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Abstract: As far as the knowledge of the seabed is concerned, both for safe navigation and for scientific
research, 3D models, particularly digital bathymetric models (DBMs), are nowadays of fundamental
importance. This work aimed to evaluate the quality of DBMs according to the interpolation methods
applied to obtain grid format 3D surfaces from scattered sample points. Other complementary
factors affecting DBM vertical accuracy, such as seabed morphological complexity and surveyed
points sampling density, were also analyzed by using a factorial ANOVA experimental design. The
experiments were performed on a multibeam dataset provided by the Italian Navy Hydrographic
Institute (IIM) with an original resolution of 1 m x 1 m grid spacing, covering a surface of 0.24 km?.
Six different sectors comprising different seabed morphologies were investigated. Eight sampling
densities were randomly extracted from every sector, each with four repetitions. Finally, four different
interpolation methods were tested, including: radial basis multiquadric function (RBMF), ordinary
kriging (OK), universal kriging (UK) and Gaussian Markov random fields (GMRF). The results
demonstrated that both RBMF and OK produced very accurate DBM in areas characterized by low
levels of seabed ruggedness at sampling densities of only 0.0128 points/m? (equivalent grid spacing
of 8.84 m). In contrast, a higher density of 0.1024 points/m? (3.13 m grid spacing) was required
to produce accurate DBM in areas with more complex seabed topography. On the other hand, UK
and GMRF were strongly influenced by morphology and sampling density, yielding higher vertical
random errors and more prone to slightly overestimate seabed depths. In addition, sampling density
and morphology were the factors that most influenced the vertical accuracy of the interpolated DBM.
In this sense, the highly statistically significant influence of the interaction between sampling density
and morphology on the vertical accuracy of the interpolated DBM confirms the need to perform
a preliminary analysis of seabed morphological complexity in order to increase, if necessary, the
number of surveyed points in cases of complex morphologies.

Keywords: digital bathymetric model; interpolation methods; sampling density; optimized bathymetry;
multiple beam sonar; accuracy assessment

1. Introduction

Knowledge of the submerged part of the Earth has always been one of the most
important aspects faced by the scientific community. Navigation, port works, and the
exploration of marine resources are just some of the areas that require in-depth informa-
tion [1]. Bathymetric surveys are carried out whenever there is a need to precisely know
the morphological trend of the seabed. They are, therefore, preliminary to the realization
of maritime and river works, and are indispensable for verifying the continuity of water
heads and dredging volumes [2,3]. They also play a fundamental role in monitoring the
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evolution of beaches and coastlines [4]. Furthermore, bathymetric surveys are useful for
other aims, such as geomorphological studies, habitat mapping and many more [5-7].

Bathymetric surveys can be performed using different types of instrumentation.
Among them, those based on the transmission of acoustic signals through the water stand
out, such as single-beam sonar (SBS) [8], multiple-beam sonar (MBS) [9], and side-scan
sonar (SSS) [10]. This type of instrument determines the depth by considering the time
interval between the emission and the return of the sound pulse generated by the echo
sounder and dividing it by two. Next, the distance from the keel to the bottom is measured
by multiplying half the time taken by the impulse (exit and return) by the speed of sound in
the water [11]. Another methodology is that based on satellite bathymetry, or by extracting
the depths using multispectral images [12]. This approach is based on the principle that
the different wavelengths of light penetrate the water at different depths to be reflected
from the seabed and recorded by the satellite’s multispectral sensor. This type of remote
sensing technique is now widely applied through using both medium-spatial-resolution
(Landsat [13]) and high-spatial-resolution satellite imagery (QuickBird [14] or Worldview
3 [15]). In these cases, the vertical accuracy achieved for depth data took values, in terms of
RMSE, of 1.41 m for Landsat [13], 0.518 m for the log-band ratio method and 0.35 m for
the OBRA method working on QuickBird imagery [14], or 3.71 m for WorldView 3 [15].
Furthermore, there are several studies in the literature in which electronic navigational
charts (ENC) are used as a source to extract bathymetric information [16].

Depth data obtained from the different technologies are used to ensure safe naviga-
tion by producing different type of maps. As data sample densities from hydrographic
sensors have increased, methods of sea-floor representation have shifted from vector-based
products such as selected soundings and contours, to gridded bathymetric models [17].
These gridded models present a height value in each node, resulting in a matrix of numbers
(digital elevation model, DEM). Particularly, a 3D model of the seabed is called a digital
depth model (DDM) [18].

Following the set of standards for hydrographic surveys provided by the International
Hydrographic Organization (IHO) [17], bathymetric survey requirements can be highly
variable depending on the intended use of the final product. In fact, the required bathymet-
ric coverage, which is based on the combination of the survey pattern and the theoretical
detection area of the survey instrumentation, depends on the formal classification of the
survey area. For example, the so-called “Special Order Areas”, i.e., those areas where
under-keel clearance is critical for safe navigation, require very demanding minimum
standards in terms of feature detection (detection of cubic features > 1 m) and maximum

allowable total vertical uncertainty (lower than \/ 0.25% + (0.0075 = alepth)2 meters where
seabed depth is entered in meters). In this sense, it is useful to count on spatial methods able
to convert scattered seabed depth points into a 3D grid model. This way of manipulating
spatial information to extract new information is usually performed with a Geographic In-
formation System (GIS), which allows the user to perform geoprocessing tasks such as data
interpolation. In this regard, spatial interpolation is the process, method, or mathematical
function used to estimate an unknown attribute value at unmeasured /unsampled points
from measurements made at surrounding sites (known values of sampled points) [19]. Note
that obtaining a full bathymetric coverage is quite expensive, so interpolation methods
could be an interesting way to reduce the price (i.e., reduce sample density) in relatively
smooth seabed areas while maintaining the required minimum standards.

All interpolation techniques are based on the simple concept that the closest points
have more similar values [20], which means that nearby points must be at similar heights,
otherwise the field will be discontinuous. This is known as Tobler’s First Law of Geog-
raphy [21], a phenomenon usually known as spatial dependence, spatial continuity or
autocorrelation [22].

Interpolation methods can be classified in many ways including local/global, exact/
approximate, and deterministic/geostatistical methods.
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Global interpolation methods use a single function or model to fit the entire dataset.
This function is then used to estimate values at any point within the data range [23]. On
the other hand, local interpolation methods use a different model for each point or local
neighbourhood of points. These methods use the nearby data points to estimate the value
of an unknown point [24,25].

Exact interpolation methods use the known data points to derive a surface that passes
exactly through all the data points [26], while approximate interpolation methods construct
interpolated surfaces that approximate but do not pass through known points [27]. In this
sense, exact interpolation methods provide the exact values of the function at the known
data points. By contrast, approximate interpolation methods are only accurate to a certain
extent at sample points, depending on the complexity of the formula used and the number
of data points available [28].

Another distinction is made between deterministic and stochastic methods. Determin-
istic methods do not use the statistical properties of the measured points. In this sense, they
are usually applied when there is sufficient knowledge of the surface to be modeled, each
predicted value being the result of a deterministic function [29]. On the other hand, the
stochastic methods leverage the statistical properties of the measured points, incorporating
the concept of randomness and uncertainty [30-34].

Finally, deterministic interpolation methods are used to create gridded surfaces from
scattered sampling points (actually measured points) based on either the degree of similarity
(e.g., inverse distance weighting (IDW)) or the degree of smoothing (e.g., radial basis
functions (RBF)). On the other hand, geostatistical or stochastic interpolation methods
consider random functions, trying to model the spatial dependence between points and
usually include prediction error or uncertainty [35].

It is now known that the accuracy of the obtained DEM is affected by various factors. In
fact, several studies in the literature analyze which factors may have the greatest influence
on DEM accuracy. In most cases, these factors can be reduced to the following: (i) the
sampling density and spatial sampling distribution; (ii) the interpolation method applied
to build the grid DEM,; (iii) the morphological complexity or surface variability of the work
area; and (iv) the vertical and planimetric accuracy of sampled points [36—45].

However, and unlike the vertical precision of digital elevation models which has been
extensively studied, there are few works focused on statistically analyzing which factors
may have the greatest influence on the vertical accuracy of seabed depth modeled as a
grid DBM.

The aim of this study was to statistically evaluate the vertical accuracy of digital
bathymetric models (DBM) obtained from MBS surveys as a function of the sampling
density, the interpolation method, and the morphological complexity of the surveyed
seabed. The possible interactions between these three factors were also studied.

2. Materials and Methods

This section provides a description of the investigated study area and type of datasets.
In addition, the experimental design devised to achieve the objectives proposed above
is presented.

Before testing various interpolation methods to generate the 3D bathymetric models,
the analysis of the seabed morphology was carried out. In doing so, six different sectors
were chosen, trying to represent different morphologies with variable complexity (seabed
variability and roughness). This was the first source of variation of our experimental design.
Eight sampling densities, each one composed of four repetitions, were randomly extracted
for each sector, constituting the second source of variation. Once these first two steps were
accomplished, the different interpolation methods tested in this work were applied to each
repetition of sampling density and morphologically differentiated seabed sector.

It should be noted that each of the repetitions of each sampling density, due to its
random extraction, corresponded to a different spatial distribution of the sampled points.
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Figure 1 shows a flowchart containing the different methodological steps conducted in this
study. These steps will be explained in detail in the following sections.

Creation of a grid composed of 24 squares having dimensions
100 m x 100 m to subdivide the entire initial dataset.

Analysis of the morphology of the seabed investigated in each
generated squares.

Randomly extraction of different 8 sampling densities for each
sector.

Application of four interpolation methodsfor each sampling
density.

L 4

Carrying out True Validation and extraction of statistical
parameters.

¥

Replication of3° and 4° step four times in order to introduce
sampling variability.

L 4

Carrying out the ANOVA test.

Figure 1. Flowchart of the methodological phases carried out in this study.

2.1. Study Area and Dataset

The experiment was conducted on a dataset provided by the Istituto Idrografico della
Marina Militare (IIMM) located in an area close to the coast of the island of Giglio (Italy)
(Figure 2). The area extends within the following WGS84 geographic coordinates: West
=10°55'34.11", East = 10°56'0.72", South = 42°21'6.18”, North = 42°21'19.58", covering
a surface of 0.24 km?. Depth values in the selected area ranged between —5.45 m and
—108 m, presenting a nominal vertical accuracy of approximately 1 cm.
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Figure 2. The study area in equirectangular projection and WGS84 geographic coordinates (EPSG:
4326) (top). Visualization of Giglio Island (RGB composition of Sentinel-2B images) in UTM/WGS 84
plane coordinates expressed in meters (EPSG: 32632) (bottom).

In particular, the dataset consisted of 240,000 depth points obtained with a multibeam
sonar during a bathymetric survey conducted in 2012. The original grid spacing of the
DBM was 1 m x 1 m, which according to the International Hydrographic Organization,
would correspond to a Special Order 1 area [17].

This study area was chosen because it is characterized by a high level of variability of
the seabed. The entire dataset was subdivided into 24 squares (100 m x 100 m) (Figure 3),
each with 10,000 depth points. The decision to divide the entire dataset into 100 m x 100 m
square sectors was made to ensure distinct seafloor topographies to study the effect of
morphological factors on interpolation accuracy in constructing grid DBMs. In particular,
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of these 10,000 points per hectare, only 95% were used to extract various subsets as seeds
to generate our seabed models with the different interpolation methods. The remaining
5% were set aside and used as checkpoints for subsequent validation. This means that up
to 500 checkpoints were used to assess the DBM vertical accuracy of each sector, which is
enough to obtain very high reliability in the estimation of systematic and random errors [37].

658739E 658839E 658939E 65903SE 659139E 659239E

A Q1 Q2 Q3 Q4
N

4690939N 4690939N
4690839N 4690839N
469073SN 4690739N
4690639N 4690639N

658739E 658839E 658939E 659039E 659139E 659239E

Figure 3. Representation of the entire subset subdivision in 24 squares, or sectors, of 100 m x 100 m.

Among the 24 squares generated at the beginning, only six (Q2, Q3, Q4, Q8, Q15, Q23)
were selected as representative of the different investigated seabed morphologies. These
differentiated seabed morphologies were detected using the Morphological Variation Index
(MVI) described in Section 2.2.

Starting from the sample of 9500 points located in each of the six selected sectors,
eight sampling densities were randomly extracted, ranging from a minimum of 16 points
(point density of 0.0016 points/m?, equivalent to a grid spacing of 25 m) to a maximum of
2048 points (point density of 0.2048 points/m?, grid spacing of about 2.2 m) (see Table 1).
Four randomly extracted sample-point distributions (repetitions) for each sampling density
were considered. In order to have a better distribution of sample points, randomly stratified
sampling was applied to select the same number of points in each square of 25 m x 25 m.

Table 1. Tested sampling densities with their corresponding equivalent grid spacing.

Sampling Density Points Points/m? Eq;};:::ﬁ;t(i;ld
SD1 16 0.0016 25.00
SD2 32 0.0032 17.68
SD3 64 0.0064 12.50
SD4 128 0.0128 8.84
SD5 256 0.0256 6.25
SDé6 512 0.0512 442
SD7 1024 0.1024 3.13
SD8 2048 0.2048 2.21

Figure 4 shows an example of some sampling densities extracted from the initial
dataset of sector Q4 (sampling densities SD1, SD3, SD5 and SD7). They represent one of
the four spatial distributions (repetitions) of points extracted for each sample density and
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sector. Note that the process of extracting the eight sampling densities was repeated four
times by randomly varying the position of the sample points.
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Figure 4. Representation of four sampling densities (SD1, SD3, SD5 and SD7) extracted from the
entire initial dataset for the sector Q4. It corresponds to one of the four sample point repetitions.

2.2. Seabed Morpholological Complexity

To quantitatively estimate the degree of seabed morphological complexity as a guide
to select morphologically differentiated sectors in the experimental design, the MVI index
introduced by Alcaras et al. [46] was used. This index is given by the following equation:

MVI = LSy )

where the first term, Iy, represents the variation of the direction of the slope (ascending or
descending), while the second term, Sy, refers to slope variation. Both terms in Equation
(1) were calculated along both directions (x and y/latitude and longitude). The results of
this index are then multiplied by 100 in order to scale up the values obtained.

MVI was applied to the entire dataset, thus computing 24 MVI values (i.e., as many as
the grid squares initially generated). Subsequently, and from analyzing the values of MVI
obtained, only six sectors were extracted, showing relatively different M VI values, thus
representing significantly different seabed morphological complexities (Table 2).
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Table 2. MVI values of the representative six sectors extracted potentially corresponding to different
seabed morphological complexities.

MVI Sector
0.589 Q2
0.487 Q3
1.604 Q4
0.303 Q8
0.205 Q15
0.057 Q23

As can be seen from the values shown in Table 2, the selected sectors ranged from
a flat seabed (0.057) to a very rough and variable seabed (1.604). Figure 5 shows the
different morphological complexities of the six sectors finally selected. In particular, it is
worth noting that the MVI index proved to be a good tool to estimate the morphological
complexity of the investigated seabed, since sector Q4, having the highest M VI value, was
also the one with the highest morphological variability (Figure 5).

pePTH
L5

Q15 Q23

Figure 5. 3D representation of the different sectors selected to investigate the factor seabed morpho-
logical complexity.

2.3. Interpolation Methods

Spatial interpolation is defined as the procedure used to predict the value of attributes
at unobserved points within a study area covered by existing observations [47].
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Four different interpolation methods were considered and tested in this study. Radial
basis multiquadric function (RBMF), ordinary kriging (OK) and universal kriging (UK)
were implemented using ArcGIS software (version 10.8), while Gaussian Markov random
fields (GMRF) was implemented using a MATLAB code freely available at https://github
.com/3DLAB-UAL/dem-gmrf (accessed on 12 April 2023).

As regards the ordinary and universal kriging, among the various semi-variograms
available in ArcGIS, the so-called stable semi-variogram was chosen (exponential ker-
nel function), optimizing all the fitting parameters initially set up in ArcGIS. The semi-
variogram measures the degree of spatial autocorrelation used to assign weights in kriging
interpolations. The experimental semi-variogram plots one-half of the square of the differ-
ences between samples versus their distance (/) from one another (semi-variance) [48]. The
semi-variance is represented by the following expression [13]:

(z(x;) — z(x; + h))? 2)

) Mz

y(h) = 7)

where y(h) is the semi-variance at lag h, N(h) is the number of pairs of sample points
separated by a distance h, Z(x;) is the measured value at location x;, and Z(x; + h) is the
measured value at location x; + h.

It is worth noting that the semi-variogram is a measure of how well two points in a
dataset are correlated as a function of their separation distance. In this way, when two
points are close to each other, they tend to be more highly correlated than when they
are far apart [49]. Therefore, the semi-variogram allows kriging to estimate the spatial
correlation structure of the dataset and use this information to make predictions of values
at unsampled locations [50,51].

2.3.1. Radial Basis Multiquadric Function

As reported in [52], radial basis functions (RBF) are conceptually akin to fitting a rubber
membrane through the measured sample points while minimizing the total curvature of
the surface. They include different bases or kernels that significantly affect how the rubber
membrane will conform to the sample points. A radial basis function approximation takes
the following form:

=Y vig(|lx—il]), xeR? 3)
iel
where ¢:[0, ) — R is a fixed univariate function and the coefficients, (y;);.; are real
numbers, and ||x — i|| represents the norm, being the Euclidean norm the most common
choice. Mathematically, s(x) can be conceived as a linear combination of translations of a
fixed function that is radially symmetric with respect to the given norm [53].

Among the various RBF that can be found in the bibliography, Franke [54] recommends
the Multiquadric (RBMF) as the one providing the best results in terms of the statistical
and visual evaluation of the modeled surface. In this case, the RBF kernel ¢ is given by the
expression vV d? + ¢2, where d equals the distance from the point to every interpolated node
and c is the so-called smoothing factor.

2.3.2. Ordinary Kriging

Ordinary kriging (OK) is an interpolation method that can provide predictions of un-
known values of a random function, which is considered as the BLUE (best linear unbiased
estimator) in the sense of least variance [55]. It is also BUE (best unbiased estimator) if
data respect the bell curve. When kriging is compared with deterministic interpolators,
there are major differences. In fact, the former provides uncertainty assessment, anisotropy
detection or methodology assumptions [34].
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Kriging aims to predict the value of the random variable z(x() at an unsampled point
xo of a geographical region [56,57] by assuming the following model:

z(xg) = i;/\iz(xi) 4)
i=1

where A; are the kriging weights.
The function z(x;) is composed of a deterministic component y and a random function
e(x;) [58].
z(x;) = p+e(x;) ©)

The deterministic component is a constant value for each x; location in each area.
As commented before, this stochastic method gives the optimal prediction under the
presumption that the process is second-order stationery and normally distributed [31,59].

2.3.3. Universal Kriging
Universal kriging (UK) assumes the following model [60]:

z(x;) = p(x;) +e(x;) (6)

where z(x;) is the variable of interest, j(x;) is some deterministic function, and ¢(x;) is a
term that considers random variation [61].

UK is applied when the dependent variable does not meet the criterion of second-order
stationarity necessary for OK. Second-order stationarity means that the mean and variance
are the same on the entire area and that the correlation between any two observations
depends only on their relative position in space [62,63]. Unlike OK, where the mean y is
assumed constant over the entire region of study, UK assumes that the mean y(x;) depends
on the spatial location, a relationship that can be approximated by a model [64].

2.3.4. Gaussian Markov Random Fields

A Markov random field (MRF), also called the undirected graphical model, is a set
of random variables (seabed depth in this case) having a Markov property described by
an undirected graph [65]. Each edge-linking node in the graph represents dependency
between the two nodes involved. In the case of DEM interpolation, and supposing a
4-neigborhood dependency graph for DEM grid points, two types of nodes are usually
assumed: (i) estimated elevation at grid points (m) and (ii) observed elevations (z) (see
Figure 6). Both affect the central cell estimate depending on prior factors (F,) and observa-
tion factors (F,), respectively [66].

An important special case is when the random field is Gaussian, also called Gaussian
Markov random fields (GMRF). Supposing a random variable z (z being seabed depth
in this case), a GMRF X(z) is defined by a mean function p(z) = E(X(z)) and a covariance
function C(z, t) = Cov(X(z), X(t)). It has the property that, for every finite collection of points
{81, ... spl, x=(X(s1), -+, X(sp))T ~ N(, £), where Zij = C(s, sj).

The reader can find a detailed explanation of the procedure and the mathematical
framework applied in this work in [62]. It should be noted that the GMRF mathematical
framework has the advantage of making it possible to retrieve the estimated uncertainty
for each interpolated elevation point and even includes break lines (terrain discontinuities)
between adjacent cells to produce high-quality topographic models.
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Figure 6. GMRF graph corresponding to 4-neighbourhood scheme for a grid point at row i and
columnj.

2.4. Vertical Accuracy Evaluation

To evaluate the vertical accuracy of the models obtained with the different interpolation
methods applied, a technique known as true validation was undertaken [67]. It consists
of determining the difference between the calculated depth and the measured one in each
independent checkpoint extracted from the initial dataset.

Finally, the statistical values of these residuals are calculated, such as mean, standard
deviation, minimum, maximum and root mean square error (RMSE) [37,68].

RMSE was calculated in accordance with the formula:

n . > 2
RMSE_\/ L1 (800~ Z () ”

where N is the number of the depth points, Z;(x, y) is the interpolated depth at the location
i(x, y), and Z(x,y) is the measured depth (checkpoint) at the same location i(x, y).

The estimation of random and systematic errors by using RMSE and mean statistics,
respectively, assumes that the errors follow a normal distribution and there are no outliers.
However, this assumption is not usually true when dealing with modelling topographic
surfaces [69]. In this way, robust accuracy metrics including median and normalized
median absolute deviation (NMAD) [70] were also adopted in our experiment. Median and
NMAD can be considered as robust alternatives to mean and RMSE, respectively. NMAD is
expressed as follow:

NMAD = 1.4826-median;_1 5, ¢(|e; — medianj_y, _;(ej)|) (8)

where t is the number of checkpoints, e; = Z; — Z/ is the i-th residual or estimation error.
The constant 1.4826 is a correction parameter, making NMAD unbiased for the normal
distribution of DEM errors, disregarding the abnormality induced by outliers [71].

It should be noted that the robustness of median and NMAD is at the cost of efficiency
loss for the normal distribution [72].



Remote Sens. 2023, 15, 2072

12 of 24

2.5. ANOVA Test

The analysis of variance test (ANOVA) is a widely known statistical tool used to
determine the influence of independent variables or factors (aggregated at different levels
or groups) on a dependent variable by comparing the variance within groups with the
variance among groups, and is the initial step in the analysis of factors that could affect a
given dataset [73,74].

After performing the true validation vertical accuracy assessment for the four repli-
cates taken at each sampling density tested, a full factorial ANOVA test was carried out
with a single dependent variable (error statistics such as median, RMSE or NVIAD) and
several independent sources of variability or factors. Factorial experiments are defined
when it is possible to evaluate the effect of two or more factors on the values taken by a
dependent variable. In this case, the factors analyzed were sampling density (SD), seabed
morphological complexity (M), and the interpolation method (IM), including the interac-
tions between them. Figure 7 shows the factorial ANOVA test applied in our study. Q2 to
Q23 represent the different sectors selected to investigate the factor seabed morphological
complexity, while SD1 to SD8 refer to the different sampling densities tested. Finally, OK,
UK, RBMF and GMREF are the four interpolation methods applied, and R1 to R4 are the
four replicates taken at random for each sampling density.

|
L1 '[@2] [a3] [a4] |a8] [ai5] Q23]

W ) s s

- :
L2 5‘501‘ |SD2| |SD3| ‘sm‘ ‘SD5| |SDE| |SD7| |SD8|:
e o e e e e e e e e e e e e e e e e - -l
e e M (R e Zil Tl e il g A
EJ D
L3 [ox] [uk] [Rewe] [mar]s oo oo oo oo ooe oo Fo] [ux] [Reme] [Gmee]

Figure 7. Factorial ANOVA test scheme applied in this study for the sector Q2. L1: level 1 (morpho-
logical complexity). L2: level 2 (sampling density). L3: level 3 (interpolation method). This factorial
flowchart is repeated for each sector.

Tukey’s mean separation post hoc test, also known as Tukey HSD (honestly significant
difference) test, was performed for those factors or interactions that were indicated as
statistically significant by the ANOVA test. Tukey’s test works by calculating a critical
value based on the number of groups being compared and the total sample size. This
critical value represents the minimum difference between two group means that is needed
to conclude that the two groups are significantly different [75]. Then, for each pair of
groups being compared, Tukey’s test calculates the difference between their means and
compares it to the critical value. If the difference between the two means is larger than the
critical value, the two groups are considered significantly different [42,76].

3. Results and Discussion

The vertical error statistics (systematic and random errors) corresponding to the true
validation accuracy assessment were calculated by means of a specific code programmed
in MATLAB.
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3.1. Vertical Systematic Error

In order not to overextend the presentation of the results obtained, only the systematic
errors obtained using a robust bias estimator such as the median were analyzed. Table 3
shows that all the factors that influenced the vertical bias given by the median statistical
parameter (p-value < 0.05). In particular, from analyzing the F-value, it is possible to
state that morphology (M) is the factor with the highest influence (F-value = 15.731).
Next, we have the significant interaction between sampling density (SD) and morphology
(F-factor = 11.485), and the high impact of the influence of sampling density (F-factor
=10.736). It should be noted that the interpolation method (IM), although statistically
significant, was the factor that contributed the least (F-value = 8.886) towards explaining
the variability of the systematic error (i.e., vertical bias).

Table 3. Results of ANOVA test for the median statistic.

Degree of Mean Sum
Sum of
Squares (SS) Freedom of Squares F p-Value
(DG) (MS)
Sampling Density (SD) 1.238929 7 0.176990 10.736 <0.01
Morphology (M) 1.296660 5 0.259332 15.731 <0.01
Interpolation Method
(IM) 0.439461 3 0.146487 8.886 <0.01
SD-M 6.626965 35 0.189342 11.485 <0.01
SD - IM 1.241455 21 0.059117 3.586 <0.01
M- IM 1.807560 15 0.120504 7.310 <0.01
SD-M-IM 7.168532 105 0.068272 4141 <0.01
Error 9.495654 576 0.016486

Figure 8 depicts the general trend of the vertical bias (median of the residuals) with
respect to the factor SD. From the analysis of this figure, it is possible to conclude that the
higher the density of the points surveyed to generate the seabed 3D models, the lower
the vertical bias observed. In particular, there was first a decrease of positive bias (seabed
depth overestimation) for the first four sampling densities, and a settlement for the last
three, where a depth underestimation (slightly negative bias of about 2 cm) was found.
Anyway, only the bias obtained for SD1, SD2 and SD3 (lowest sampling densities) were
significantly different from zero (no bias), showing a low average positive bias that, in any
case, was below 10 cm. This is likely due to the fact that UK needs high sampling densities
to obtain more accurate results [77]. Note that UK is prone to overestimating the actual
seabed depth, since it assumes that the mean depends on spatial location [66]. As far as the
influence of the sampling density and the distribution of points is concerned, studies such
as [37,38,40] confirm the dependence of the model’s accuracy on both factors, thus stating
the results obtained.

The general relationship between the interpolation method applied and the computed
vertical systematic error is shown in Figure 9. It can be deduced that OK and RBMF were
the interpolation methods that least influenced the bias of the seabed 3D model, both
showing their potential as unbiased interpolators.

By contrast, UK and GMRF demonstrated to slightly overestimate (below 5 cm on
average) seabed depths. It is worth noting that UK models the spatial variability of the mean
value of seabed depth by means of a deterministic trend function, which ultimately helps
to over-smooth the resulting 3D model. This issue could explain the slight seabed-depth
overestimation found in the tested sectors.



Remote Sens. 2023, 15, 2072

14 of 24

0.14
0.12
0.10
0.08
0.06
0.04
0.02
0.00
-0.02
-0.04
-0.06
-0.08

Median (m)

SD1 SD2 SD3 sSD4 SD5 SD6 SD7 SD8

Sampling density
Figure 8. Trend graph of the median of the residuals (Zinterpolated — Zcheckpoint) With respect to the
factor Sampling Density. For each SD all morphologies and interpolation methods are included.

Vertical bars denote 95% confidence intervals. Different letters between sampling densities indicate
significant differences according to Tukey’s test (p < 0.05).
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Figure 9. Trend graph of the median of the residuals (Zinterpolated — Zcheckpoint) With respect to the
factor Interpolation Method. Vertical bars denote 95% confidence intervals. Different letters between
interpolation methods indicate significant differences according to Tukey’s test (p < 0.05).

In the same way, GMRF interpolation method counts on a tuning parameter called
the tolerance parameter or relaxation factor (op) [66]. This parameter may be compared to
the smoothing factor of interpolation based on radial basis functions (e.g., [78]). In fact, a
low o}, value or tolerance might not be suitable for sharp changes in elevation over short
distances (high complexity morphologies). In such situations, the resulting 3D surface
model would likely look over-smoothed, as it is convenient to diminish the stiffness of the
interpolated surface by increasing the tolerance parameter. In this work, and for the sake of
simplicity, a o}, value of 1 m was used for all sectors, which could mean that some local
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roughness areas were modeled with an excessively restrictive tolerance parameter (too
low), which contributed to an over-smoothing of the finally interpolated 3D-surface model.

Figure 10 depicts the specific interaction between the factors SD and IM. In other words,
it shows how the intensity of the bathymetric sampling interacts with the interpolation
methods tested in relation to the vertical systematic error of the obtained seabed 3D models.
The results shown in this figure confirm that UK and GMRF performed worse than OK
and RBMF, leading to a positive bias (seabed depth overestimation) associated with lower
sampling densities. This bias is practically removed by increasing the sampling density to
obtain a grid spacing less than 8.8 m (SD4). On the contrary, both OK and RBMF did not
display any significant bias for the full range of sampling densities tested. In this case, it is
possible to see how the bias in the case of OK and RBMF is almost always equal to zero
when considering all the sampling densities tested.

0.3
0.2
=0
< = OK
= = UK
S 0.0 RBMF
=+ GMRF
-0.1
-0.2

SD1 SD2 SD3 SD4 SD5 SD6 SD7 SD8
Sampling density

Figure 10. Trend graph of the median of the residuals (Zinterpolated — Zcheckpoint) With respect to
the interaction between Sampling Density and Interpolation Method. Vertical bars denote 95%
confidence intervals.

Finally, Figure 11 displays the results of the vertical systematic error due to inter-
polation according to the significant interactions between the factors morphology and
the interpolation method. In this case, it is possible to observe how all the interpolation
methods tested in this work presented a significantly different behavior depending on the
morphology of the seabed. In particular, it should be noted that GMRF was the interpo-
lation method most influenced by morphology, providing both a positive and negative
bias for all sectors except Q2 and Q23. UK also had a positive bias, albeit more moderate
than GMREF. Once again, OK and RBMF proved to be unbiased interpolators for the full
range of morphological complexities tested in this work and are qualified as the most
suitable to work on any morphology even with low sampling densities. The negative bias
obtained in the Q4 sector is certainly due to the previously analyzed tolerance factor. As
was also found in [79,80], this parameter greatly affects the error and strongly depends on
the type of morphology characterizing the sector. In the case of sector Q4, since the area is
characterized by a strong variability of the seabed surface, the tolerance parameter was too
low and, therefore, there was an underestimation of the interpolated surface with respect
to the real one. Thus, it can be seen that the influence of the seabed/terrain morphology
greatly influences the accuracy of the digital models obtained. Similar results were also
found in the studies conducted by Masataka [43] and Guo et al. [42], confirming the strong
influence of the slope or the terrain roughness.
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Figure 11. Trend graph of the median of the residuals (Zinterpolated — Zcheckpoint) With respect
to the interaction between Morphology and Interpolation Method. Vertical bars denote 95%
confidence intervals.

3.2. Vertical Random Error

As was previously done for the vertical systematic error, a single robust estimator of
random error such as NMAD was used to analyze the influence of interpolation methods
on the random error of the gridded seabed surface. NMAD is an estimator of scale or
variability and is insensitive to the presence of outliers. Moreover, it is not sensitive to the
sample size [80].

In order to obtain a complete statistical analysis, the ANOVA test was also per-
formed on the RMSE statistic, but in order to not overextend the presentation of the
results obtained, only those obtained for the NMAD are shown. The results are reported
in the Supplementary Materials, where Table S1 shows the average value of vertical
RMSE = Standard deviation (four replicates) for each sample density and morphology
tested. Table S2 shows the result of the ANOVA test, while Figures S1-56 show the error
trends as a function of the parameters analyzed (SD, M, MI, and the interactions between
them). The results obtained for RMSE were very similar to those obtained and shown
for NMAD.

The ANOVA test results for NMAD are reported in Table 4. As in the case of vertical
bias, all the factors influenced the vertical random error given by NMAD, showing p-values
clearly less than 0.05. The greatest influencing factor was SD, followed by M and IM
(F-values of 545.538, 380.374 and 290.306, respectively). In this case, the factors contributed
to explaining the variability of the random error much more significantly than the double
and triple interactions.

Figure 12 plots SD against the vertical random error (NMAD). The analysis of this
Figure suggests that increasing the number of sampling points leads to a decreasing error.
In fact, a very low density of sampling points reported a high random vertical error of
about 1.8 m, while the highest sampling densities, SD7 and SD8, produced a very low
interpolation vertical error of about 0.1 m. In this way;, it is possible to conclude that the
higher the density of the points surveyed, the lower the vertical random error observed.
The plot of this error against the sampling density fits well with a decreasing potential
function [37]. These results are in agreement with those reported by Borga et al. [81] and
Lazzaro et al. [82], confirming that the greater the sampling density, the lower the impact of
the interpolation method on the vertical random error; it is simply due to the shortening of
the distance between surveyed and interpolated points. As confirmed also by Liu et al. [83],
the initial dataset can be reduced to a certain level without significantly decreasing the
vertical accuracy of the output 3D-surface model.
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Table 4. ANOVA test results for vertical random error estimated from NMAD.

Sum of Degree of Mean Sum
Squares Freedom of Squares F p-Value
(SS) (DG) MS)
Sampling Density (SD) 225.8777 7 32.2682 545.538 <0.01
Morphology (M) 112.4945 5 22.4989 380.374 <0.01
Interpolation Method

(M) 51.5142 3 17.1714 290.306 <0.01

SD-M 76.6551 35 2.1901 37.027 <0.01

SD - IM 75.2735 21 3.5845 60.600 <0.01

M- IM 12.3450 15 0.8230 13.914 <0.01

SD-M-IM 20.1571 105 0.1920 3.246 <0.01

Error 34.0700 576 0.0591
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Figure 12. Trend plot of NMAD vs. Sampling Density factor. For each SD all morphologies and
interpolation methods are included. Vertical bars denote 95% confidence intervals. Different letters
between sampling densities indicate significant differences according to Tukey’s test (p < 0.05).

Figure 13 displays the relationship between the vertical random error given by NMAD
and the morphology factor. As predictable, the largest error (1.3 m) corresponded to the
sector Q4, the morphologically more complex seabed sector. On the other hand, the flat
seabed that characterized sector Q23 obtained the lowest interpolation error. It is important
to note that the trend of the vertical error follows the previously calculated MVI values
shown in Table 2. These results confirm the reliability of this index to estimate morphologi-
cal complexity, also confirming the previous results obtained by Alcaras et al. [46]. It also
reveals the strong dependency between the accuracy of the interpolated 3D-surface model
and the morphological complexity of the surveyed seabed.

The results of the vertical interpolation error (NMAD), depending on the applied in-
terpolation method, are depicted in Figure 14. RBMF was the significantly best-performing
interpolation method, achieving a mean NMAD below 0.3 m. It was closely followed
by OK, which returned a mean NMAD value of 0.35 m. In contrast, both GMRF and
UK performed significantly worse, obtaining mean NMAD values of 0.75 m and 0.9 m,
respectively. These results agree with those obtained by Alcaras et al. [16], confirming
the good performance of OK with the so-called stable semi-variograms among the group
of stochastic interpolation methods. Similarly, RBMF proved to be an outstanding and
efficient method within the group of deterministic interpolators. The study conducted
by Wu et al. [25] confirms the results obtained in this work, confirming that OK and RBF
perform the best when building a DBM according to the values recorded of RMSE and
MAE. In addition, the studies published by Bello-Pineda et al. [84] and Curtarelli et al. [85]
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are in line with the obtained results, highlighting the excellent performance of the OK as an
interpolation method. On the contrary, UK and GMRF were prone to over-smoothing the
actual seabed surface, constituting a serious problem in the case of rugged topography.

1.6
14
1.2}
1.0
0.8
0.6
0.4

NMAD (m)

02+
0.0
-0.2

Q2 Q3 Q4 Q8 Q15 Q23
Morphology
Figure 13. Plot of NMAD vs. Morphology factor. Vertical bars denote 95% confidence intervals.

Different letters between morphologies indicate significant differences according to Tukey’s test
(p <0.05).

1.0
0.9

0.8 c
0.7

—

g'0.6-
(m]

< o5}
=
0.4} b

0.3+
0.2+

0.1

OK UK RBMF GMRF
Interpolation Methods

Figure 14. Plot of NMAD vs. interpolation method factor. Vertical bars denote 95% confidence
intervals. Different letters between interpolation methods indicate significant differences according
to Tukey’s test (p < 0.05).

Figure 15 reports NMAD versus sampling density for each of the morphologies tested.
It is worth noting that the relationship between SD and NMAD fits well to a decreasing
potential function of the type NMAD = ApN—B, where B is a constant to adjust and Ay
is a factor (e.g., MVI) that depends on the morphological complexity of the surveyed area.
In this sense, an increase in the sampling intensity leads to a decrease in the interpolation
error that is modulated as a function of the seabed roughness. Sector Q4, having the highest
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seabed roughness, presented the largest vertical random error for SD1 (16 sample points),
while sector Q23, the least morphologically complex, obtained the smallest error for SD1
(only about 0.25 m). These results confirm the findings reported by Aguilar et al. [37] and the
study conducted by Alcaras et al. [46], stating the need to increase the number of sampling
points (progressive sampling) in seabed areas characterized by a rugged topography.
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Figure 15. Plot of NMAD vs. Sampling Density factor for each morphology surveyed (interaction
between SD and M factors). Vertical bars denote 95% confidence intervals.

The results corresponding to the vertical random error, as a function of the combination
of SD and IM, are depicted in Figure 16. Again, a decreasing potential function is drawn
when plotting NMAD versus SD, although the exponent seems to be modified according to
the interpolation method applied. In fact, the negative slope of the decreasing potential
function is much higher for UK and GMREF than for OK and RBME. Furthermore, the
vertical random error made by the OK and RBMF interpolators is smaller than that made
by the UK and GMREF for all sampling densities. Regarding the two best methods, it can be
noted that, starting from SD3, the error becomes lower (around 0.4 m), decreasing more
and more as the sampling density used increases. On the contrary, UK and GRMF need a
higher density of points to reduce the error, particularly from SD5 onwards. These results
confirm the need to increase the sampling density to obtain more accurate results, as shown
in [86].

Finally, Figure 17 shows the results corresponding to the influence of the interaction
between M and IM on the vertical random error of the interpolated 3D surface. As men-
tioned above, a sort of clustering can be distinguished into two categories. On the one
hand, OK and RBMF, the best interpolators for all tested sample densities. On the other
hand, the UK and GMREF performed the worst. As expected, the maximum interpolation
error was obtained with UK in the most rugged sector Q4 (mean value of 1.79 m), while the
minimum error was obtained with OK and RBMF in sector Q23 (close to zero, i.e., almost
Nno error).

As can be seen in Figure 17, all the interpolation methods turned out to be influenced
by the morphology in which they were applied. For example, OK and RBMF generated
less vertical error than UK and GMREF in all morphologies tested, although this difference
was practically negligible in the flattest morphology Q23. These results prove the good
performance of the morphological index used to estimate the topographic complexity of
the seabed, since the error trend is quite similar to the MVI values shown in Table 2. It also
confirms the strong dependence between the interpolation method and the morphology of
the studied area, a relationship also pointed out in several works such as [36,37,42,46].
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Figure 16. Plot of NMAD vs. Sampling Density factor for each interpolation method (interaction
between SD and IM factors). Vertical bars denote 95% confidence intervals.
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Figure 17. Plot of NMAD vs. Morphology for each interpolation method. Vertical bars denote 95%
confidence intervals.

4. Conclusions

The results obtained in this study confirm that the morphological complexity of the
seabed, the sampling density and the interpolation method have an important and statis-
tically significant impact on the vertical accuracy of the interpolated digital bathymetric
models (grid format). The error of these 3D-surface models was estimated using the
true validation method and two robust statistical parameters: the median for the vertical
systematic error and the NMAD for the vertical random error.

From the analysis of the results provided by the ANOVA test, it can be stated that
sampling density and morphology are the factors that most influence the accuracy of
interpolated digital bathymetric models, relegating the interpolation method to third place.
In addition, the statistically significant influence of the interaction between sampling
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density and morphology on the vertical accuracy of the interpolated 3D surface confirms
the need to perform a preliminary analysis of the morphological complexity of the seabed
in order to increase, when necessary, the sampling intensity (surveyed points) in cases of
complex morphologies.

The results demonstrated that both radial basis multiquadric function (RBMF) and
ordinary kriging (OK) interpolators were able to build accurate grid-format bathymetric
models in areas characterized by low levels of variation of seabed morphology with
low sampling densities (8 m grid spacing). In contrast, a higher sampling density (3 m
grid spacing 3 m or less) was required to produce accurate bathymetric models in areas
characterized by high level of variation of seabed morphology. In cases with the most
rugged seabeds, RBMF resulted to be the most accurate interpolation method, while
universal kriging (UK) and Gaussian Markov fandom field (GMRF) appeared to be strongly
influenced by morphology and sampling density, showing that they are more likely to
slightly overestimate seabed depths.

MVI proved to be a very powerful index to estimate the degree of roughness of the
seabed, so it can be recommended to carry out a preliminary study of the morphological
complexity of the seabed to be surveyed. Since every preliminary study has its price, this
first reconnaissance survey would be based on a survey with a low sample density or
previously available navigation charts, which may be economically affordable. It should
be noted that the IHO Standards for hydrographic surveys for “Exclusive Order area of
survey” would require a very expensive survey, with up to 200% feature search and 200%
bathymetric coverage.

Future developments of this work and further studies will be focused on testing other
interpolation methods and datasets representative of different seabed configurations. In
addition, further tests will be carried out to validate the use of MVI to quantitatively
represent the variation of seabed morphology.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/1rs15082072/s1, Table S1: Average value of vertical RMSE =+ Standard deviation
(four replicates) for each sample density and morphology tested, Table S2: Results of ANOVA test for the
RMSE statistic, Figures S1-S6: Trend graph of the RMSE of the residuals (Zinterpolated — Zcheckpoint)
with respect to the factors Sampling Density, Morphology, Interpolation Method and the combination
between these factors. For each SD all morphologies and interpolation methods are included. Vertical bars
denote 0.95 confidence intervals. In Figures S1-S3 different letters between sampling densities, interpolation
methods and morphologies indicate significant differences according to Tukey’s test (p < 0.05).
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