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Abstract: In the efforts to mitigate the ongoing humanitarian crisis at the European sea borders,
this work builds detection capabilities to help find refugee boats in distress. For this paper, we
collected dual-pol and quad-pol synthetic aperture radar (SAR) data over a 12 m rubber inflatable
in a test-bed lake near Berlin, Germany. To consider a real scenario, we prepared the vessel so that
its backscattering emulated that of a vessel fully occupied with people. Further, we collected SAR
imagery over the ocean with different sea states, categorized by incidence angle and by polarization.
These were used to emulate the conditions for a vessel located in ocean waters. This setup enabled us
to test nine well-known vessel-detection systems (VDS), to explore the capabilities of new detection
algorithms and to benchmark different combinations of detectors (detector fusion) with respect
to different sensor and scene parameters (e.g., the polarization, wind speed, wind direction and
boat orientation). This analysis culminated in designing a system that is specifically tailored to
accommodate different situations and sea states.

Keywords: polarimetry (PolSAR); constant false alarm rate (CFAR) detector; polarimetric detector;
sub-look detector; vessel-detection system (VDS); ship detection; synthetic aperture radar (SAR);
disaster mitigation, refugee boat

1. Introduction

The ongoing humanitarian crisis at Europe’s southern maritime border has made
it the world’s deadliest border. For many years, migrants have been risking their lives
to cross the Mediterranean Sea under very poor conditions on routes that are frequently
controlled by human traffickers. Up-to-date and historic data and statistics about the
maritime migration into Europe and its toll on human life can be found on the web services
of the Missing Migrants Project [1], the International Organization for Migration [2] and
the United Nations Refugee Agency [3].

Search and rescue organisations on the ground attempt to mitigate the impact of the
continuously high numbers of maritime disasters, and one of the main hindrances is the
difficulty of quickly locating migrant boats in distress. These operations use different
strategies for maritime surveillance, such as vessels, airplanes and drones, and satellite-
based search is another useful tool for this task. For such a time-critical application in
disaster mitigation, synthetic aperture radar (SAR) is appropriate and practicable due to its
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all-weather and its 24 hour imaging capabilities. Moreover, the detection of ships and other
maritime objects with SAR has a long research history (e.g., [4–11]).

With the rapid evolution in processing power, the pattern recognition community
also added an important contribution to ship detection. However, many of the traditional
methods, such as region selections, scale-invariant feature transform (SIFT), support vector
machine (SVM) and histogram of oriented gradients (HOG), are typically associated with
high computing costs. With deep learning, the time performance increases because it
uses GPU acceleration. Different approaches using convolutional neural networks (CNN)
began to evolve rapidly, and we see different deep-learning models for object detection
(e.g., [12,13]) and image-classification tasks.

The region-based convolutional neural network (RCNN; [14]) and the sliding window
were followed by Fast-RCNN [15] and Faster-RCNN [16,17]. Improvements and reduced
complexity were achieved by using the softmax function instead of SVMs by using mul-
tiresolution convolutional features and by dividing the large detection area into region of
interest (ROI) images. Ref. [18] used this approach for the detection of ships.

Ref. [19] presented a grid-CNN (G-CNN), which is a combination of a backbone-CNN
(B-CNN) and a detection-CNN (D-CNN) to further improve and speed up automatic ship
detection. Other approaches, such as YOLO [20] and YOLOv2, attempt to embrace the
whole image during the training and testing period [21]. Ref. [22] used a deep neural
network (DNN) for SAR image classification with the sliced Wasserstein distance (SWD) to
provide a better solution to the optimization problem.

In our research, we attempt to adapt well-known detectors and develop detection
capabilities with SAR for 12 m long rubber inflatables. This specific type of sea vehicle is
predominantly used to cross the central Mediterranean Sea. In most cases, they are sent
to the ocean packed with more than 100 passengers. Shorter versions of such boats (10
or 8 m long), but identical in construction, are used on other routes, for example in the
Aegean Sea.

Our previous work on the development of automatic detectors for such migrant rubber
boats was based on SAR data that we collected from an original 12 × 3.5 m inflatable [23].
Those data enabled us to examine the radar pattern of our special maritime vessel under
different combinations of scene parameters (e.g., the incidence angle and resolution) and
sensor parameters (e.g., the boat orientation) and to evaluate them for their impact on
the detectability of the inflatable. We tested and compared a variety of existing automatic
vessel detectors [24]. Our results are, we think, noteworthy and legitimate and offer
significant insights regarding the behaviour of the inflatable when hit by microwaves and
the interactions with the surrounding water surface. With this, we can detect the empty
inflatable on a lake.

For this research, we collected data to create a more realistic scenario by simulating
passengers on the vessel and combining this with SAR imagery from the ocean. This
enabled us to analyse the SAR vessel-detection capabilities for migrant rubber inflatables
for a variety of sensor settings and scene parameters, such as the wave height and wave
direction. We present a polarimetric analysis of the backscattering behaviour of the fully
occupied inflatable and benchmark a variety of well-known detectors with respect to
several influencing parameters. To improve the detection quality, we experiment with new
algorithms with adaptations of the Intensity Dual-Polarization Ratio Anomaly Detector
(iDPolRAD) [25] and with the combination of detectors.

2. Materials and Methods
2.1. The Human Scattering Experiment

In this initial experiment, we evaluated which material was best suited to emulate
the presence of humans on a rubber inflatable and was sufficiently durable to remain
in the vessel on a lake for several months. During the whole campaign, the material
properties that influence the scattering behaviour (roughness, shape, water content and
dielectric property) must remain constant. With a mobile/handheld radar sensor, we
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compared the radar backscatter behaviour of a number of material with that of humans.
The experiments involved:

• Four volunteers sitting close to each other on the ground of an empty room. We
chose the sitting posture because that most closely resembles the real situation in
the migrant inflatable. The data include different arrangements: four people in a
row perpendicular to the sensor line of sight (LoS) (‘H4×1’), two rows of two people
behind each other (‘H2×2’) and all four people in one column behind each other
parallel to the LoS (‘H1×4’).

• Water-soaked clay pebbles, packed in 30 × 40 cm air-tight plastic bags. The bags
themselves are invisible to microwaves and the soaked clay pebbles, as they are
roundish objects smaller than the wavelength and with a similar water content to the
human body and, thus, should appear similar to the uppermost body parts (heads and
shoulders). We took data from two bags perpendicular to the LoS (‘C2×1’), two bags
parallel to the LoS (‘C1×2’), two bags sitting on top of each other (‘C1×1×2’) and two
bags stacked with one large bag ( 30 × 60 cm) standing behind them (‘C1×1×2+1’).

• Steel wool clumped to random 20 cm diameter balls to imitate the top layer of passen-
gers in a boat. The acquisitions involved six balls in two rows (‘S2×3’) and two balls
plus four 5 × 10 × 60 cm (h,w,l) steel wool layers not clumped but stretched out in the
front (‘S2+4’).

The dielectric constant ε′ is an important factor during the interaction with electromag-
netic waves. For a given shape, the lower the dielectric constant, the higher the backscatter
intensity from volume scattering [26]. A very low dielectric constant, such as air or PVC (all
dry) renders them almost invisible to microwaves and increases the penetration depth. The
dielectric property is a function of the temperature and the microwave frequency and of
course the exact composition of the particular material. Dry clay pebbles would be almost
invisible to microwaves due to their very low ε′ (Table 1). For that reason, we water-soaked
the clay pebbles and used air-tight bags to preserve a similar water content to that of the
human body (about 80%) throughout the acquisition campaign.

Table 1. The dielectric properties for a list of materials involved in our detection scenario at 20 °C
(* at 37 °C) [27]. The value for sea water, given the typical salinity of the Mediterranean Sea, is about
38 g per kilo [28].

Material Dielectric Constant ε′ Loss Tangent tan δ

Air 1 depends on weather
Blood * 58 0.27
Fat * 5.5 0.21
Muscle * 49 0.33
Nylon 2.4 0.0083
Polyethylene 2.25 -
Water, fresh [29] 80 -
Sea water [30,31] 70 -
Sea ice [26] 4 0.5
Sandy soil (dry) 2.55 0.0062
Clay bricks 3.7-4.5 -
Metals infinite -
Plywood 2.5

The loss tangent is the relation between the dielectric constant ε′ and the loss factor ε′′

and describes the conductivity of a medium:

tan(δ) =
ε′′

ε′
(1)
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The dielectric permittivity εc is defined as a complex number:

εc = ε′ − iε′′ (2)

consisting of the dielectric constant (real) and the loss factor (imaginary). The latter de-
scribes the electromagnetic loss of a medium. A low electromagnetic loss generally results
in an additional contribution from volume scattering [26].

Fresh water has an ε′ similar to blood or muscle tissue, which justifies/explains our
use of water-soaked clay pebbles. Steel wool has, as with all magnetic matter, a very high
dielectric constant, and its εc is infinite. Due to that and due to its shape, we expect it to
behave similarly to human bodies and to have a strong volume backscattering signal.

Figure 1 compares the intensity images of all three test cases. The test objects are placed
at the same distance from the sensor (y-axis) whereas the x-axis represents the number of
pulses. In this case, 65 consecutive pulses were emitted and recorded. The radar return
from H2×2 is speckled in time due to movement, and the signal is more spread out since
human bodies occupy a wider space along the LoS than the comparably small test objects
(Figure 1, left). The wall in the background is more clearly visible in the scenarios with clay
pebbles and steel wool since the objects used are much smaller than four people, occupy
much less space and produce less occlusion (Figure 1, centre and right). To evaluate how
many sacks are needed, we summed up the intensity values of all pulses of the different
materials and the humans within each scenario. The comparison of these backscattering
intensities revealed that approximately 90 bags of soaked clay would emulate 80 occupants.

Figure 1. Example results (in dB) of the human backscattering experiments: H2×2 (left), C2×2×2
(centre) and S2×3 (right). The y-axes show the distance from the sensor in decimetres.

2.2. Data Campaign and Data Collection

We set up the data campaign on a small lake in northern Germany in spring 2022. The
test object was a 12 × 3 m rubber (1.2 mm PVC) inflatable with a wooden floor and no
metal parts at all.

Due to its dielectric properties, the boat itself is expected to be hardly visible using
microwaves (see Table 1; [23]). Finally, we placed 90 bags of soaked clay pebbles in a way
that makes them cover the whole area of the vessel, including the inflated volumes that
passengers use to sit on (Figure 2).
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(a) Top view (b) Side view

Figure 2. SAR data acquisition setup in the test-bed lake.

We expected the bags to leave a similar radar signature compared to a group of
80 people sitting in the boat. First, the bags were expected to simulate the volumetric
structure created by many people with their shoulders and heads placed close to each
other. Second, the water in the volume-like clay pebbles, preserved over the whole time
by air-tight bags, should resemble the water content of the human body. Our approach
to simulate the backscattering of a human body in different frequencies is supported by
similar studies. For example, Ref. [32] used wet sand for Ultra Wide Band (UWB) radar.
In our experiment, we expect a stronger intensity signature compared to an empty boat
(see [24]).

Thus, prepared, the boat sat on the lake perpendicular to the LoS (in a N-S direction)
for the first two months. In a second phase, we oriented it at 45° to the LoS and acquired
data for another two months. These two geometries should represent two diametrically
different scenarios when it comes to scattering mechanisms. The boat oriented 90° relative
to the LoS should generate a strong radar backscattering since it exposes the maximum
amount of surfaces facing the LoS and being capable of scattering the EM-waves directly
back through double reflections [23]. The boat oriented at 45°, on the other hand, is expected
to scatter some of the multiple reflections away from the sensor. This is because the volume
scattering expected by the human-equivalent and from the vessel facets (for example in
case they are wet) is not fully isotropic.

The data collected comprise full-pol data from Cosmo-SkyMed Second Generation
(CSG), dual-pol Stripmap data in several combinations from TerraSAR-X (TSX) and very
high-resolution VV-pol data from ICEYE (Table 2).

Table 2. Overview of the data collected for the boat on the lake with 80 simulated people.

Mission Mode Average Pixel
Size (m²) Polarization Incidence

Angle Datasets

TerraSAR-X Stripmap 4.4
Dual-pol: HH VV,
HV HH, VH VV

Low, medium
and high 46

Cosmo-
SkyMed Spotlight 2.7 Quad-Pol

Medium and
high 4

ICEYE
High-res.
Spotlight 0.6 Single-Pol: VV Low and

medium 4

For the CSG and the TSX data, we attempted to cover different combinations of sensor
and scene setting, such as incidence angle, dual-pol polarization and the orientation of
the boat. This enabled us to analyse the influence of these parameters on the scattering
behaviour of the inflatable and on the performance of the detectors.

Table 3 quantifies the available TSX datasets. The categories for the incidence angles
are defined as smaller than 28° for ‘low’, from 28° to 43° for ‘medium’ and greater than 43°
for ‘high’. The figures list the datasets where an unambiguous identification of the boat on
the lake was possible; figures in brackets represent unsuccessful identifications. The reason
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for the latter was mainly strong Bragg scattering due to low incidence angles. We speak of
an unambiguous identification when the target-to-clutter ratio (TCR) of at least one of the
polarization channels is larger than three times the clutter standard deviation σ in dB:

TCR ≥ 3 ∗ σclutter (3)

where TCR is defined as the ratio between the maximum backscattering of the rubber
inflatable and the mean of the backscattering of the local lake clutter. In dB, the ratio has
a difference. It is useful to express σ0 in the decibel (dB) scale since it can be statistically
modelled with a Gaussian distribution. In linear scale, the fit of a generalized gamma dis-
tribution would be much more appropriate and (3) would have to be adapted accordingly.

Table 3. TSX data parameter matrix of the ’full’ inflatable on the lake.

90 Degrees 45 Degrees
Low Medium High Low Medium High

HH VV 1 (1) 4 3 3 (2) 5 5
HV HH 1 2 2 1 (1) 3 2
VH VV 1 2 1 1 (1) 2 2

The high variability of the ocean surface due to wind speed, wind direction, swell
and other factors has grave implications for its scattering behaviour. The backscattering
intensity changes with the water wave height, frequency, form and orientation relative
to the LoS of the radar. Moreover, the combination of scattering mechanisms changes
with the existence and density of wave features, such as foam or breaking waves [33–37].
Consequently, higher sea states are expected to hamper the detection task.

Figure 3a visualizes an example for the increased radar backscattering intensity from
2.1 m waves. On the right, the corresponding detection probability map from the intensity-
based cell averaging-constant false alarm rate (CA-CFAR) detector shows how the waves
can raise the false positive rate.

(a) (b)
Figure 3. Radar signature of 2.1 m waves in the up/down direction, HH-pol and TSX Stripmap
(left) and its implications for the detection task (right) (@ DLR 2014). (a) Radar signature (σ0 in dB);
(b) CA-CFAR probability map. Axis labels are in meters.

To analyse and quantify the influence of the significant wave height Hs on the perfor-
mance of the detectors, we gathered a collection of SAR data from the ocean. These ocean
data comprise different Hs for a selection of combinations of wave directions, incidence an-
gles and dual-pol combinations. We arranged our collection classifying the wave direction
( relative to the LoS) in two groups:

• Cross-wind waves: these are waves that move perpendicular to the LoS. They move
in the direction of the satellite azimuth, which is close to N-S.
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• Up/down-wind waves: here, the waves move in the range direction.

The wave direction is—particularly for low wind speed/low waves—an important
impact factor for the backscattering behaviour of the water surface (e.g., [38]). The LoS was
calculated using the heading of the satellite defined by the azimuth angle, which is 10.2° for
TSX. That means a heading of 349.8° for ascending orbits and 190.1° for descending orbits.
We accepted an average deviation of 10° between the wave direction and the respective
directions for up/down wind and cross wind.

We determined the wave direction and Hs of the TSX-archive datasets with the help of
in situ wave-sensor buoys from the Copernicus Marine Environment Monitoring Service In
Situ Thematic Assembly Centre (CMEMS In Situ TAC). In fact, we only used SAR data near
in situ buoys where the wave height and wave direction data were available. To verify the
data, we double checked the plausibility with data from nearby buoys of that network and
with estimations from a number of Copernicus wave models covering different ocean areas:

• North Sea: Atlantic–European North-West Shelf-Wave Physics Reanalysis.
• Mediterranean Sea and West Gibraltar region: Mediterranean Sea Waves Reanalysis.
• Arctic Ocean: Arctic Ocean Wave Hindcast.
• All other maritime regions not covered by a high-resolution wave model: Global

Ocean Waves Reanalysis WAVERYS.

From these models, we extracted and used parameters, such as the sea surface wave
significant height (VHM0 or Hm0 (m)), significant height of waves Hs on the water body (VGHS
(m)) and average height highest wave (VAVH) for the wave height, wave principal direction at
spectral peak (VPED), direction from which the waves are coming relative to true north (VDIR),
direction from which the wind is coming relative to true north (WDIR) and the wave-induced
horizontal Eulerian mean current (HCDT), to determine the main direction of the waves. The
latter is useful since the Eulerian mean current is always in the direction of the waves [39].

We followed the Beaufort scale (BFT) to define our wave height categories in Table 4,
and each category corresponds to a specific sea state defined in that scale. This collection
enables us to examine the impact of a variety of sea states on the radar backscattering
and on the detection task. As Table 4 shows, the collection of ocean data was subdivided
according to the polarization, the incidence angle (low, medium and high) and the principal
wave direction relative to the LoS (up/down and cross).

Table 4. Collection of TSX dual-pol ocean data covering different wave directions, wave heights,
polarimetric channel combinations and incidence angles.

Polarization HH VV HV HH VH VV
Incidence Angle Low Low Medium High Medium High Medium High
Wave Direction Cross Up/Down Up/Down Up/Down Up/Down Up/Down Up/Down Up/Down
Wave Height (m)

0.4–0.8 (BFT3)
0.8–1.5 (BFT4)
1.5–2.5 (BFT5)
2.5–3.5 (BFT6)
3.5–4.5 (BFT7)
4.5–6.5 (BFT8)

Figure 4 provides an overview of our collection of TSX archive SAR data of different
wave heights and the water surface mean backscattering energy by polarization. The
acquisitions from the lake test bed are included as well (Hs = 0). It shows a general trend
of stronger backscattering from the water surface with increasing Hs. Moreover, small
incidence angles tend to give very high backscattering intensities due to larger Bragg
scattering. In co-pol datasets, VV shows a slightly higher mean intensity value throughout
the data collection (HH: −15.5 dB and VV: −14.4 dB). At medium and high incidence
angles, the return from the water surface is very low—especially for cross-pol channels.
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(a) HH-pol. (b) VV-pol. (c) Cross-pol (HV or VH).

Figure 4. TSX dual-pol data collection of different wave heights and their mean backscattering
intensity; one diagram for each polarization.

To facilitate the testing of vessel detector algorithms at different sea states, we fused
the simulated ’full’ inflatable with the datasets showing the ocean. All important sensor
parameters (resolution/acquisition mode, incidence angle and polarization), were consid-
ered, and we replaced pixels in the images from the ocean with the pixels of the boat. The
pixels of the boat on the lake were chosen using an intensity-based approach as described
in Formula (3). Figure 5 shows a ground truth map with four different signatures of the
inflatable (yellow) inserted at random positions into the ocean data (purple). This binary
mask with yellow pixels represent the ’positive true’ case in the following analysis. Again,
we took extra care to only replace pixels where the satellite parameters were similar.

Figure 5. A 350 × 350 m ground truth map after insertion of the positive true pixels (yellow) of four
different acquisitions from the rubber inflatable. Purple pixels represent the ocean surface.

2.3. Polarimetric Analysis of the Inflatable

Decomposition theorems (DT) provide a physical interpretation of the signals scattered
from a target by considering them as a combination of several components. To better
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understand the scattering mechanisms at the inflatable, we used quad-pol CSG data
for a selection of well-known coherent and incoherent polarimetric decompositions as
listed in Table 5. In this context, the term coherent indicates the decomposition of the
scattering matrix [S] (Pauli, Cameron), including the phase information, whereas incoherent
decompositions (Yamaguchi, Cloude–Pottier) use the averaging coherency [C] or covariance
[(]T] matrix [40].

The most commonly known coherent model-based decomposition is the Pauli decom-
position where the scattering matrix [S] is the sum of the complex quantities of odd-bounce
(e.g., single bounce), even-bounce (e.g., double bounce) and 45° rotated double bounce (see
Table 5). The Cloude–Pottier decomposition or Entropy/Anisotropy/Alpha decomposition
(H/A/α) [41,42] proposes the existence of three orthogonal scattering mechanisms. It
belongs to the category of eigenvector-based TDs and is especially useful for partial targets.
To retrieve its parameters, it is necessary to form the covariance matrix in the Pauli basis.

Working on the assumption of a monostatic system and reciprocity, the Pauli vector is
kp = 1√

2
[HH +VV, HH−VV, 2 ∗HV]T . This matrix is then called coherency matrix [T]. In

the quad-pol reciprocal scenario, [T] gives three independent scattering mechanisms along
its main axis: surface scattering T11 = 〈k1k∗T1 〉, double-bounce scattering T22 = 〈k2k∗T2 〉 and
volume scattering T33 = 〈k3k∗T3 〉. The three roll-invariant parameters H, A and α can be
used to describe the quantitative proportion between the three scattering mechanisms. For
our detection task, H was found to be particularly useful.

Table 5. Polarimetric decompositions and parameters. The Yamaguchi parameters had their orienta-
tion removed.

Parameter Decomposition Note

Alpha Cloude–Pottier
Entropy Cloude–Pottier
Single Bounce Yamaguchi Y4R
Double Bounce Yamaguchi Y4R
Volume Scattering Yamaguchi Y4R
Helix Scattering Yamaguchi Y4R
Symmetry Yamaguchi Y4R Huynen Target Generator A0
Irregularity/Double Bounce Yamaguchi Y4R Huynen Target Generator B0-B
Non-symmetry Yamaguchi Y4R Huynen Target Generator B0+B
Even bounce Pauli |HH-VV|
Even bounce 45° oriented Pauli |HV|
Odd bounce Pauli |HH+VV|
Trihedral Cameron
Dipole Cameron
Narrow Diplane Cameron
Diplane Cameron
Left Helix Cameron
Right Helix Cameron
Cylinder Cameron
1/4 Wave Device Cameron

The model-based Yamaguchi decomposition [43] added the helix parameter to the
Freeman and Durden decomposition [44], adding an asymmetric component to the scatter-
ing model. Helix scattering is fully determined by the imaginary part of the T23 element
of the coherency matrix. This element is expected to be strong when there is no reflection
symmetry, such as in forests or 45° oriented built-up areas.

It is expected to be weak for flat surfaces and parallel built-up areas. Polarimetric
reflection symmetry means there is no correlation between the co-pol and the cross-pol
channels [45]:

〈SHHS∗HV〉 = 〈SHVS∗VV〉 = 0 (4)
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The Cameron decomposition [46] uses the Pauli spin matrices to decompose and to
classify [S] in several steps. The scattering [S] matrix is described as the complex sum
of these basis matrices. Each of them is associated with one of the elementary scatter-
ing mechanisms: single scattering from plane surfaces, diplane scattering from corner
reflectors oriented 45° and non-symmetric components. The Cameron decomposition is a
multistage procedure.

First, the degree of reciprocity (in Cameron’s formula the angle θ) is calculated in
order to examine whether the reciprocal components dominate or not by separating the
symmetric and non-symmetric parts. For the scattering matrix of reciprocal objects, the
elements S12 and S21 are equal. If the reciprocal part is dominant, the reciprocal term is
decomposed into symmetric and asymmetric scatterers. Representative [S] matrices for
asymmetric left and right helices are:

• Left helix: Shl =
1
2

[
1 i
i −1

]
• Right helix: Shr =

1
2

[
1 −i
−i −1

]

If the [S] matrix exhibits asymmetry, its share of left helix and right helix is calculated.
In a final step, if the matrix is symmetric, it is compared to a list of symmetric scatterers.

• Trihedral: 1√
2

[
1 0
0 1

]
• Diplane: 1√

2

[
1 0
0 −1

]
• Dipole:

[
1 0
0 0

]
• Cylinder: 1√

5

[
2 0
0 1

]
• Narrow diplane: 1√

5

[
2 0
0 −1

]
• 1/4 wave device: 1√

2

[
1 0
0 i

]

where, according to Cameron, a symmetric scatterer has an axis of symmetry in the plane
of the radar line of sight (LoS).

The Cameron decomposition is a coherent DT, such as, for example, the Krogager
decomposition [47]. This group of DTs are particularly useful in the case of one dominant
scattering mechanism. Cameron’s cylinder and narrow diplane scattering can be composed
of trihedral, dihedral and dipole scattering. Together with the quarter wave device, they
can be called fundamental scattering mechanisms [48].

2.4. Detector Comparison and Detector Fusion

We tested and benchmarked nine different vessel-detection systems (VDS; Table 6)
algorithms using receiver operating characteristic (ROC) curves. ROC curves are plots of
the probability of detection (Pd) versus the probability of false alarm (Pf a). To quantify and
compare the results from the ROC curves, we estimated the area under the curve (AUC)
and grouped them for different wave heights and detectors.

ROC curves are computed by varying the threshold between a minimum and a
maximum value depending on the histogram of the detector output. The AUC is a value
for the classifier’s performance: an AUC of 1 is the best achievable result and means 100%
detection with no false alarms. An AUC of 0.5 is obtained for detectors making random
choices. All VDS were implemented using a sliding window of a specific size (CUT) with a
guard window around it and a training window around the guard window.
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Table 6. Overview of the vessel-detection algorithms being tested and their parameterization.

Detector
Cells Under
Test (CUT)

Window Size

Guard
Window Size

Train
Window Size

Polarimetric Symmetry
Detector (PolSym) 1 2 5

Polarimetric
Notch Filter (PNF) 5 12 36

Polarimetric Entropy
Detector (PolEntropy) 2 - 10

Polarimetric
Match Filter (PMF) 5 12 36

Intensity Depolarization
Ratio Anomaly Detector
(iDPolRAD)

1 12 36

Surface Intensity Depolarization
Ratio Anomaly Detector
(SiDPolRAD)

1 12 36

Sub-look Correlation
Detector (SubCorr) 1 - 36

Polarimetric
Whitening Filter (PWF) 5 12 36

Cell Averaging Constant
False Alarm Rate
(CA-CFAR)

1 24 36

During a preliminary phase of benchmarking and detector tuning, we selected, for
each detector, the parameterization that translates into the best performance (Table 6).
PolEntropy and the SubCorr worked better without a guarding window, so we removed
it for those two. The iDPolRAD is actually intended for use as a volume detector and
designed to work with the cross–polarization over co–polarization ratio [25].

Since we applied it to all available combinations of dual-pol data, including HH VV,
we refer to it here as PolRatio1 when used with cross-pol data and PolRatio3 when used
with co-pol data. The same is true for its surface and double-bounce scattering detecting
variant SiDPolRAD [24], which we rename as PolRatio2 when used with cross-pol data
and PolRatio4 when used with co-pol data. For VH VV and HV HH, the two detectors are
defined as:

PolRatio1 :
〈|cross-pol|2〉test − 〈|cross-pol|2〉train

〈|co-pol|2〉train
∗ 〈|cross-pol|2〉test (5)

PolRatio2 :
〈|co-pol|2〉test − 〈|co-pol|2〉train

〈|cross-pol|2〉train
∗ 〈|co-pol|2〉test (6)

Applying those two to the HH VV polarization combination, we express them as:

PolRatio3 :
〈|HH|2〉test − 〈|HH|2〉train

〈|VV|2〉train
∗ 〈|HH|2〉test (7)

PolRatio4 :
〈|VV|2〉test − 〈|VV|2〉train

〈|HH|2〉train
∗ 〈|VV|2〉test (8)

A possible physical interpretation for PolRatio3 is ’dihedral scattering’ since the HH
channel is stronger compared to the VV channel when we have a horizontal dihedral. The
interpretation for PolRatio4 is ’Bragg scattering’ since VV is stronger than HH in the case of
Bragg scattering.

At this point, we were able to identify the most promising detectors for each dual-pol
combination of polarimetric channels against the background of different wave heights. To
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improve the detection capabilities for our vessel, we tested different combinations of the
top ranking detectors.

Each detector produces a detection probability map. This map is then classified by
applying a threshold to generate the detection mask. This mask is a binary image showing
the detector decision at a specific threshold. Each pixel receives either a zero value for
‘no boat’ or a one value for ’boat detected’. To fuse binary detection masks coming from
different detectors, we tested different combinations of the logical operators ‘OR’ and
‘AND’ (Figure 6). Further, we tested detection algorithms that use the intensity and the
ratio between the T11 (surface scattering), T12 (compound H– and V–dipoles, [49]) and T22
(double-bounce scattering) elements of the covariance matrix. The double-bounce scattering
can come from the side of the inflatable and the passengers inside, which, together with
the water surface, form dihedral structures. The term T22 can be expanded as:

T22 =
1
2
〈|SHH − SVV |2〉 =

1
2
〈|SHH |2〉+

1
2
〈|SVV |2〉 − 〈Re{SHHS∗VV}〉 (9)

In the dihedral scattering, the most significant feature is that the co-polarized compo-
nents HH and VV are in opposite phase. Therefore, T22 increases to the maximum when
the last part of Equation 9 becomes smaller than zero.

Figure 6. Detector melange flow diagram.

3. Results
3.1. Qualitative Inspection of High Resolution Data

At this point, we present three high-resolution spotlight images from ICEYE. These
single-VV-pol images provide insight into the location and spatial variation of scattering
mechanisms producing the radar backscattering of the rubber inflatable.

Figure 7 shows the boat with different sensor parameters at a sub-metre resolution of
about 0.8 m. All three allow for a good visual identification and a precise size estimation.
Strong scattering responses (bright pixels) are almost uniformly spread throughout the
vessel. At a low incidence angle (Figure 7a), the mean response from the water surface is at
about 10 dB and, compared to higher incidence angles, is increased by Bragg scattering. The
vessel response is stronger as well; however, that increase is less strong. The wave structure
of the water seems to be disturbed by the boat in the southeast–northwest direction, where
there are also areas of lower backscattering.
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This theory is backed by recordings from the Deutsche Wetterdienst (DWD) of the
wind direction being 330° at the time of acquisition. At medium incidence angles, the mean
radar response from the water surface (Figure 7b,c) is around 16 dB, and the TCR is higher.
The vessel orientation relative to the LoS is clearly visible.

(a) (b)

(c)

Figure 7. High-resolution ICEYE VV-pol of the vessel at different wave heights and their mean
backscattering intensity. µ = mean of the water surface backscattering, σ = standard deviation of the
water surface backscattering (@ ESA 2022). (a) Low incidence angle, 45° inclined boat. (b) Medium
incidence angle, 45° inclined boat. (c) Medium incidence angle, orthogonal boat.

3.2. Polarimetric Scattering Analysis

A pixel-wise Pauli RGB image analysis (Figure 8) shows that the boat triggers different
scattering mechanisms. For the filtering of [C] and [T] matrices, we used a rather small 3×3
window to preserve the spatial resolution as much as possible.

Table 7 lists the contributions of scattering mechanisms according to the Pauli decom-
position. Double-bounce and single-bounce scattering clearly dominate. Volume scattering
plays a minor role across the range of different acquisition parameters and seems to be
stronger at low incidence angles.

Table 7. Pauli scattering mechanisms (dimensionless, comparative quantities, normalized to 0->1).

Double Bounce Volume Single Bounce

low inc. angle,
inclined vessel 0.41 0.25 0.41

low inc. angle,
orthogonal vessel 0.33 0.17 0.33

medium inc. angle,
orthogonal vessel 0.68 0.26 0.73



Remote Sens. 2023, 15, 2008 14 of 27

(a) (b)

Figure 8. Pauli R (double bounce) G (volume scattering) B (single bounce) composites for the
orthogonal vessel at a medium incidence angle (@ ASI 2022). (a) Pauli RGB from the lake test bed.
(b) Pauli RGB from a section of the lake with the rubber inflatable in the centre.

The Cloude–Pottier decomposition delivers low entropy at low incidence angles and
medium entropy for medium incidence angles (Table 8, Figure 9). The mean alpha angle
varies throughout the three acquisitions, indicating a dominance of surface scattering and
double-bounce scattering as well as minor contributions from volume scattering.

Table 8. The results of the Cloude–Pottier decomposition of the inflatable (dimensionless, comparative
quantities, normalized to 0->1).

H Mean Alpha

Low inc. angle,
inclined vessel 0.46 0.32

Low inc. angle,
orthogonal vessel 0.46 0.65

Medium inc. angle,
orthogonal vessel 0.58 0.54

(a) Entropy (b) Mean alpha

Figure 9. Cloude–Pottier decomposition results in a scale from red (high) to blue (low) for the
orthogonal vessel at a medium incidence angle (@ ASI 2022).

The Yamaguchi Y4R decomposition reveals the dominance of single-bounce scattering
in the two acquisitions when the vessel was oriented orthogonally (Table 9, Figure 10).
Double-bounce scattering varies to a great extent. Volume and helix scattering do not
contribute significantly in any section of the inflatable.
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Table 9. Yamaguchi Y4R decomposition (dimensionless, comparative quantities, normalized to 0->1).

Helix Single Bounce Volume Double Bounce

Low inc. angle,
inclined vessel 0.00 0.07 0.01 0.49

Low inc. angle,
orthogonal vessel 0.00 0.48 0.01 0.00

Medium inc. angle,
orthogonal vessel 0.00 0.80 0.01 0.39

Figure 10. Yamaguchi Y4R RGB-composite showing symmetric (red), irregular/double-bounce
(green) and non-symmetric (blue) scattering of the orthogonal vessel at a medium incidence angle (@
ASI 2022).

According to the Cameron decomposition (Table 10), the inflatable is dominated by
scattering from dipoles with minor contributions from narrow diplanes and scattering from
cylinders. It appears that 1

4 wave device scattering contributes more at low incidence angles.
Trihedral scattering plays a minor role. Asymmetric helix scattering only contributes to
a minor extent. There is no direct and simple explanation for the occurrence of these
mechanisms; however, they could be related to multiple interactions (in the resolution cell)
between the pellet sacks and the water underneath.

Table 10. Cameron decomposition (dimensionless, comparative quantities, normalized to 0->1).

Trihedral Dipole
Narrow
Diplane Diplane Cylinder

1/4 Wave
Device

Left
Helix

Right
Helix

low inc. angle,
inclined vessel 0.08 0.47 0.17 0.07 0.26 0.18 0.03 0.01

low inc. angle,
orthogonal vessel 0.15 0.53 0.22 0.06 0.11 0.21 0.02 0.01

medium inc. angle,
orthogonal vessel 0.06 0.57 0.15 0.06 0.23 0.10 0.00 0.00

All four decompositions show a dominance of surface scattering and double-bounce
scattering. Pauli and Cloude–Pottier show that the entropy is at a medium level since, with
double-bounce and single-bounce scattering, there are two dominant mechanisms. The
result of the Yamaguchi decomposition show an unequal distribution of single-bounce and
double-bounce scattering and no double-bounce scattering in one acquisition. This agrees
with the Cameron decomposition in showing very little asymmetric helix scattering.
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3.3. Detector Testing

The first results are a comprehensive comparison of the performance of nine detectors
for three different categories of incidence angles and three different polarization channel
combinations. Here, we used the simulated data that combine acquisitions over the sea
and the lake. Figure 5 shows an example of a sea truth mask after embedding the boat into
the ocean background.

We tested the detectors with two different boat orientations and using all the com-
binations of these sensor parameters with different wave directions and wave heights,
according to the availability of ocean data as listed in Table 4).

For dual co-pol data, most detectors performed worse with increasing Hs and decreas-
ing incidence angles. Very interestingly, the PolEntropy had increasing, or at least stable,
AUCs for higher sea states. The fact that it searches for high entropy shows that the entropy
of the water surface declines with increasing Hs. This is mostly due to noise floor issues
where low sea states produce high entropy backscattering that is close to the noise floor. A
high incidence angle can reduce the backscattering even below the noise floor. That is why
the PolEntropy detector is the only detector with very low performance at high incidence
angles and for calm water surfaces (Figure 11g,h).Remote Sens. 2023, 15, x FOR PEER REVIEW 2 of 6 
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incidence angle: low and boat orientation: 45°. (b) Wind: cross, incidence angle: low and boat 
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Figure 12. Comparison of the detector AUCs for different wave heights for HV HH. (a) Wind: 
up/down, incidence angle: medium and boat orientation: 45°. (b) Wind: up/down, incidence angle: 

Figure 11. Comparison of the detector AUCs for different wave heights for HH VV. (a) Wind: cross,
incidence angle: low and boat orientation: 45°. (b) Wind: cross, incidence angle: low and boat
orientation: 90°. (c) Wind: up/down, incidence angle: low and boat orientation: 45°. (d) Wind:
up/down, incidence angle: low and boat orientation: 90°. (e) Wind: up/down, incidence angle:
medium and boat orientation: 45°. (f) Wind: up/down, incidence angle: medium and boat orientation:
90°. (g) Wind: up/down, incidence angle: high and boat orientation: 45°. (h) Wind: up/down,
incidence angle: high and boat orientation: 90°.

The detector performance for HV HH polarization (Figure 12) reveals good and stable
performances for most of the detectors at medium incidence angles. The entropy here
seems to be less reliable for higher sea states than it is for co-pol data.
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medium and boat orientation: 90°. (c) Wind: up/down, incidence angle: high and boat orientation:
45°. (d) Wind: up/down, incidence angle: high and boat orientation: 90°.

In VH VV (Figure 13), the detector performance seems to be less dependent on Hs.
The SubCorr and the PolEntropy are not able to match the PWF, the PMF and the PolSym.
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Error in Figure/Table 
In the original publication [1], there was a mistake in Tables 11–13 as published. The 
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Table 11. The vessel detection algorithms AUCs with different sensor parameters. 

Polarization HH VV HV HH VH VV  

Incidence Angle Low Medium High Medium High Medium High Avg 
PMF 0.787 0.888 0.976 0.996 0.906 0.945 0.995 0.928 
PWF 0.779 0.882 0.975 0.997 0.912 0.941 0.995 0.926 
PNF 0.67 0.822 0.956 0.994 0.881 0.871 0.986 0.883 

PolEntropy 0.834 0.813 0.534 0.046 0.279 0.559 0.373 0.491 
PolRatio1/3 0.529 0.768 0.947 0.913 0.689 0.714 0.939 0.786 

Figure 13. Comparison of the detector AUCs for different wave heights for VH VV. (a) Wind:
up/down, incidence angle: medium and boat orientation: 45°. (b) Wind: up/down, incidence angle:
medium and boat orientation: 90°. (c) Wind: up/down, incidence angle: high and boat orientation:
45°. (d) Wind: up/down, incidence angle: high and boat orientation: 90°.

Summing up the behaviour of the entropy of the water surface for different polariza-
tions shows that:

• HH VV: the water surface has lower entropy values than the boat except for low sea
states and/or high incidence angles.

• HV HH: medium angles: the entropy of the water stays higher than that of the boat;
high angles: the entropy of water stays higher than that of the boat.

• VH VV: the entropy of water is lower than that of the boat.

In the following section, one table compares the mean AUCs of all detectors, the next
explores the detector performance at higher sea states, and the last visualizes the influence
of different boat orientations. They also give an indication of the overall influence of the
incidence angle and the polarization.

Table 11 compares the overall performance of all detector algorithms. The best detec-
tors, on average, are the PWF, the PMF and the PolSym. Low incidence angles are not a
good choice when it comes to maritime object detection, since increased backscattering
from the water surface decreases the TCR. Medium and high incidence angles are more
useful for our task. The comparison of combinations of polarizations is strongly biased by
different sets of wave heights; for example, the category for medium incidence angles in
HV HH does not include any data with high waves.
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Table 11. The AUCs of the vessel-detection algorithms with different sensor parameters. The
background colours indicate different AUCs from white (low AUCs) to dark green (very high AUCs).

Polarization HH VV HV HH VH VV
Incidence Angle Low Medium High Medium High Medium High Avg
PMF 0.787 0.888 0.976 0.996 0.906 0.945 0.995 0.928
PWF 0.779 0.882 0.975 0.997 0.912 0.941 0.995 0.926
PNF 0.67 0.822 0.956 0.994 0.881 0.871 0.986 0.883
PolEntropy 0.834 0.813 0.534 0.046 0.279 0.559 0.373 0.491
PolRatio1/3 0.529 0.768 0.947 0.913 0.689 0.714 0.939 0.786
PolRatio2/4 0.554 0.599 0.849 0.983 0.9 0.768 0.936 0.799
SubCorr_HH 0.565 0.688 0.744 0.9 0.608 0.701
SubCorr_VV 0.528 0.557 0.684 0.604 0.481 0.571
SubCorr_cross 0.785 0.531 0.483 0.537 0.584
CACFAR_HH 0.6 0.775 0.975 0.98 0.943 0.854
CACFAR_VV 0.628 0.695 0.915 0.798 0.946 0.797
CACFAR_cross 0.972 0.701 0.766 0.909 0.837
PolSym 0.999 0.92 0.895 0.991 0.951
avg 0.647 0.749 0.856 0.869 0.752 0.759 0.826

The same is true for high incidence angles in VH VV. Nevertheless, we see that all
three combinations of polarization enable detectors to reach high AUCs.

As Table 12 shows, only results for data with a SPAN greater than−17 dB, it shows that
the PMF, the PWF and the PolSym adapt more readily to high sea states. The entropy is more
suitable for challenging situations, such as low incidence angles or high seas (high SPAN)
at HH VV. For cross-pol, the PolSym seems to be a good choice, and the CACFAR_HH
delivers very good results at high incidence angles. Again, all three combinations enable the
detectors to deliver comparably good performances on average. When the SPAN reaches
over −5 dB, all detectors except PMF, PWF and entropy fall to a level equivalent to random
choice (AUC 0.5).

Table 12. The AUCs of the vessel-detection algorithms with high sea states (SPAN > −17 dB). The
background colours indicate different AUCs from white (low AUCs) to dark green (very high AUCs).

Polarization HH VV HV HH VH VV
Incidence Angle Low Medium High Medium High Medium High Avg
PMF 0.787 0.843 0.935 0.728 0.945 0.848
PWF 0.779 0.83 0.932 0.745 0.941 0.846
PNF 0.67 0.75 0.887 0.662 0.871 0.768
PolEntropy 0.834 0.804 0.9 0.506 0.559 0.721
PolRatio1/3 0.529 0.669 0.858 0.664 0.714 0.687
PolRatio2/4 0.554 0.521 0.64 0.714 0.768 0.639
SubCorr_HH 0.565 0.634 0.455 0.58 0.558
SubCorr_VV 0.528 0.494 0.468 0.604 0.523
SubCorr_cross 0.551 0.483 0.517
CACFAR_HH 0.6 0.666 0.931 0.85 0.762
CACFAR_VV 0.628 0.59 0.758 0.798 0.694
CACFAR_cross 0.723 0.766 0.745
PolSym 0.776 0.895 0.835
avg 0.647 0.68 0.776 0.682 0.759

Table 13 shows which detectors and sensor parameters deliver better AUCs for the
boat when oriented at 45° (blue) or at 90° (orange) relative to the LoS. In general, the two
different experimental setups deliver very comparable results, which backs the theory that
the inflatable itself is effectively invisible to microwaves and does not scatter at all. This
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shows, moreover, that the most dominant scatterers are the passengers whose scattering
behaviour is less dependent on the orientation. For low incidence angles in HH VV, the
inclined boat is more easily detectable for most detectors. At medium angles, an orthogonal
vessel seems to be slightly favourable. At high angles, the boat orientation has no impact
at all.

Table 13. The AUCs of the vessel-detection algorithms with different orientations of the rubber vessel.
The blue background colours indicate better AUCs for the 45◦ inclined vessel, the orange colours
show higher AUCs for the vessel oriented at 90◦.

Polarization HH VV HV HH VH VV
Incidence Angle Low Medium High Medium High Medium High Avg
PMF 0.23 −0.07 −0.01 0 0.08 0 0.01 0.03
PWF 0.25 −0.08 −0.02 0 0.09 0 0.01 0.04
PNF 0.22 −0.10 0.05 −0.01 0.04 0.08 0.02 0.04
PolEntropy 0.06 0.02 0.12 0.01 −0.17 0.51 −0.50 0.01
PolRatio1/3 0 −0.05 0 −0.02 0.05 0.44 0.1 0.07
PolRatio2/4 0.22 −0.01 −0.05 −0.02 0.09 −0.35 0.12 0
SubCorr_HH 0 −0.19 −0.13 −0.18 −0.12 −0.13
SubCorr_VV 0.07 −0.24 −0.18 −0.26 0.3 −0.06
SubCorr_cross −0.35 −0.06 0.15 −0.09 −0.09
CACFAR_HH 0.05 −0.06 0.03 −0.03 −0.01 0
CACFAR_VV 0.22 −0.01 0.03 −0.20 0.09 0.03
CACFAR_cross −0.06 0.03 0.46 0.14 0.14
PolSym 0 0.02 0.09 0.02 0.03
avg 0.13 −0.08 −0.02 −0.06 0 0.08 0.02 0.01

Detectors that use using the cross-pol element (CACFAR_cross, PolRatio1) work
slightly better with an inclined boat. The PolRatio1 is, when applied to VH VV or HV
HH, called iDPolRAD. The SubCorr is the only detector for which an orthogonal vessel
is preferable.

3.4. Detector Fusion

Combining detectors can increase the detection performance. We attempted to find
the best combination of detectors for dual-pol cross-pol (VH VV and HV HH) and dual-
pol co-pol (HHVV) data separately. In the cross-pol case, we tested the combination of
PolRatio1 and PolRatio2. We used the logical operator ’OR’ and called it PolRatioOR. This
detector reaches an average AUC of 0.91.

Thus, this ‘surface or volume anomaly detector’ approaches the best-performing
algorithms PolSym and PWF (Figure 14). The PMF reaches similar results, such as those
of the PWF, and since their mechanisms are quite similar, we used only the PWF for this
comparison. To further increase its performance, we tested various combinations of the
PolRatioOR, the PolSym, the PWF and the CACFAR but without any further increase in
the AUC.
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(a) (b) (c)

Figure 14. Comparison of the mean AUCs for different wave heights at VH VV and HV HH for
PolRatioOR, PolSym and PWF. (a) PolRatioOR (AUC: 0.91). (b) PolSym (AUC: 0.951). (c) PWF
(AUC: 0.961).

The ROC curves for the HV HH dual cross-pol data reveal that wave heights larger
than three metres significantly hamper the detection of the inflatable (Figure 15). If we
only look at acquisitions taken at a medium incidence angle, a Pd of 90% is possible with a
maximum Pf a of 0.11%. These results cover wave heights of up to 2.4 metres or BFT6.

(a) (b)
Figure 15. ROC curves of the PWF detector for HV HH data with different sea states and the vessel
oriented orthogonally to the LoS. (a) ROC of PWF overview; (b) ROC of PWF zoomed.

The tests with VH VV dual cross-pol imagery give the impression that the PWF
delivers better results at high incidence angles (Figure 16). Since the results are partly
incoherent, it is difficult to express a recommendation regarding the wave height. The best
results for the 90% detection rate were found for a wave height of 0.5 metres with a Pf a of
0.12% and for 2.1 metres with a Pf a of 1.07%.
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(a) (b)
Figure 16. ROC curves of the PWF detector for VH VV data with different sea states and the vessel
oriented orthogonally to the LoS. (a) ROC of PWF overview. (b) ROC of PWF zoomed.

In the co-pol case (HH VV), we tested the combinations of a new double-bounce
detector (‘T22’), PolEntropy, PWF and CACFAR. Again, we left out the PMF due to its
very similar performance results. The T22 yielded an average AUC of 0.914 for HH VV
data, thus, making it the best detector—closely ahead of PMF and PWF, each with an AUC
of 0.909.

For our co-pol data (HH VV), the combination using the ‘AND’ operator for T22 and
PolEntropy, which we called HT22AND, reached the highest AUC (Figure 17). In particular,
the results for higher sea states/higher SPANs are promising. This effect can be attributed
to the PolEntropy algorithm.

(a) (b)
Figure 17. Comparison of the mean AUCs for different wave heights at HH VV for HT22AND and
PWF. (a) HT22AND (AUC: 0.936). (b) PMF (AUC: 0.884).

Figure 18a helps to describe the predictive strength of the HT22AND detector. We
see very poor detection results at low incidence angles (Pf a 20% at a Pd of 80%). The same
is true for wave heights in the range of three metres, with comparably high false alarm
rates. If we look at medium and high incidence angles and wave heights below 1.5 m, the
HT22AND reaches a Pd of 90% with a much better Pf a of, at most, 0.59% (Figure 18b).



Remote Sens. 2023, 15, 2008 23 of 27

(a) (b)
Figure 18. ROC curves of the HT22AND detector for HH VV data with different sea states and the
vessel oriented orthogonally to the LoS. (a) HT22AND overview. (b) HT22AND zoomed.

3.5. Estimation of the Detection Quality

These detection results always include some inherent degree of uncertainty. A metric
that gives an estimation of the detection quality would be of great help for the sea rescue
teams on the ground. Two appropriate parameters for such a metric would be the estimated
vessel size and the TCR. These help with the exclusion of large and strong scatterers, such
as large metallic ships. Long high waves could have a TCR similar to the inflatable but
could be excluded from the positive true list by virtue of their sheer size. Figure 19a shows
that the TCR ranges between two and six times the standard deviation of the clutter of the
lake. From the TCR, expressed in terms of the standard deviation of the background clutter,
a contrast parameter could be calculated (as in [50], called ‘significance’).

(a) (b)
Figure 19. Detection quality estimation parameters TCR and estimated vessel size on the lake test
bed. (a) Polarization channels shown individually. (b) Mean values of the two respective coherent
dual-pol channels.

The vessel size estimations in our data range from 30 to 500 m² (the true size is 42 m²).
Low incidence angles seem to increase the overestimation. If only high incidence angles
were used, the variation in estimations reduced to between 30 and 180 m². Figure 19a
further reveals a linear correlation between the TCR and the vessel size estimation. Under-
lined symbols stand for an orthogonal orientation of the boat, the others mean the boat
is inclined at 45° and the vessel orientation appears to have no significant impact on the
detection quality.

The size estimation can be improved by using the mean value of the two dual-pol
channels and by the application of a resizing formula from our previous work [23]. Now,
the improved size estimations range between 20 and 250 m²; for high incidence angles,
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they stay below 100 m² (Figure 19b). Future work on this could include an analysis of the
behaviour of the TCR against the background of different sea states.

4. Discussion

In our approach, we combined maritime SAR data with a simulated fully occupied
inflatable by pasting the vessel pixels into the ocean background. That enabled us to create
test data that very closely resemble the real situation. The main assumptions that we made
in this operation were that:

• The resolution was high enough to resolve the boat pixels separately from the ocean
to a large extent.

• The interactions between the vessel and the water surface (flattening of the water
surface below the vessel and those caused by the wind shadow on the lee side) were
the same in our simulation and in the real situation.

• The wetness of the boat (salty spray on the inflatable and water inside the boat were
the same in our simulation and in the real situation.

As a minor effect, we neglected the fact that the rolling of the boat on the ocean (yaw,
pitch and roll) induced by waves might change the backscattering of the vessel. Further, the
definition of positive true was achieved using the intensity values. That approach biases all
results as it helps the intensity-based detectors to perform better compared to the others.

Another noteworthy difference is that the refugee vessel may be moving, even if
very slowly. This movement of the vessel triggers certain interactions with the water
surface. Since our database has only SAR imagery of a stationary vessel, we could not
use and test the movement as a detection mechanism. Therefore, methods, such as along
track interferometry (ATI; [51]), which attempt to discriminate non-moving from moving
contributions by estimating a velocity-dependent attribute, could be used in the future to
improve the effectiveness of migrant boat detection.

Future work could focus on testing the influence of spatial resolution on the different
fusion strategies that we proposed. Further, different SAR frequencies (e.g., L-band and
C-band) should be added to the test dataset. As mentioned above, the ground truth
masks that we used may be improved by exploiting more detectors. Finally, the detectors
presented here would gain more confidence if we were able to test them against data with
real ground truth obtained from refugee boats.

5. Conclusions

In this work, we attempted to identify the best-performing detectors for a simulated
fully occupied refugee inflatable in different weather conditions. For this task, we explored
different X-band SAR data types, including TerraSAR-X (TSX), ICEYE and Cosmo-SkyMed
Second Generation.

In a preliminary step, we conducted experiments with a ground SAR system to identify
bags of wet clay pebbles to simulate humans in SAR. The data acquisition campaign setting
was to use these bags to simulate the backscattering of 80 passengers in two different boat
orientations (relative to the sensor line of sight) on a lake test bed. Additionally, we created
a collection of dual co-pol (HH VV) and dual cross-pol TSX Stripmap data (HV HH and
VH VV) from the open ocean with a variety of incidence angles, wave heights and wave
directions. We combined the two collections to create a detector testing environment as
close as possible to the real situation.

This enabled us to test existing detectors and to develop new variants that were
specifically tailored for our rubber inflatable. To further increase the detection capabilities,
we experimented with different combinations of detectors.

For dual cross-pol data, we tested a new combination of the volume-detecting Intensity
Dual-Polarization Ratio Anomaly Detector (iDPolRAD) and its surface-detecting variant. It
reached an overall area under the curve (AUC) of 0.91. For dual co-pol data, the combination
of our volume-scattering detector with the polarimetric entropy detector (HT22AND)
delivered the best results with an overall AUC of 0.94. The latter is especially interesting,
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since it seems to be less compromised by high sea states, and this is mainly caused by the
polarimetric entropy detector. A deeper analysis of the best detectors resulted in a better
estimation of their capabilities:

• With dual cross-pol channel combinations, the polarimetric whitening filter (PWF)
was the best-performing detector.

• With HV HH, the PWF reached, at medium incidence angles, a detection rate of 90%
with only 0.12% false detections. Our data support the assumption that the PWF can
be used up to a maximum wave height of about 2.4 metres.

• With VH VV data, the PWF had a false detection rate of 1.07% at a 90% detection rate
and up to 2.1 m wave height.

• For dual co-pol data, the HT22AND was the best detection algorithm with a false
alarm rate of 0.59% at a detection rate of 90%. This is true for wave heights of up to
1.5 m and medium or high incidence angles.

The polarimetric match filter (PMF) delivered equivalent results to those of the PWF
throughout all our test data. Although the false alarm rates presented here are not yet
good enough to support an efficient detection system for high sea states, the study builds
a basis for further research and development. For example, the false alarm rate could be
lowered with the help of spatial filters that exclude single pixels as well as very large and
very bright false detections.
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