenes cannot well characterize the local surface complexity of
the population, resulting in potential biases in model learning and prediction.

Deep learning, with its powerful learning capabilities, is being increasingly utilized
to extract representations from remotely sensed data [35–39] and develop advanced algo-
rithms such as UNet [40], FCN-ResNet [41,42], global CNN [43], Graph [44], DeepLab Ver
3.0+ [45], MAP-Net [20], Transformer [46], Crossformer [47], Sparse Token Transformer [48],
UNet-Transformer [49,50], Polyworld [51], and PolyBuilding [52]. Despite efforts to modify
or substitute network structures in deep learning to improve the information extraction of
remote sensing images, it is also important to note that sampling bias can significantly affect
the classification and semantic segmentation of land use and land cover (LULC) [53]. For
statistical machine learning, the selection of samples plays a critical role for model training
and testing. Considering the data quality, data quantity, and problem difficulty, a good
sample should represent the population for the minimum sampling bias [54]. However,
traditional methods of collecting labeled samples in remote sensing is likely to be biased
with an unbalanced spatial distribution of samples and unbalanced sample proportion
between classes [53]. Manually selected samples are usually distributed in large-scale
homogeneous tracts or blocks, and such samples are often highly clustered with a strong
autocorrelation. Insufficient and unrepresentative training samples are widely recognized
as major causes of classification errors [53,55,56]. Therefore, to ensure unbiased training, it
is important to use a qualified set of training samples that well represent the population
characteristics of the Earth’s surface.

In this paper, we propose a quantitative definition of multiscale surface complexity
using the entropy-based method of deep learning and evaluate its innovative applications
of optimal sampling and constrained optimization for land cover image semantic segmen-
tation. In the quantitative definition of surface complexity, we considered the impact of the
surrounding context on the target pixels or locations of interest and derived the multiscale
convolutions to capture such contextual information.

In summary, our main contributions are as follows:
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(1) We made a quantification definition of pixel-level multiscale surface complexity that
was encoded using an entropy-based convolution. The convolution operator was
developed to calculate the local complexity for surface features.

(2) We developed a deep learning algorithm to identify and extract multiscale surface
complexity based on the input of spectral features and/or relevant geospatial vari-
ables. The robust learning algorithm can model the mapping relationship from the
influencing factors to the surface complexity and improve its generalization.

(3) We developed novel optimal sampling strategies based on complexity analysis and a
constrained optimization of entropy-based invariance to improve the semantic seg-
mentation of land cover images. Here, instead of emphasizing the innovation network
structure, since the baseline UNet achieved the state-of-the-art test performance, we
highlighted the importance of reducing the sampling and modeling bias for LULC
semantic segmentation.

(4) We evaluated the important influence of the complexity-informed optimal sampling
and constrained optimization on the semantic segmentation of LULC using the typical
Gaofen-2 satellite images. By comparing with representative deep learning methods
including FCN-ResNet, global CNN, DeepLab V3, and Crossformer, we illustrated
the innovative contributions of our method in reducing the sampling and modeling
bias, which significantly improved the semantic segmentation of LULC.

2. Methodology

The concept of complexity is usually understood in a certain context or domain, where
it is somewhere between regularity and randomness [57]. For fine-scale remote sensing
information extraction, we defined surface complexity as the statistics of such context
surrounding a target pixel or a spatial location of interest. Intuitively, we used a statistical
parameter of uncertainty as a fundamental measure of complexity, which could also indicate
the non-linearity of surface complexity. Here, we defined entropy-based uncertainty as an
indicator of complexity at the pixel level for applicability in remote sensing information
extraction and trained a model of multiscale complexity based on the multivariate input
including not only spectral characteristics but also potential geospatial variables.

2.1. Definition and Extraction of Entropy-Based Multiscale Complexity

Entropy is generally regarded as a measurable physical property of a state of disorder,
randomness, or uncertainty, and on this basis, we employed entropy as the basis for local
surface complexity quantification. The concept of entropy was originally derived from the
Boltzmann–Planck equation in statistical mechanics, which represents the degree of chaos
in a macrostate system [58]:

S = kB log W (1)

Where kB is the Boltzman constant (≈1.38 × 10−23 J/K), W (or Ω) represents the
multiplicity (the number of real microstates), and log is the natural logarithm function.

Based on Boltzmann’s definition, Shannon proposed information entropy in 1948 and
described it as the probability of the occurrence of discrete random events. Therefore, we
derived the pixel-level (local) multiscale non-linear complexity metric from Shannon’s
definition of information entropy [59]:
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where x denotes a random event (surface mask of the target class for our context), dk is
the kernel size (scale) for the index, k, m is the number of kernels, c is the number of all
the classes within the context, i is the class index for classification, and p

(
x
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i

)
is the

probability for x within the kernel dk belonging to class i.
To achieve the efficient extraction of local surface complexity feature, we designed its

convolution operator (Figures 1 and 2a) and made full use of the GPU and parallelization
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of PyTorch’s deep learning software [60] to accelerate the complexity computing. In order
to avoid the edge effects of complexity convolution computations [61], the input of the
mask needed to contain additional class values within half the kernel size outside the
boundary so that the complexity on the edge of the image or patch could be evaluated
correctly. For multiscale complexity extraction, we used half of the maximum kernel size as
the border size of the target mask patch so that the borders at the other scales could also
be covered (Figure 1). Corresponding to the definition of the pixel-level entropy-based
complexity, as aforementioned, the kernel of the complexity convolution is equivalent to the
context surrounding the target point or location, and the size-varying kernels of complexity
convolutions correspond to multiscale contexts surrounding the target pixels or locations.
Given the scale dependence and multiscale effects [26] of surface complexity for remote
sensing and geoscience applications, we proposed a multiscale surface complexity for the
trained model to capture the invariance to scale variations [62].
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While our definition of surface complexity is based on all pixels and classes in the
local context, we focused on a binary classification in this manuscript. This was because,
even for multiclass problems, combining binary classifiers often yields better performance
than using a multiclass classifier alone [63–65]. Moreover, binary applications are typical
and representative, and their labels often involve binary rather than multiclass labeling due
to the high cost of data labeling. To make our approach widely applicable, we simplified
the definition of surface complexity to binary classes (target class and background) and
developed the application and technical evaluation route based on binary classification.

2.2. Learning Entropy-Based Multiscale Complexity

For the pixel-level entropy complexity extracted from the mask images of class labels,
it is important to learn such local surface complexity based on the input of remote sensing
spectral and/or spatiotemporal features. The learned model can be used to estimate the
complexity at unobserved locations or regions. As aforementioned, surface complexity
exhibits scale dependence, nonlinearity, and uncertainty, and it is influenced by multiple
factors, including not only spectral properties but also geographic, ecological, and socioeco-
nomic characteristics, etc. Therefore, to accurately capture local surface complexity, inputs
in learning can include a variety of driving and influencing variables (Figure 2a).
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algorithm to identify it.

Since local surface complexity is extracted using an entropy-based convolution op-
erator, UNet is a natural method for learning the complexity, and its multi-convolutional
encoder–decoder structure can encapsulate the surrounding context for the target pixel
or spatial location of interest (Figure 2b). As a fully convolutional neural network, UNet
has been widely used in various application fields such as medical image analysis, remote
sensing, and industrial inspection since its launch in 2015 [66]. It consists of an encoder
pathway that captures an image’s features at multiple scales and a corresponding decoder
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pathway that reconstructs the segmented image by upsampling. In UNet, skip connections
between the encoder and decoder pathways facilitate the preservation of spatial infor-
mation during the segmentation process. Compared with Unet, other machine learning
methods such as random forest, XGBoost, and support vector machines do not have such a
mechanism to model such a context. Sensitivity analysis has shown the low generalization
of these methods in comparison with UNet. To improve the learning of our model, we
added the layers of batch normalization, a ReLU activation function, and dropout after
each convolution layer.

For the model learning and the optimization of local surface complexity scores, the
mean squared error (MSE) loss function was used [67]:

LMSE(W) =

n
∑

i=1
(yi − ŷi)

2

n
+ λ

K

∑
k=1

w2
k (3)

where n is the number of samples, yi is the surface complexity computed from the binary
mask within the kernel window for grid cell i, W denotes the parameters of the network
(W = {wk}), ŷi is the surface complexity of grid cell i estimated by the network, K is the

number of parameters in W, and λ is the weight for the L2 regularizer (
K
∑

k=1
w2

k).

The optimal hyperparameters including the learning rate (1 × 10−5 to 0.1), beta1
(0.1–0.9), beta2 (0.1–0.9), and the loss weight (λ) were obtained through grid search.

2.3. Complexity-Informed Optimal Sampling and Constrained Optimization

An important source of high uncertainty in remote sensing information extraction is
sampling bias, where unrepresentative samples are selected for training and/or testing,
especially since the majority of the bias usually arise from complex contexts [68,69]. There-
fore, we used the average multiscale surface complexity as the stratifying factor and the
sampling weight to increase the representativeness of the samples. For each stratum, the
samples with high complex context could be selected with a high probability. Thereby, we
could obtain more balanced samples for training and testing than simple random sam-
pling [70]. In addition, the local surface complexity feature could be used as a constraint
to strengthen the model training to tackle the classification and identification of the tar-
get objects under complex surface contexts. Figure 3 presents a flow chart for the local
surface complexity quantification, learning, and optimal sampling and the constrained
optimization for semantic segmentation. Figure 3 also shows the input and output for each
of three phases in our method. In this study, we focused on the evaluation of local surface
complexity for binary segmentation of land use and land cover using remotely sensed data.

For the optimal sampling, the estimated complexity scores were first summarized, and
the samples were stratified using the summed quartiles (or more quantiles), and then the
same proportion was used in the sampling within each stratum, and the samples drawn
in each stratum were combined into the training and test samples, respectively. Within
each stratum, the local surface complexity score was used as the sampling weight, and the
samples with high complexity scores were more likely to be selected for training (Figure 4).
Therefore, the samples with different complexity scores were relatively evenly distributed
in the training and testing samples, while the model could also focus on samples with
high complexity scores in the learning to boost the generalization of the trained model.
Selecting samples that are representative of the population is crucial to the learning of a
segmentation or classification model, otherwise the learned model has sampling bias.
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For the semantic segmentation of land use or land cover, the complexity scores ex-
tracted from ground truth data can be used as a constraint loss term to enhance model
training. For binary segmentation, we used a combined loss function, which consisted of
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Dice loss (LDice), binary cross-entropy (BCE) loss (LBCE), and the MSE loss of local surface
complexity constraint (LComplexity). The model outputted a 256 × 256 patch consisting of
two bands, one representing the predicted probability of the target class and the other
representing the estimated surface complexity score. The BCE loss was derived from the
former, while the MSE loss was derived from the latter. The BCE loss is commonly used
as a stable loss function for binary segmentation, as it is based on Bernoulli’s distribution
loss. However, it may not perform well for highly imbalanced classification tasks. On the
other hand, the Dice loss, which is inspired by the Dice coefficient score, is effective for
learning better boundary representations, but its learning can be unstable for extremely
imbalanced classifications. Thus, we leveraged the benefits of both the BCE and Dice losses
to create a combined loss function [71] that is more appropriate for imbalanced samples,
such as those encountered in land cover classification. Additionally, the combined loss
function includes the complexity loss term to preserve the entropy-based invariance, thus
mitigating overfitting.

LBCEDice = LBCE + λLDice + γLComplexity

= − 1
n

n
∑

i=1
[yi log ŷi + (1− yi) log(1− ŷi)]+

λ

[
1−

(
2

n
∑

i=1
yi ŷi + ε

)
/
(

n
∑

i=1
yi +

n
∑

i=1
ŷi + ε

)]
+

γ 1
n

n
∑

i=1

(
f C
S (yi)− ŷC

i
)2

(4)

where yi is the ground truth mask of the target class c, ŷi is the probability of belonging to
the target class, c, predicted by the network, λ is the weight for the Dice loss, f C

S (yi) is the
complexity extracted based on yi, ŷC

i is the estimated complexity by the same network, γ is
the weight for the optional complexity loss, and ε is the smooth constant. With the surface
complexity as an optimization constraint, the network needed to output two items, one
being the binary prediction mask and the other being the estimated complexity.

3. Experiments
3.1. Dataset

To evaluate the proposed method, we used a large-scale land cover dataset with the
Gaofen-2 (GF-2) satellite images (GID) and their reference annotations, which are pub-
licly accessible (https://captain-whu.github.io/GID15 (accessed on 3 January 2022)) [72].
Gaofen-2 (GF-2) is the second satellite of the high-definition Earth observation system
launched by the China National Space Administration (CNSA). GID provides multispectral
images with a range of blue (0.45–0.52 µm), green (0.52–0.59 µm), red (0.63–0.69 µm), and
near-infrared (0.77–0.89 µm) images and a spatial dimension of 6800 × 7200 pixels covering
a geographic area of 506 km2. GF-2 images have a high spatial resolution (4 m used in
this study) and wide field of view, allowing for detailed observation over large areas. We
used the large-scale clarification set of GID, in which five major categories were annotated,
namely build-ups, farmland, forest, meadow and waters, which were defined according
to the Chinese land use classification criteria (GB/T21010-2017) [73]. The dataset contains
150 high-quality GF-2 images and labels from over 60 different cities in China, representing
the distribution of ground objects in different areas, variations, and complex land surface
scenes (see Figure 5 in [72] for the spatial distribution of the samples). With its rich diversity,
GID could well be used to evaluate our proposed method of quantification, learning, and
applicability of the local entropy-based surface complexity. GID does not provide latitude
and longitude coordinates, so we could not extract any geospatial data, such as elevation
or NDVI, to enhance the learning of local surface complexity and semantic segmentation.

https://captain-whu.github.io/GID15
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3.2. Experimental Detail

Our experimental dataset consisted of 150 labeled images with an image size of
6800 × 7200 and a spatial resolution of 4 m. We considered two types of multiscale: one
using multiple different kernel sizes, and another that upscales the original image at
multiple spatial scales. For the former, we could extract the local surface complexity from
the original images with different sized kernel contexts, which were most effective for
geographic features with high local variations; for the latter, we could extract the local
surface complexity from a wider convolutional field on the target object, which was most
effective for geographic features with low local variation. For upscaled images, the extracted
surface complexity was converted back to its original scale using bilinear resampling.

For the surface complexity convolution operation and UNet learning, the original
or upscaled images were divided into multiple patches with the same resolution (s × s,
s = 256 + b, b being the corresponding border size). For each of the five land covers, we
extracted their binary masks and calculated their local surface complexity. In order to obtain
a dataset of balanced samples, especially for the target features with a small distribution in
GID, we calculated the pixel-level class count proportion for each patch and used it as a
sampling weight so as to increase the probability of a patch with a high class proportion
being selected. Of the selected images for a target class, 80% were used to train the model
and the remaining 20% were used to test the model.
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To quantify the local surface complexity, we extracted it from the binary mask input.
For the learning of the surface complexity, we tested random forest, XGBoost, and UNet
to check which had a better generalization ability. Since the GID dataset did not provide
geographical coordinates, we only used the RGB bands of the images as the input bands
to the learning models such as UNet, and no geographical variables were used. We
then examined the applicability of the estimated local surface complexity for the optimal
selection of the samples and for its use as a constraint in binary semantic segmentation. To
conduct the independent test of binary semantic segmentation, we first randomly selected
an image whose surface complexity score fell within the interquartile range of all the
estimated scores and derived independent testing patch samples from it. Next, we used
the stratified sampling strategy based on the estimated complexity scores to select patches
from the remaining images for training and regular testing. We summarized the quantiles
as the stratifying factor, using the mean complexity scores of all the remaining patches,
and we also used the complexity scores as a weight factor to randomly select 80% of the
patches in each stratum for the training samples and the remaining 20% for the regular
testing samples, as shown in Section 2.3 and Figure 4. Finally, we combined the training
samples from all the strata to train the model and combined the testing samples for regular
testing. The surface complexity score played a crucial role in the sampling and selection of
samples in the training, regular testing, and independent testing. This ensured balanced
samples were obtained in the selection and reduced selection bias.

3.3. Training

The training dataset comprised about 3000 RGB image patches, each with a size of
276 × 276. This size included the target output size (256 × 256) along with a maximum
border size of 10 pixels on each side to eliminate boundary effects during the surface
complexity estimation and semantic segmentation. The input bands were normalized by
dividing by 255. The output patch size for both the surface complexity estimation and
the binary semantic segmentation was set at 256 × 256. To obtain sufficient patch sam-
ples, oversampling was conducted for positive instances and undersampling for negative
instances, with the estimated surface complexity serving as the stratifying and weighing
factor. The over- and undersampling distances were determined based on the number of
positive instances [61]. The models were trained for 160 epochs using the Adam optimizer
with the Nesterov momentum. The initial learning rate was set to 0.001 and was adaptively
adjusted during the learning process. The mini-batch size of patches was set to 10, and an
early stopping criterion was employed during the training.

3.4. Evaluation and Prediction

We used two common metrics for continuous predictors, R-squared (R2) and root mean
squared error (RMSE), to measure the performance of the learned models in estimating the
local surface complexity.

(1) R2 can be defined as:

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 =

ESS
TSS

= 1− RSS
TSS

(5)

where yi is the observed complexity computed from the ground truth data (binary
mask), ŷi is the complexity estimated by the learned model, y denotes the mean
of the observed complexity, n is number of samples, TSS denotes the total sum of
squares (=∑n

i=1(yi − y)2), RSS denotes the residual sum of squares (=(yi − ŷi)
2), and

ESS denotes the explained sum of squares (= ∑n
i=1(ŷi − y)).

(2) RMSE can be defined as:

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (6)
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For binary semantic segmentation, we used the following performance metrics:
(1) The pixel accuracy (PA), which is defined as the ratio of the number of correctly

classified pixels to the total number of pixels:

PA =

C
∑

k=1
nkk

C
∑

k=1
tk

(7)

where C denotes the number of classes, nkk is the total number of pixels correctly classified
as class k, and tk denotes the total number of pixels labeled as class k.

(2) The intersection-over-union (IoU), also known as the Jaccard index (JI), which is
defined as the size of the intersection divided by the size of the union of the sample sets and
is to measure the degree of overlap between two frames. It is the most popular evaluation
metric for segmentation.

JI(c) =

∣∣Ŷ ∩Y
∣∣∣∣Ŷ ∪Y
∣∣ =

∣∣Ŷ ∩Y
∣∣∣∣Ŷ∣∣+ |Y| − ∣∣Ŷ ∩Y

∣∣ = ncc

∑C
i=1 nic + ∑C

j=1 ncj − ncc
(8)

where Y is the set of ground truth masks, Ŷ is the set of predicted results, ncc is the total
number of pixels correctly classified as target class c, nic is the total number of pixels whose
ground truth is class i and is classified into target class c, and nci is the total number of
pixels whose ground truth is class c and is classified into target class i.

(3) The mean intersection-over-union (MIoU), which is defined as the average of the
IoU or JI of all classes:

MIoU =
1
C

C

∑
i=1

JI(i) (9)

PA is a metric that is easy to understand and use, but it is not the best metric for
segmenting class imbalance since it can be dominated by the majority classes and may
not accurately reflect the test performance for the minority classes. Compared to metrics
such as PA, Kappa, and F1-score, the IoU or JI is one of the most commonly used metrics
in semantic segmentation. It is a straightforward and effective metric, particularly for
unbalanced segmentation tasks such as land use or land cover classification with complex
contexts. The MIoU provides a comprehensive metric for all classes as the average IoU
and is particularly effective for unbalanced classification tasks. For pixel-level semantic
segmentation, we selected simple PA as well as the most effective IoU and MIoU as the
performance metrics, since together, they provide a comprehensive measure with effective
evaluation for unbalanced classification.

After the models were trained, they were used to make predictions. For large-sized
image prediction, the image was first divided into patches of size 276 × 276 with a slight
overlap between adjacent patches. The input bands were normalized by dividing by 255
and then used as the input to the trained models for prediction. The output patch size
was set at 256 × 256, and all the predicted patches were merged by taking the mean of the
predicted values (surface complexity scores or predicted probabilities of the target class)
for the overlapping areas. The final prediction excluded the boundary (10 pixels on each
side) of the image to eliminate boundary effects.

In order to illustrate the generalization of our method, we compared our results with
those of four representative deep learning methods, including FCN ResNet, global CNN,
DeepLab V3+, and Crossformer. The four representative methods developed new network
structures to enhance the information extraction of semantic boundaries: FCN-ResNet was
constructed by a fully convolutional network model using a ResNet (ResNet-101 for our
comparison case) backbone [42]; Global CNN utilized a large kernel to help perform the
classification and localization tasks simultaneously [43]; DeepLab V3+ combined an atrous
spatial pyramid pooling block (ASPP) and depth-wise separable Xception architecture
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to obtain a faster and stronger network [45]; and Crossformer proposed two designs of
a cross-scale embedding layer and a long short distance attention to achieve cross-scale
attention [47]. To compare with these methods, we used simple random sampling rather
than complexity-informed optimal sampling to obtain the training and test samples.

4. Results
4.1. Quantification of Local Surface Complexity

Using different kernel sizes, namely 11 × 11, 21 × 21, 41 × 41, and 61 × 61, we
obtained the multiscale local surface complexity for each of the five land cover types (build-
ups, farmland, forest, meadow, and waters) (Figure 5). We summarized their statistical
violins (Figure 6). For the 11 × 11 scale, we extracted the fine-scale surface complexity,
which exhibited high values at the edges of the binary mask, as shown. Since the edges,
especially at the mask corners or intersections, varied widely or sharply, they naturally
had a high local surface complexity. As the kernel size varied from 11 × 11 to 61 × 61, the
extracted surface complexity exhibited a wider context and a more gradual change.
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Figure 6. Violins of the local surface complexity extracted from the original images (4 × 4 m2) with
different kernel sizes (KZ: kernel sizes). The red plus sign indicates the average complexity score of
the samples.

In order to make the view field of the local surface complexity convolution increas-
ingly wider, we also upscaled the original image to three different spatial resolutions,
i.e., 8 × 8 m2, 16 × 16 m2, and 32 × 32 m2. Four different kernel sizes were set up for
the original and upscaled images: 61 × 61 for 4 × 4 m2, 41 × 41 for 8 × 8 m2, 21 × 21
for 16 × 16 m2, and 11 × 11 for 32 × 32 m2. The entropy-based surface complexity was
extracted for each land cover (Figure 7). The results presented different patterns and
hotspots of local surface complexity. We conducted a simple grid search empirically to
determine the configurations for upscaling and kernel sizes. Utilizing these configurations,
we computed multiscale surface complexity scores, which led to a significant enhancement
in the segmentation performance as compared to the baseline models that did not employ
surface complexity scores.
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Figure 7. Quantification of entropy-based surface complexity by varying upscaling spatial scales
(KZ: kernel size). The RGB images display true colors, while the binary mask appears in yellow to rep-
resent the target feature. In the KZ rows, a color gradient ranging from blue to yellow is used, where
yellow represents higher complexity scores (light-red circle dot: hotspots of surface complexity).

4.2. Learning of Local Surface Complexity

We used random forest, XGBoost, and UNet to learn the models for predicting the
local surface complexity. The sensitivity analysis demonstrated that UNet increased the
test performance (test R2) by over 50% when compared to random forest and XGBoost.
Since the entropy-based surface complexity scores were computed using convolutional
kernels, UNet, based on convolutional operators, was a natural way to learn the local
surface complexity score. In contrast, random forest, XGBoost, and support vector machine,
etc., cannot explicitly model neighborhoods unless such contextual information is encoded
into the input using the nearest neighbor method. Tables 1 and 2 display the R2 and RMSE
performance metrics for the trained UNet, XGBoost, and random forest, utilizing varying
upscales (4 × 4 m2, 8 × 8 m2, 16 × 16 m2, and 32 × 32 m2) and kernel sizes (61 × 61,
41× 41, 21× 21, and 11× 11), respectively. For the upscales > 4× 4 m2, the results showed
a high test R2 (0.826–0.969) for build-ups, forest, meadow, and waters and a moderate test
R2 (0.560–0.751) for farmland. For the original image resolution (4 × 4 m2, kernel size:
61× 61), there was a lower test R2 (0.414–0.738) than the upscales. Compared with farmland,
the local surface complexity scores of build-ups, forest, meadow, and waters were more
predictable using only spectral features. Overall, the local surface complexity scores could
be estimated using spectral features and UNet, although the predictability varied between
the different land cover classes. The results (Figure 8) showed that the estimated scores
well captured the local surface complexity of each land cover class.
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Table 1. Performance (R2) of local surface complexity UNet models with varying upscales and
kernel sizes.

Model Upscale Size Kernel Size
Build-Up Farmland Forest Meadow Waters

Train Test Train Test Train Test Train Test Train Test

UNet

4 × 4 m2 61 × 61 0.980 0.439 0.632 0.414 0.985 0.639 0.983 0.548 0.981 0.738
8 × 8 m2 41 × 41 0.995 0.876 0.984 0.560 0.997 0.895 0.996 0.826 0.989 0.895

16 × 16 m2 21 × 21 0.992 0.925 0.991 0.714 0.995 0.935 0.996 0.933 0.995 0.966
32 × 32 m2 11 × 11 0.990 0.941 0.982 0.751 0.989 0.947 0.990 0.925 0.993 0.969

XGBoost

4 × 4 m2 61 × 61 0.032 0.021 0.052 0.048 0.105 0.102 0.079 0.076 0.233 0.225
8 × 8 m2 41 × 41 0.074 0.071 0.038 0.033 0.103 0.100 0.063 0.059 0.108 0.104

16 × 16 m2 21 × 21 0.026 0.024 0.046 0.042 0.079 0.077 0.055 0.051 0.204 0.198
32 × 32 m2 11 × 11 0.054 0.052 0.040 0.036 0.063 0.060 0.082 0.072 0.165 0.160

Random
forest

4 × 4 m2 61 × 61 0.071 0.096 0.130 0.050 0.153 0.109 0.136 0.112 0.402 0.283
8 × 8 m2 41 × 41 0.123 0.059 0.093 0.011 0.145 0.089 0.112 0.064 0.211 0.102

16 × 16 m2 21 × 21 0.118 0.085 0.108 0.025 0.188 0.155 0.178 0.153 0.385 0.291
32 × 32 m2 11 × 11 0.212 0.183 0.125 0.061 0.253 0.241 0.334 0.273 0.444 0.390

Table 2. Performance (RMSE) of local surface complexity UNet models with varying upscales and
kernel sizes.

Model Upscale Size Kernel Size
Build-Up Farmland Forest Meadow Waters

Train Test Train Test Train Test Train Test Train Test

UNet

4 × 4 m2 61 × 61 0.036 0.195 0.149 0.189 0.028 0.139 0.027 0.137 0.013 0.049
8 × 8 m2 41 × 41 0.020 0.094 0.032 0.170 0.020 0.115 0.016 0.103 0.015 0.049

16 × 16 m2 21 × 21 0.025 0.076 0.025 0.138 0.018 0.067 0.016 0.063 0.010 0.026
32 × 32 m2 11 × 11 0.027 0.068 0.036 0.134 0.028 0.060 0.024 0.067 0.014 0.030

XGBoost

4 × 4 m2 61 × 61 0.260 0.261 0.256 0.256 0.247 0.247 0.219 0.219 0.107 0.108
8 × 8 m2 41 × 41 0.262 0.263 0.261 0.262 0.211 0.211 0.216 0.217 0.143 0.144

16 × 16 m2 21 × 21 0.273 0.274 0.257 0.258 0.257 0.257 0.236 0.237 0.131 0.132
32 × 32 m2 11 × 11 0.271 0.271 0.263 0.264 0.257 0.258 0.236 0.238 0.150 0.151

Random
forest

4 × 4 m2 61 × 61 0.267 0.273 0.253 0.264 0.238 0.244 0.212 0.215 0.099 0.109
8 × 8 m2 41 × 41 0.257 0.265 0.254 0.265 0.211 0.218 0.216 0.217 0.140 0.150

16 × 16 m2 21 × 21 0.260 0.265 0.249 0.260 0.240 0.249 0.220 0.224 0.114 0.122
32 × 32 m2 11 × 11 0.258 0.264 0.251 0.260 0.230 0.229 0.202 0.209 0.122 0.132

4.3. Optimal Sampling and Constraints for Land Cover Segmentations

Based on the multiscale surface complexity scores with different upscales and kernel
sizes (Table 1), we first rescaled the upscaled scores into the original scale (4 × 4 m2) using
bilinear resampling and then summarized their averages. As aforementioned (Figure 4), the
estimated complexity scores were used as the stratification and weighting factors to guide
the balanced selection of samples to reduce the sampling bias. In addition, the complexity
scores extracted from the ground truth data were used as a constraint (Equation (4)) in
the loss function to guide the optimization. For the baseline UNet, we considered the
network complexity and test accuracy to determine its architecture (the network depth
and the number of nodes for each layer). Through sensitivity analysis, we selected the
UNet architecture ([64, 128, 256, 512, 1024, 2048, 1024, 512, 256, 128, 64] for build-ups and
farmland; [32, 64, 128, 256, 512, 1024, 512, 256, 128, 64, 32] for forest, meadow, and waters)
with a relatively high test performance and less training time. Then, based on the baseline
UNet, we tested the effectiveness of the complexity-informed sampling and constrained
optimization on the generalization of the trained models.

The build-up land cover included the subcategories of industrial land, urban residen-
tial, rural residential, and traffic land [72]. The results showed that the complexity-informed
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sampling outperformed the baseline UNet in terms of the regular test JI and PA by 3.00%
and 2.10%, respectively (Table 3). Moreover, the constraint approach improved the regu-
lar test JI and PA by 2.40% and 1.60%, respectively. Based on UNet, the combination of
complexity-informed sampling and constrained optimization had the largest improvement
(JI by 4.00% and PA by 2.90% for regular testing). Figure 9 and Table 3 show the image-
based independent test results of build-up segmentation, where complexity-informed
sampling and constrained optimization improved JI by 2.70% and 2.10%, respectively,
when compared to baseline UNet. Together, the two improved the JI by 3.10%. The results
showed that while complexity-informed sampling improved the representativeness of the
samples to the population, the complexity constraint enabled the trained model to better
recognize the boundary between smaller different build-up land patches.
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Figure 8. Comparison of the original images, binary mask, extracted surface complexity, and esti-
mated local surface complexity for each land cover. The RGB images show true colors, and the binary
mask is displayed in yellow to indicate the target feature. In the last two rows, a color gradient
ranging from blue to yellow is used to represent the complexity score, with yellow denoting high
complexity degree.
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Table 3. Performances of the UNet using different sampling methods and complexity constraint.

Land Cover Sampling Complexity
Constraint a

Training Regular Testing Independent Testing
PA JI MIoU PA JI MIoU PA JI MIoU

Build-up

Random b No 0.853 0.756 0.743 0.856 0.748 0.745 0.853 0.723 0.755
Random Yes 0.878 0.794 0.785 0.872 0.772 0.782 0.872 0.744 0.778

Complexity c No 0.884 0.796 0.791 0.877 0.778 0.789 0.885 0.750 0.784
Complexity Yes 0.890 0.801 0.801 0.885 0.788 0.799 0.890 0.754 0.785

Farmland

Random No 0.862 0.788 0.755 0.845 0.783 0.747 0.832 0.724 0.696
Random Yes 0.868 0.797 0.764 0.854 0.794 0.758 0.835 0.731 0.702

Complexity No 0.936 0.896 0.880 0.863 0.874 0.854 0.864 0.769 0.757
Complexity Yes 0.945 0.911 0.897 0.864 0.887 0.868 0.869 0.777 0.765

Forest

Random No 0.992 0.984 0.976 0.904 0.821 0.823 0.871 0.635 0.731
Random Yes 0.991 0.983 0.983 0.912 0.834 0.830 0.866 0.631 0.726

Complexity No 0.990 0.980 0.975 0.903 0.812 0.809 0.869 0.634 0.730
Complexity Yes 0.994 0.988 0.988 0.921 0.844 0.842 0.879 0.652 0.744

Meadow

Random No 0.990 0.984 0.979 0.966 0.977 0.969 0.918 0.829 0.842
Random Yes 0.996 0.994 0.991 0.972 0.986 0.981 0.930 0.851 0.864

Complexity No 0.996 0.994 0.991 0.969 0.985 0.979 0.925 0.843 0.856
Complexity Yes 0.997 0.996 0.994 0.969 0.987 0.982 0.932 0.855 0.867

Waters

Random No 0.986 0.982 0.960 0.985 0.982 0.959 0.902 0.824 0.809
Random Yes 0.989 0.985 0.967 0.987 0.985 0.967 0.935 0.877 0.872

Complexity No 0.997 0.996 0.991 0.991 0.995 0.988 0.938 0.884 0.880
Complexity Yes 0.997 0.996 0.992 0.994 0.995 0.990 0.950 0.904 0.902

a Local surface complexity used as a constraint loss for model training (Equation (4)); b simple random sampling
for selection of the training samples; c estimated complexity used as the stratifying factor (four strata in total) and
the weight of a sample within each stratum.
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Figure 9. Comparison between build-up segmentation results of baseline UNet, UNets with
complexity-informed constraint/sampling, and UNet with both. (a) shows the RGB images de-
picting true colors; (b–f) display yellow masks representing the build-up feature for ground truth
(b) or predictions (c–f).
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In the GID data, the morphology of the build-up land and farmland varied greatly due
to the diversity of the geographic locations [72], making their segmentation challenging
compared to the other land cover types (forest, meadow, and waters) [20]. The results
(Table 3) showed that complexity-informed sampling had the greatest improvement in
regular test JI (by 9.10%) and MIoU (by 10.70%) for farmland (including paddy fields,
irrigated land, and drop cropland) compared to the other land cover types, although the
improvement in the regular test PA was only 1.80%. The complexity constraint alone
yielded a 0.90–1.10% improvement in the test PA and JI. Overall, the two improved the
JI by 10.40% and PA by 1.90% compared to the baseline UNet. Given the changes in
farmland morphology, particularly in its seasonal fallow and alternatives, it is crucial to
choose representative samples from various geographical locations and seasons to reduce
sampling bias. This also explained why the complexity-informed sampling by stratifying
and weighing contributed most to the improvement in the JI compared to the other land
cover types. The image-based independent test results (Figure 10) showed an improvement
of about 5.30% in the JI by combining complexity-informed sampling and constraint.
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Figure 10. Comparison between farmland segmentation results of baseline UNet, UNets with
complexity-informed constraint/sampling, and UNet with both. (a) shows the RGB images depicting
true colors; (b–f) display yellow masks representing the farmland feature for ground truth (b) or
predictions (c–f).

For the forest land cover (including garden land, arbor forest and shrub land), the
complexity constraint had an improvement of about 1.30% in the regular test JI. The
complexity-informed sampling provided little contribution to the test performance. The
combination of the two resulted in an improvement of 2.30% for the regular test JI (1.90%
for MIoU). The image-based independent test results (Figure 11) showed an improvement
of about 1.70% in the JI compared to the predictions of the baseline UNet.



Remote Sens. 2023, 15, 2192 18 of 27

Remote Sens. 2023, 15, x FOR PEER REVIEW 18 of 27 
 

 

true colors; (b–f) display yellow masks representing the farmland feature for ground truth (b) or 

predictions (c–f).  

 

Figure 11. Comparison between forest segmentation results of baseline UNet, UNets with complex-

ity-informed constraint/sampling, and UNet with both. (a) shows the RGB images depicting true 

colors; (b–f) display yellow masks representing the forest feature for ground truth (b) or predictions 

(c–f).  

For the land cover of natural and artificial meadows, the complexity constraint had 

an improvement of about 0.90% in the test JI (about 1.20% for MIoU) when compared to 

the baseline model. The combination of complexity-informed sampling and constraint im-

proved the regular test JI by about 1.00%. The image-based independent test results (Fig-

ure 12) showed an improvement of about 2.60% in the JI.  

For waters (including rivers, ponds, and lakes), the complexity constraint had an im-

provement of about 0.20-0.80% in the regular test PA, JI, and MIoU. The combination of 

complexity sampling and constraint had an improvement of about 1.30% for the regular 

test JI. The image-based image results (Figure 13) showed a considerable improvement of 

about 8.00% in the JI. As shown in the figure, many misclassified waters were corrected 

from the UNet by complexity sampling and constrained optimization.  

The tests (Table 4) showed that our complexity analysis method outperformed FCN-

ResNet, DeepLab V3+, Global CNN, and Crossformer in terms of the regular test PA and 

JI for the semantic segmentation of farmland, forest, meadows, and waters. Notably, our 

method achieved significantly better test JI results for farmland than the other methods, 

indicating the importance of reducing sampling bias in training for variable farmland. 

While our method performed better than DeepLab V3+ and Crossformer for the semantic 

segmentation of build-ups, its PA was slightly lower than FCN-ResNet and Global CNN. 

Furthermore, our method achieved comparable state-of-the-art test performances in the 

image-based independent tests when compared to the other representative methods (Fig-

ure 14).  

Figure 11. Comparison between forest segmentation results of baseline UNet, UNets with complexity-
informed constraint/sampling, and UNet with both. (a) shows the RGB images depicting true colors;
(b–f) display yellow masks representing the forest feature for ground truth (b) or predictions (c–f).

For the land cover of natural and artificial meadows, the complexity constraint had
an improvement of about 0.90% in the test JI (about 1.20% for MIoU) when compared to
the baseline model. The combination of complexity-informed sampling and constraint
improved the regular test JI by about 1.00%. The image-based independent test results
(Figure 12) showed an improvement of about 2.60% in the JI.

For waters (including rivers, ponds, and lakes), the complexity constraint had an
improvement of about 0.20-0.80% in the regular test PA, JI, and MIoU. The combination of
complexity sampling and constraint had an improvement of about 1.30% for the regular
test JI. The image-based image results (Figure 13) showed a considerable improvement of
about 8.00% in the JI. As shown in the figure, many misclassified waters were corrected
from the UNet by complexity sampling and constrained optimization.

The tests (Table 4) showed that our complexity analysis method outperformed FCN-
ResNet, DeepLab V3+, Global CNN, and Crossformer in terms of the regular test PA and
JI for the semantic segmentation of farmland, forest, meadows, and waters. Notably, our
method achieved significantly better test JI results for farmland than the other methods,
indicating the importance of reducing sampling bias in training for variable farmland.
While our method performed better than DeepLab V3+ and Crossformer for the seman-
tic segmentation of build-ups, its PA was slightly lower than FCN-ResNet and Global
CNN. Furthermore, our method achieved comparable state-of-the-art test performances in
the image-based independent tests when compared to the other representative methods
(Figure 14).
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Figure 12. Comparison between meadow segmentation results of baseline UNet, UNets with
complexity-informed constraint/sampling, and UNet with both. (a) shows the RGB images de-
picting true colors; (b–f) display yellow masks representing the meadow feature for ground truth
(b) or predictions (c–f).

Table 4. Comparison of the performance of different deep learning methods.

Land Cover Landuse Type Training Regular Testing Independent Testing
PA JI MIoU PA JI MIoU PA JI MIoU

Build-up

Crossformer 0.871 0.775 0.775 0.870 0.765 0.773 0.863 0.722 0.742
DeepLab V3+ 0.870 0.765 0.765 0.870 0.748 0.762 0.850 0.710 0.724
Global CNN 0.857 0.772 0.772 0.890 0.781 0.776 0.861 0.724 0.737
FCN-ResNet 0.928 0.841 0.847 0.890 0.759 0.821 0.865 0.731 0.750

Complexity analysis a 0.890 0.801 0.801 0.885 0.788 0.799 0.890 0.754 0.785

Farmland

Crossformer 0.808 0.669 0.670 0.807 0.667 0.669 0.802 0.686 0.653
DeepLab V3+ 0.857 0.946 0.746 0.821 0.688 0.734 0.827 0.694 0.677
Global CNN 0.828 0.721 0.721 0.826 0.683 0.714 0.827 0.722 0.694
FCN-ResNet 0.949 0.903 0.903 0.826 0.689 0.857 0.825 0.720 0.692

Complexity analysis 0.945 0.911 0.897 0.864 0.887 0.868 0.869 0.777 0.765

Forest

Crossformer 0.870 0.772 0.773 0.880 0.773 0.773 0.796 0.497 0.593
DeepLab V3+ 0.961 0.926 0.926 0.898 0.816 0.903 0.848 0.586 0.689
Global CNN 0.815 0.670 0.670 0.854 0.745 0.685 0.839 0.570 0.673
FCN-ResNet 0.973 0.948 0.948 0.887 0.795 0.915 0.823 0.555 0.656

Complexity analysis 0.994 0.988 0.988 0.921 0.844 0.842 0.879 0.652 0.744
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Table 4. Cont.

Land Cover Landuse Type Training Regular Testing Independent Testing
PA JI MIoU PA JI MIoU PA JI MIoU

Meadow

Crossformer 0.881 0.768 0.768 0.877 0.762 0.767 0.820 0.665 0.666
DeepLab V3+ 0.984 0.965 0.966 0.952 0.895 0.951 0.909 0.811 0.825
Global CNN 0.869 0.765 0.765 0.911 0.804 0.773 0.855 0.723 0.729
FCN-ResNet 0.982 0.960 0.961 0.942 0.877 0.943 0.906 0.805 0.820

Complexity analysis 0.997 0.996 0.994 0.969 0.987 0.982 0.932 0.855 0.867

Waters

Crossformer 0.969 0.908 0.909 0.974 0.917 0.910 0.842 0.740 0.702
DeepLab V3+ 0.994 0.980 0.981 0.987 0.957 0.976 0.940 0.887 0.883
Global CNN 0.887 0.733 0.734 0.969 0.902 0.763 0.914 0.824 0.811
FCN-ResNet 0.994 0.983 0.983 0.979 0.938 0.973 0.970 0.940 0.940

Complexity analysis 0.997 0.996 0.992 0.994 0.995 0.990 0.950 0.904 0.902
a Our model of complexity analysis was based on the UNet framework using complexity-informed sampling
and constrained optimization. Bold font highlights the method with the highest performance metric among all
the methods.
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ing true colors; (b–f) display yellow masks representing the waters feature for ground truth (b) or
predictions (c–f).
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ResNet, and our complexity analysis.

5. Discussion
5.1. Optimal Sampling to Reduce Bias

Previous studies [53,55,56,74–77] have shown that stratification can balance samples
across regions, leading to an improved classification accuracy. Li et al. (2021) [53] suggested
that stratifying with land cover classes or a combination of different attributes consid-
erably improved classification. Shetty et al. (2021) [78] showed that stratified equality,
proportional, or systematic random sampling performed differently in different situations.
Compared with these existing studies relying on unsupervised stratifying with a land use
or land cover classification or combined attributes, our study suggested the use of a quan-
titative local surface complexity score as the stratifying and weighing factor to boost the
representativeness and importance of the training samples to the complexity of the features
of the Earth’s surface. The statistical data showed that the complexity-informed sampling
method significantly improved the test JI (by up to 9.10%), with a more pronounced effect
being obtained on farmland and urban built-up areas where the boundaries varied greatly.
Despite being based on the baseline UNet framework, our complexity analysis method
achieved a state-of-the-art test performance for the LULC semantic segmentation of the
GID dataset in comparison with four representative deep learning methods including
FCN-ResNet, DeepLab V3+, global CNN, and Crossformer. A reasonable explanation
is that, compared to simply random sampling, the extracted local surface complexity as
stratifying factor better balanced the distribution of the samples among the different sur-
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face complexity degrees, and the selected samples could represent the complexity of the
features of the Earth’s surface. In addition, samples with higher complexity scores in each
stratum had a higher probability of being selected, so the learning model could pay more
attention to the samples with a higher complexity. Thereby, the sampling bias was reduced
significantly and consistently, and the visual output also showed that the fine irregularities
in the classification were also captured using more balanced and representative samples.
If selected samples cannot adequately represent the complexity of a population under
study, a potential sampling bias can significantly impact the test performance of deep
learning methods even though they have developed novel network structures, as shown in
our results.

Based on spectral attributes, we developed a robust model that learned to estimate sur-
face complexity. The trained model can be used to reliably estimate the surface complexity
for new locations or regions where the land use or land cover classification is not available.
For optimal sampling, this is an important advantage of our quantifying stratification
based on surface complexity compared to the existing methods that rely on land cover
classification or a priori knowledge to stratify the samples. Given the high cost of labeling
of remote sensing images and the critical impact of the samples on training, this study
provides a systematic and comprehensive cost-effective sampling strategy to improve the
representativeness of the samples to complex populations.

5.2. Constrained Optimization to Reduce Overfitting

Traditional machine learning methods such as logistic regression, random forest, and
support vector machine have no internal mechanisms for constrained optimization. With
the widespread applications of deep learning in remote sensing, constrained optimization
has been increasingly used in loss functions to reduce modeling bias and overfitting [79].
Teng et al. (2019) [80] proposed a classifier-constrained deep adversarial domain adaptation
method for cross-domain classification in remote sensing images. The study showed that
overfitting could be significantly reduced by constrained optimization. In this study, we
proposed the invariance of the extracted entropy-based complexity score as the constraint
for optimization. The model could output a classification score and a complexity score
for each pixel, and the architecture enabled the parameter sharing of the network for
the classification and complexity prediction. This constraint guided the learning of the
classification model considering the invariance of the complexity feature, which was
beneficial for reducing modeling bias and potential overfitting. The test showed that the
complexity constraint improved the test JI by 0.30–2.40% and could help the learned model
to better extract the boundaries between small complex land patches such as build-ups.

5.3. Combination of Optimal Sampling and Constrained Optimization

As demonstrated by the tests, the combined use of complexity-informed stratified
sampling and constrained optimization performed the best (1.00–10.40% improvement in
the JI and 0.30–2.90% improvement in the PA for the regular test; 1.70–8.00% improvement
in the JI for the image-based independent test). The greatest improvement (the regular
test JI of 4.00–10.40%) was observed for the classes that were more challenging to predict,
such as build-up and farmland, with varying boundaries and irregularities. In this study,
unlike in [20,44,81], we did not develop novel network structures of semantic segmentation
but rather combined the use of multiscale local surface complexities in sampling and
optimization to achieve the state-of-the-art test performance. Optimal sampling allowed us
to have more balanced samples to represent the population surface complexity, which in
turn could facilitate constrained optimization to reduce the sampling and modeling bias,
thus improving the identification and extraction of complex boundaries, fragments, and
tiny features, etc.
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5.4. Limitations and Prospects

The study has several limitations. Firstly, the entropy-based surface complexity only
considered binary classification, which may have overlooked the potential impact of
other classes on the target class within the surrounding context despite the significant
contributions it made to improving the binary segmentation via optimal sampling and
constrained optimization. Secondly, the entropy-based surface complexity only took into
account the pixel proportions of the target class and background without considering
their spatial distribution or pattern. This may have been suboptimal for certain surface
scenes. Thirdly, due to the impracticality of the fine-scale grid search optimization, we
chose multiple scales of surface complexity scores through empirical methods. Lastly, the
absence of geographical coordinate data in the GID dataset prevented us from including
geospatial variables, which could significantly improve the predictions of local surface
complexity and, consequently, semantic segmentation.

Given the challenges of remote sensing information extraction under complex surface
scenes and the limitations of this study, we propose several avenues for future research.
Firstly, we will explore more spatially informative convolutional kernels of complexity,
such as Moran’s I or Getis’s G from spatial statistics, which can identify differences in the
spatial distributions of classes among pixels. Secondly, we will investigate the influence of
multiclass surface complexity on the classification of the target pixel or location. Thirdly, we
will aim to incorporate other datasets with accurate geographical coordinates to investigate
the influence and contributions of geographical variables, such as elevation and historic
land use or land cover, on predictions of surface complexity and their applicability. Finally,
we will continue to refine our proposed framework (including scale sizes) of local surface
complexity to improve its visual effects, accuracy, and applicability in a wider range of
remote sensing scenarios and the other novel machine learning methods.

6. Conclusions

In this research, we proposed entropy-based multiscale convolutions to encode lo-
cal surface complexity at the fine-scale pixel level and developed complexity-informed
sampling and optimization to enhance semantic segmentation under complex geo-scenes.
Such complexity convolution as a context indicator could well summarize the surrounding
variation and influence on the target locations or regions. Correspondingly, we developed a
robust UNet to map the relationship from spectral features to multiscale surface complexity,
which provided the method with a high flexibility and wide applicability to new locations
or regions where no a priori knowledge or labels are available. As described and shown in
the tests using the large-scale land cover dataset, GID, the proposed multiscale surface com-
plexity could be used to obtain optimal samples to better represent the surface complexity
of the population, thereby significantly reducing the sampling bias in the model training,
as well as to guide the model optimization as an entropy-based invariance constraint. The
combined use of multiscale local surface complexity in the sampling and optimization
significantly improved the classification performance (the regular test JI was improved
by 1.00–10.40%), achieving a state-of-the-art test performance in comparison with other
representative deep learning methods. Our study offers novel insights and efficient ways
for selecting representative samples from remote sensing data and reducing over-fitting.
These findings have important implications for improving the effectiveness of remote
sensing information extraction, particularly in complex surface scenes.
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