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Abstract: The Open-Source Digital Elevation Model (DEM) is fundamental data of the geoscientific
community. However, the variation of its accuracy with land cover type and topography has not
been thoroughly studied. This study evaluates the accuracy of five globally covered and open-
accessed DEM products (TanDEM-X90 m, SRTEM, NASADEM, ASTER GDEM, and AW3D30) in the
mountain area using ICESat/GLAS data as the GCPs. The robust evaluation indicators were utilized
to compare the five DEMs’ accuracy and explore the relationship between these errors and slope,
aspect, landcover types, and vegetation coverage, thereby revealing the consistency differences in
DEM quality under different geographical feature conditions. The Taguchi method is introduced
to quantify the impact of these surface characteristics on DEM errors. The results show that the
slope is the main factor affecting the accuracy of DEM products, accounting for about 90%, 81%,
85%, 83%, and 65% for TanDEM-X90, SRTM, NASADEM, ASTER GDEM, and AW3D30, respectively.
TanDEM-X90 has the highest accuracy in very flat areas (slope < 2◦), NASADEM and SRTM have
the greatest accuracy in flat areas (2 ≤ slope < 5◦), while AW3D30 accuracy is the best in other cases
and shows the best consistency on slopes. This study makes a new attempt to quantify the factors
affecting the accuracy of DEM, and the results can guide the selection of open-source DEMs in related
geoscience research.

Keywords: digital elevation model; ICESat/GLAS; DEM of difference; vertical accuracy; the Taguchi
method; accuracy consistency

1. Introduction

The digital elevation model (DEM) is fundamental data of the geoscientific community.
The DEM and its derived properties (slope, aspect, curvature) are essential parameters
for terrain evaluation [1]. DEM error propagates in the whole data processing process,
resulting in deviation of the precision of the results. Thus, an accurate DEM is desirable for
geoscientific applications.

There are ready-made open-source DEM products with global coverage, such as
TanDEM-X DEM [2] with a 90-m resolution, SRTM DEM [3], NASA DEM [4], ASTER
GDEM [5], AW3D30 DEM [6] with a 30-m resolution. The nominal accuracies of the DEM
products have been officially reported based on an overall error on a global scale or within
the coverage of DEM [7]. However, the DEM error will deviate from the official value in
the local area [8]. Various datasets use different techniques to generate DEM, which will
cause the consistency of DEM quality to be different under different terrain conditions and
land cover types [9].Therefore, it is crucial to evaluate the quality of DEMs quantitatively.
More importantly, the influence of regional topographic conditions or land cover on the
accuracy of DEM products needs to be investigated.
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There are mainly two methods for evaluating different DEM datasets [10]. One
approach is to compare a DEM to a higher-accuracy DEM, such as high-quality DSMs
generated by small-scale airborne LiDAR or stereo imaging [8,11]. Another approach
is to compare the DEM with ground control points (GCPs), such as elevation control
points, GNSS data, and the Ice, Cloud, and Land Elevation Satellite/Geoscience Laser
Altimeter (ICESat/GLAS) data collected from large-scale topographic maps [12]. Thus, the
ICESat/GLAS elevation data product with global coverage is the reasonable alternative
where absolute reference data are limited [13].

This study aims to evaluate the quality of five open-source DEMs (TanDEM-X90 m,
SRTM V1, NASA DEM, ASTER GDEM, and AW3D30) in areas with substantial terrain
relief, complex terrain geological, and variable vegetation coverage. The quality of a digital
elevation model (DEM) is not only determined by its vertical accuracy, but also by the
consistency of its accuracy under different geographic conditions. Our study includes
the following works: (1) We demonstrate the non-normal distribution of DEM errors and
choose more robust metrics accordingly. (2) Our study provides insights into the effects of
slope, orientation, land cover type, and vegetation cover on DEM accuracy under complex
geographic conditions, and explores the consistency of DEM quality under these conditions.
(3) We introduce the Taguchi method for the first time to quantify the effects of these factors
on DEM accuracy by calculating the factor contribution. This will provide an important
reference for improving the quality of DEM in mountainous areas and help users select the
most suitable open-source DEM for different geographic conditions.

This paper is structured as follows. Section 2 presents the study area and the datasets
used in this study. The methodology is given in Section 3, including preprocessing of DEM
products and the ICESat GCPs, quality assessment of DEMs, and the impact factor analysis
with the Taguchi model. Section 4 presents the quality assessment and analysis results.
Section 5 discusses the reasons for the differences in the accuracy of various DEMs, and
some concluding remarks are provided in Section 6.

2. Study Area and Datasets
2.1. Study Area

Yunnan Province, located in southwestern China, as shown in Figure 1, has substantial
terrain relief and various geomorphic coverage, making it an ideal area to evaluate different
DEM products. The topography is dominated by mountains and intervening valleys.
Unique geographical conditions at high elevations and low latitudes have formed various
types of landforms, such as hills, lakes, grasslands, snow mountains and forests, as well as
highly diverse vegetation types and covers. Hence, this region has a good representation
for evaluating the accuracy of different DEMs.
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2.2. DEMs

This study compared five commonly used open-source DEM datasets with global
coverage. The basic parameters of these DEMs are listed in Table 1. It is worth noting
that the five global elevation models used in this paper are all digital surface models
(DSM) [7,14]. However, for most applications, they are considered equivalent to digital
elevation models (DEMs) [15]. Therefore, for the sake of simplicity, we will use the term
“DEM” in the rest of the paper.

Table 1. Basic parameters of DEM datasets used in this study.

DEM Primary Source Resolution Producer Datum
Plain/Vertical Vertical Accuracy Acquired

TanDEM-XDEM X band SAR 3” (~90 m) DLR WGS84/WGS84 <10 m (LE90) [16] 2011–2015

SRTM (v3) C band SAR 1” (~30 m) NASA WGS84/EGM96

<16 m (LE90)
https://www2.jpl.

nasa.gov/srtm/
(accessed on
1 April 2023)

1999–2000

NASA DEM Reprocessed C
band SAR 1” (~30 m) NASA WGS84/EGM96 Not reported 1999–2000

ASTER GDEM
(v3)

Stereo NIR
imagery 1” (~30 m) NASA/METI WGS84/EGM96 ~8.5 m (RMSE) [17] 2000–2008

ALOS World
3D AW3D30

Stereo pan
imagery 1” (~30 m) JAXA WGS84/EGM96 ~4.4 m (RMSE) [18] 2006–2011

2.2.1. TanDEM-X 90 m DEM

The TanDEM-X DEM was produced by the TanDEM-X mission operated by the
German Aerospace Centre (DLR) and Airbus. Two identical X-band synthetic aperture
radar satellites fly in close formation in orbit at an altitude of approximately 500 km. Several
scenes were collected from December 2010 to January 2015 for DEM production, with all
landmasses being imaged at least twice and up to seven or eight times [16]. A global digital
elevation model, TanDEM-X DEM, with a resolution of 0.4 arcsec (approximately 12 m at
the equator), was generated in September 2016 [2]. The absolute vertical accuracy is less
than 10 m (LE90), and the relative vertical accuracy is less than 2 m in the areas with a
slope less than 20% and 4 m when the slope is larger than 20% [16]. The TanDEM-X 90 m
DEM is derived from the TanDEM-X DEM by reducing the pixel spacing from 0.4 arcsecs
to 3 arcsecs (approximately 90 m at the equator). It is freely available worldwide and used
in this study.

2.2.2. SRTM

The Shuttle Radar Topography Mission (SRTM, https://earthexplorer.usgs.gov/,
accessed on 1 April 2023) was completed with the cooperation of NASA, the National
Geospatial-Intelligence Agency (NGA), and the German and Italian space agencies. The
SIR-C/X SAR instrument with two antennas onboard the Space Shuttle Endeavour cap-
tured the global surface from 60◦N to 56◦S during an 11-day flight in February 2000. C-band
radar generated a continuous mapping, while X-band radar only acquired data from dis-
crete swaths 50 km wide. A DSM covering 80% of the global landmass was generated by
single-pass cross-track SAR interferometry [3]. The latest official version SRTM_v3 mainly
used the ASTER GDEM to fill the voids existing in the previous versions of SRTM (NASA
2015). The accuracy of the SRTM with a 1 arcsec (~30 m) grid size is specified as better than
16 m (absolute) and better than a 10 m (relative) vertical elevation error. The 1 arcsec SRTM
used in this study was globally released in September 2014.

https://www2.jpl.nasa.gov/srtm/
https://www2.jpl.nasa.gov/srtm/
https://earthexplorer.usgs.gov/
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2.2.3. NASA DEM

The NASA DEM [4], released by NASA on 18 February 2020, is the successor of
SRTM_v3 and is produced by reprocessing the whole SRTM raw radar signal with elevation
correction and void filling. The ICESat/GLAS data were used as the ground points to
improve the vertical accuracy, swath consistency, and uniformity within the swath mosaic.
ASTER GDEM v3, AW3D30 DEM, USGS National Elevation Dataset (NED), and Canadian
and Alaskan DEMs were used to fill in the voids during processing. The vertical accuracy
has yet to be officially released. Its accuracy has been independently evaluated over various
regions, with RMSE ranging from 3.1 m to 6.59 m [19]. The NASA DEM has slightly
improved in vertical accuracy compared to the SRTM DEM [20].

2.2.4. ASTER GDEM

ASTER GDEM (https://asterweb.jpl.nasa.gov/gdem.asp, accessed on 1 April 2023)
data are jointly developed by Japan’s Ministry of Economy, Trade, and Industry (METI)
and NASA and distributed free to the public. The ASTER GDEM product is produced by
stereo images obtained by the Advanced Spaceborne Thermal Emission and Reflection
Meter (ASTER) onboard the Terra satellite. The images are acquired in the near-infrared
wavelength (0.78–0.86 µm), covering 99% of Earth’s landmass for a range from 83◦N to
83◦S [21]. The latest upgraded version ASTER GDEM v3 was released on 5 August 2019.
360,000 optical stereo pair data have been added, mainly used to reduce blank elevation
areas and abnormal water values. The vertical accuracy is slightly improved compared
with the second version, with RMSE ranging from 6.92 to 9.25 m across different cover
types in the United States [17].

2.2.5. AW3D30

The ALOSWorld3D 30 m DEM (AW3D30, https://www.eorc.jaxa.jp/ALOS/en/aw3
d30/data/index.htm, accessed on 1 April 2023) was developed based on millions of images
acquired by the Panchromatic Optical Sensor (PRISM) on the Advanced Land Observation
Satellite (ALOS) with sensors at nadir, forward, and backward generating three sets of
full-color (0.52–0.77 µm) images along the track [6]. The dataset has been updated several
times to improve absolute/relative height accuracy with additional calibration and gap
filling [6]. The height accuracy was reported to be about 4.4 m (RMSE) using independent
checkpoints distributed in the world [18]. The latest version (AW3D30_v3) was released in
January 2021. The 5 m resolution dataset is commercially charged, and the 30 m resolution
version (AW3D30) is freely available [20].

2.3. ICESat/GLAS

The ICESat/GLAS data were collected by the Geoscience Laser Altimeter System
(GLAS) on the Ice Cloud and Land Elevation Satellite (ICESat) between 12 January 2003
and 11 October 2009. The ICESat/GLAS mission was originally launched to monitor ice
sheets. Due to the global coverage, the data is widely applied in monitoring other landcover
types. The absolute vertical accuracy in measuring the water-level of lakes can reach the
centimeter level under suitable conditions [22].

In addition, the laser altimetry dataset has also been proven to have global high-
accuracy elevation control points [23]. The accuracy was validated using airborne LiDAR
data from six areas worldwide. The root mean square error of the footprint point elevation is
0.57~0.67 m in the flat areas and less than 3 m in the mountainous areas [23]. ICESat/GLAS
dataset is an ideal elevation ground control point for evaluating the accuracy of DEM
products worldwide. This study uses the L2 product GLAH14 latest version of global land
surface height measurement data (V34) from 2003 to 2009, available through the National
Snow & Ice Data Center (NSIDC). The vertical reference of the GLAH14 elevation is
TOPEX/Poseidon ellipsoid, so it is crucial to convert the height of GLAH4 to the orthometric
height of other datasets. For the processing details, see the description in Section 3.

https://asterweb.jpl.nasa.gov/gdem.asp
https://www.eorc.jaxa.jp/ALOS/en/aw3d30/data/index.htm
https://www.eorc.jaxa.jp/ALOS/en/aw3d30/data/index.htm
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2.4. GlobeLand30 and FVCover Data

GlobeLand 30: National Geomatics Center of China released the 30-m resolution global
landcover data product (GlobeLand30) in 2014 and was updated in 2021 [24]. Multispectral
images with a resolution of 30 m, including the U.S. Land Resources Satellite (Landsat)
TM5, Enhanced Thematic Mapper plus (ETM+), and Chinese Environmental Protection &
Disaster Monitoring Constellation (HJ-1), are jointly employed to generate classified images
of land cover. The product also uses existing surface coverage data, global MODIS NDVI
chronological data, global basic geographic information data, global DEM, and online
high-resolution images to support sample selection and auxiliary classification. The overall
accuracy was reported to be better than 80%.

FVCover: The Fractional Vegetation Cover (FVCover) corresponds to the ground
covered by green vegetation expressed as a percent of the reference area, quantifying
vegetation’s spatial extent [25]. FVCover is a good candidate for monitoring the ecosystem
since it is independent of light direction and sensitive to the amount of vegetation. Here,
we downloaded the data with a 300 m resolution at Copernicus Global Land Services.

3. Methodology

In this study, the accuracy of five open-source DEMs with a consideration of different
factors such as slope, aspect, landcover, and vegetation using ICESat/GLAS data as the
elevation GCPs. A schematic diagram of the DEM quality evaluation framework is shown
in Figure 2. The elevation reference datum of different DEM products and the ICESat/GLAS
data need to be unified for comparison. We interpolated the elevation at the ICESat/GLAS
ground footprint from five DEMs using bilinear interpolation to examine the elevations
with the ICESat-measured values on GCPs. Moreover, we extracted the terrain factors
(slope and aspect) and surface coverage factors (GlobeLand30, FVCover) corresponding to
GCP for analyzing the relationship between DEM error and these factors.
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3.1. Preprocessing of GCPs Data and DEMs

Data preprocessing consists of two steps: vertical reference datum conversion and
removal of outliers in ICESat/GLAS data. The horizontal reference of all DEM data used in
this study is the WGS84 coordinate system, but the vertical references of the five DEM and
ICESat/GLAS data are various. The elevation measured by ICESat/GLAS is referenced
to the TOPEX/Poseidon ellipsoid, while the TanDEM-X DEM is referenced to the WGS84
ellipsoid. The other four DEM products used in this study are all referenced to the EGM96
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geoid. Therefore, we converted the ICESat/GLAS data and the TanDEM-X DEM to the
common vertical datum (EGM96 geoid).

According to the quality control results provided by NSIDC, approximately 50% of
ICESat/GLAS points are unreliable, which indicates that quality control is necessary [10].
In this study, we select four quality control marks provided by NSIDC, i.e., the elevation
usage flag, the cloud flag, the range offset quality flag, and the saturation flag, to eliminate
outliers. A total of 586,249 laser footprint points have been obtained in Yunnan Province,
and after removing the outliers, there are 277,215 points left. As shown in Figure 3, these
points are distributed across various elevations and slopes. However, as indicated in
Figure 3b, the number of GCP points with a slope greater than 60◦ is insufficient to obtain
robust statistics. Therefore, the slope statistics in this paper do not include areas with slopes
greater than 60◦.
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3.2. Quality Assessment of DEMs

The vertical accuracy of the DEMs can be quantized with elevation GCPs using the
mean error (ME), standard deviation (STD), and root mean square error (RMSE) under the
assumption that errors follow the Gaussian distribution [26]. However, the DEM error does
not always follow the assumption of a normal distribution. This is not unique to us, as
Nadi et al. [27] similarly found that DEM errors exhibit a slightly skewed normal distribu-
tion. Here, we demonstrate the normality of the height differences between ICESat/GLAS
data and each DEM product using the Q-Q diagram in Figure 4.
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Figure 4. The Q−Q diagram of the normality test of residuals. hdiff is the height difference between
the DEM products on top of the subfigures and the ICESat/GLAS data. The red line is the case of the
ideal normal distribution. The blue line shows the actual situation of each DEM product.

The Q-Q plot (blue line) of each DEM product deviates from the graph of the ideal
normal distribution (red line), indicating a non-normal distribution. Therefore, we use
more robust indicators to evaluate the accuracy of a DEM that is not affected by outliers or
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skewed error distribution: median (MED), normalized median absolute deviation (NMAD),
and mean absolute error (MAE) [26]. The definition of these indicators are as follows:

MED = mediani

{
(Hi

DEM − Hi
GLAS)

}
= mediani

{
hi

diff

}
(1)

where hi
diff is the elevation difference of the DEM products to be evaluated and ICE-

Sat/GLAS data on the ith sample. median{} is to calculate the sample median, that is, to
calculate the 50% quartile of the sample order statistics.

NMAD = 1.4826 ∗mediani(
∣∣∣hi

diff −MED
∣∣∣) (2)

NMAD represents the median of the absolute difference between the error and the
median, which can be regarded as an estimate of STD with a heavy-tailed non-normal
distribution. In the case of a normal distribution, this value is the same as the STD. When
the number of sample points (n) is large enough, it can be considered a more flexible
estimate of the STD for outliers in the dataset [26].

MAE =
∑m

i=1
∣∣hi

diff

∣∣
n

(3)

MAE is a measurement of the average error. Unlike RMSE, it clearly measures the
average error size [28]. The lower limit of RMSE is fixed at the MAE, and the upper limit
tends to become larger with the increase n1/2 and is easily affected by a small number of
large errors.

3.3. Impact Factor Analysis with the Taguchi Model

In this study, the Taguchi model is introduced to evaluate the influence of different
factors on DEM errors. The Taguchi model uses a tabular design (array) system to propose
an experimental and statistical design based on multiple factors and levels. It allows the
minimum number of experimental tests to study the impact of different factors on the mean
and variance of the evaluation indicators and estimates the main effect of the maximum
number of variables unbiasedly [29]. The Taguchi method introduced a signal-to-noise
(S/N) ratio, which quantifies the impact of each factor on the research object from the
response of evaluation indicators to noise factors and the signal factor ratio [30].

This study aims to explore the significance of terrain and surface factors in moun-
tainous areas on DEM errors. Therefore, four levels of four factors, including landcover
types, slope, FVCover, and aspect, are selected in the experimental design, as shown in
Table 2. According to the conditions, the Taguchi experiment of the L16(44) orthogonal
array is designed. The maximum response level of each factor to the error-index is obtained
by comparing the S/N ratio. The larger the S/N ratio is, the greater the influence of this
combination of factors on the DEM error index. The S/N ratio is calculated by the following
equation [31]:

Table 2. Factors and Levels of Taguchi’s Experimental used in this study.

Factor Description Levels 1 Levels 2 Levels 3 Levels 4

A GlobeLand30 cropland forest grassland shrubland
B Slope 0–10◦ 10–20◦ 20–30◦ 30–45◦

C FVCover 0–0.3 0.3–0.5 0.5–0.7 0.7–1
D Aspect north east south west

This study explores the significance of terrain and surface factors in mountainous
areas on DEM errors. Therefore, four levels of four factors, including landcover types,
slope, FVCover and aspect, are selected in the experimental design, as shown in Table 3.
According to the conditions, the Taguchi experiment of the L16(44) orthogonal array is
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designed. The maximum response level of each factor to the error index is obtained
by comparing the S/N ratio. The larger the S/N ratio is, the greater the influence of this
combination of factors on the DEM error index. The S/N ratio is calculated by the following
equation [31]:

S
N

= −10Log10

(
1
n∑n

i=1
1
y2

i

)
(4)

where n is the number of repetitions of the same experiment and y is the measurement.
Here, y is the MAE of the DEM under each different factor.

Table 3. Quality indicators for the TanDEM-X90, SRTM, NASA, ASTER GDEM, and AW3D30 digital
elevation models for the study areas.

DEM MED (m) NMAD (m) MAE (m) ME (m) STD (m) RMSE (m)

TanDEM-X90 0.97 10.54 9.76 1.21 13.12 13.30
SRTM −0.28 5.41 5.45 0.44 8.01 8.03

NASA DEM −0.19 5.37 5.41 0.42 7.97 7.98
ASTER GDEM 1.08 11.69 10.22 1.36 13.45 13.48

AW3D30 1.37 4.46 4.77 1.96 6.70 7.26

The analysis of variance (ANOVA) evaluates the relationship between each factor
and the DEM error index according to the significance level statistics. The percentage
contribution (PC) of each factor to the change in the DEM error index is calculated by the
following formula [32]:

PC =
SSF − (DF ∗VEr)

SST
× 100 (5)

where SST is the sum of squares, SSF is the sum of factorial squares, VEr is the error variance,
and DF is the degrees of freedom. DF, SST, SS and VEr values are obtained from ANOVA.

4. Results

This section demonstrates the vertical accuracy evaluation of all five DEM products
using the ICESat/GLAS data. The height differences between the DEMs and the ICE-
Sat/GLAS GCP data (hdiff) were estimated. The boxplot in Figure 5a shows the overall
quality of the five DEMs in the study area. The central horizontal line in the box marks the
MED, and the red diamond represents MAE. It is found that the AW3D30 has the highest
quality with the shortest interquartile distance and the smallest MAE. Figure 5b visualizes
the distributions of the height difference (hdiff). The distribution curve of hdiff is also the
closest to zero. However, the MED of AW3D30 deviates the most in the positive value.

The indicators described in Section 3.2 are listed in Table 3. The MEDs of the SRTM
and NASA DEMs are negative and very close to zero, while the MEDs of the other DEMs
are positive. As a reprocessing product of the SRTM, NASA DEM is very similar to the
SRTM and outperforms SRTM in all metrics. ASTER GDEM is the worst in almost all
accuracy indicators, even worse than TanDEM-X90 with a 90-m resolution. The AW3D30
DEM showed the lowest NMAD (4.46 m) and MAE (4.77 m), indicating that it has the
highest accuracy.

4.1. The Influence of Slope, Aspect, and Land Cover on DEM Accuracy
4.1.1. Influence of Slope and Aspect on DEM Accuracy

Figure 6 illustrates the variation of DEM error with slope. The box ranges and MAE of
the radial box line graph increase with the slopes, indicating that the slope significantly
impacts the vertical accuracy of all DEMs in the study area. Figure 6 also shows the hex-bin
scatterplot of each DEM, which can better illustrate the error dispersion. The hex-bin
scatter plot shows that the distribution of results of the TanDEM-X90 and ASTER GDEM
are dispersed, and the ASTER GDEM and AW3D30 present obvious positive deviations
with increased slopes.
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five DEMs.

The variation of DEM error with the slope aspect is described in Figure 7. Compared
with the slope, the aspect has less impact on the DEM accuracy. The MAE of different DEMs
fluctuates little with the change in the slope aspect. AW3D30 has the maximum error in the
north direction, and ASTER GDEM has the worst accuracy in the southwest direction.

To better compare the consistency of DEM accuracy at different slopes and aspects,
and to show the relationship between DEM accuracy and these two topographical features,
we plotted scatters of different DEM accuracy indicators versus variation with slope (1◦ in-
terval) and aspect (6◦ interval), as shown in Figure 8. The MAE of TanDEM-X90 varies the
most with the slope, from 1 m at slope 0◦ to 26 m at slope 60◦. The MAE of AW3D30 varies
the most with the slope aspect, from 4.3 m at aspect 0◦ and 6.8 m at aspect 250◦. The range
of values of the MAE scatterplot represents to some extent the consistency of the DEM ac-
curacy on the slope and slope up—the larger the range, the lower the consistency. AW3D30
shows the best consistency on the slope, while NASA DEM has the best consistency on
the aspect. For another indicator NMAD, its value changes with slope and aspect with
similar patterns.

MAE can be expressed as an increasing function of the slope. The MAE of TanDEM-
X90 and ASTER GDEM is approximately linear with the slope, while the MAE of SRTM,
NASA, and AW3D30 is approximately quadratic with the slope. When the slope is ≤2◦,
TanDEM-X90 provides the minimum MAE (1.2 m for slope ≤ 1◦ and 1.6 m for slope ≤ 2◦).
Unfortunately, MAE increases sharply with increasing slope. When the slope exceeds 15◦,
TanDEM-X90 has the largest MAE value among the five DEMs. Although the MAE of
ASTER GDEM changes slowly, the overall error is relatively large. The MAE and NMAD of
the other three DEMs increase slowly when the slope is ≤25◦, and when the slope is >25◦,
the DEM accuracy decreases sharply with increasing slope.

4.1.2. Influence of Landcover Types and Vegetation Coverage on DEM Accuracy

In this section, we compare the DEM errors in seven landcover types and depict the
distribution of DEM errors in Figure 9. According to the error distribution, AW3D30 has
the best quality in all landcover types, followed by NASA and SRTM, ASTER GDEM, and
TanDEM-X. We found that all DEMs have the smallest MAE on the artificial surface. The
MAE of all DEMs in the water body is inferior to that of the artificial surface, and their
errors show negative deviation, except for the TanDEM-X DEM. In the vegetation-covered
area, the MAE value of forest area is the largest, followed by shrubland, and the MAE value
of grassland and cultivated land is the smallest. The elevation of all DEMs in forest areas is
systematically higher than that of the actual surface. All DEM errors show higher MAE
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values in bare land/glacier areas. The error distribution is very discrete and deviates from
the normal distribution, which will be explained in the next section.
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Figure 6. The differences (i.e., bias) between five DEM products and ICESat/GLAS GCP points,
shown as boxplots (with 5 degree intervals) and hex-bin scatterplots according to slope change:
(a) TanDEM-X90, (b) SRTM, (c) NASA, (d) ASTER GDEM, (e) AW3D30.

Different vegetation sparsity under the same landcover types, that is, different vege-
tation coverages, will also cause changes in the phase center of reflected electromagnetic
waves, resulting in significant differences in DEM errors [33]. Figure 10 shows the DEM
errors vary with vegetation coverage. The box and hex-bin scatterplots show the DEM
differences with FVCover. When 0≤ FVCover < 0.1, the MAE of these five DEMs has a high
value. One explanation is that when the FVCover value is low, it includes glaciers/bare
areas, increasing MAE. When 0.1≤ FVCover < 0.4, except for TanDEM-X90, the MAE values
of the other DEMs remain stable and do not change with FVCover. When FVCover ≥ 0.4,
the quality of all DEMs decreases slowly with increasing FVCover.
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Figure 7. The differences (i.e., bias) between five DEM products and ICESat/GLAS GCP points,
shown as boxplots (45 degree intervals) and hex-bin scatter plots according to aspect change:
(a) TanDEM-X90, (b) SRTM, (c) NASA, (d) ASTER GDEM, and (e) AW3D30.

To reveal the consistency of DEM accuracy on different land cover types and vegetation
cover, we introduced a dotted line map shown in Figure 11, with the range of variation of
the same color as the dashed dotted line reflecting the consistency of DEM accuracy, and
the larger the range of variation, the worse the consistency. The maximum change in MAE
is over 10 m with the change in vegetation coverage (4 m for TanDEM-X90 FVCover 0.1 and
more than 14 m for FVCover 1) and approximately 11 m with the change in landcover types
(3 m for TanDEM-X90 in artificial surface area and 14 m in water body area). The maximum
change in vegetation coverage in NMAD is approximately 11 m (4 m for TanDEM-X90
FVCover 0.1 and 15 m for FVCover 1), and the maximum change in landcover types is
approximately 13 m (2 m for TanDEM-X90 artificial surface area and 15 m for water area).
It can be seen that the MAE of TanDEM-X90 has the worst consistency in both vegetation
cover and land cover types, and the same results are obtained in the NMAD index.

The impact of vegetation coverage on AW3D30 is the smallest (the variation range is
approximately 3 m), followed by SRTM and NASA (the variation range is approximately
4 m). ASTER GDEM and TanDEM-X90 have higher MAEs at different FVCover values,
showing the worst quality. ASTER GDEM and TanDEM-X90 have poor performance in
different landcover areas, and in the non-water body and artificial surface areas, especially,
their MAE values are far greater than those of the other three DEMs. However, it is worth
noting that TanDEM-X90 has the same quality as AW3D30 in artificial surface areas. The
quality indicators of the same DEM show obvious differences in different landcover areas,
but these differences include errors caused by the different distributions of slope grades
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in different landcover types. Therefore, we further analyze the landcover types and slope
together in Section 4.2.
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4.2. Significance Analysis of Slope Effect on DEM Quality after Excluding the Influence of
Landcover Types

As discussed in Section 4.1, slope and landcover type are the two factors that affect
the accuracy of the DEM the most. Figure 12 shows the distribution of the slope under
different landcover types. The distribution of slopes is uneven in different landcover types,
resulting in confounding the effect of the slope when analyzing the influence of varying
landcover types on the MAE of DEMs. The slope range of the water body and artificial
surface is the smallest, while the slope range in the glacier/bare land is the largest. The
forest has the most significant slope in the vegetation-covered area, followed by shrubland
and grassland, and arable land has the slightest slope. For further analysis, we introduced
a box chart of landcover types grouped by slope, as shown in Figure 13, to perform slope
analysis based on landcover types.

Figure 13 shows the variation of DEM errors with the slope in different landcover
types. Since there is no obvious slope change in water bodies and artificial surface areas,
we focus on the landcover types with mountainous areas. Thus, cropland, forest, grassland,
shrubland, and bare land/glacier are selected to show the correlation between DEM errors
and slopes of each landcover types. The boxplot and MAE of all landcover areas show
high consistency with the slope change. The higher slope, the larger the MAE, except for
glacier/bare land areas.

Figure 14 illustrates the quality indicators of DEM (MAE and NMAD) varying with
the slope in different landcover types. The range of variation in MAE is also outlined in
these four landcover types of cropland, forest, grassland, and shrubland in the same slope
interval. AW3D30 shows the minimum error in each landcover type among all DEMs.
SRTM and NASA have approximately the same mass for all coverage types. TanDEM-X90
offers good quality in the small slope area, but the quality decreases rapidly with the
increasing slope. The ASTER GDEM has a significant error, even in flat areas. The MAE of
the forest is slightly higher than that of the other three types of land cover, and the MAE
of glacier/bare land fluctuates around the MAE of other types of land cover. The MAE
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differences between different land covers in the same slope are within 1.5 m, far less than
the value of the differences between land covers calculated in Section 4.1.2, which confirms
that slope is the main factor controlling the quality of the DEM. Another important point is
that the consistency of DEM vertical accuracy is reflected in the MAE difference band in
Figure 14. The wider the MAE difference band within the same slope interval, the worse
the consistency of the representative quality across different land cover types. It can be
seen that SRTM and NASA vertical accuracies have the best agreement across land cover
types and AW3D30 has the worst agreement across land cover types.
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Figure 9. The differences (i.e., bias) between five DEM products and ICESat/GLAS GCP points,
shown boxplots and distribution histograms according to different landcover types: (a) Tan-DEM-X90,
(b) SRTM, (c) NASA, (d) ASTER GDEM, and (e) AW3D30.



Remote Sens. 2023, 15, 1952 14 of 22

Remote Sens. 2023, 15, x FOR PEER REVIEW 14 of 24 
 

 

Different vegetation sparsity under the same landcover types, that is, different vege-

tation coverages, will also cause changes in the phase center of reflected electromagnetic 

waves, resulting in significant differences in DEM errors [33]. Figure 10 shows the DEM 

errors vary with vegetation coverage. The box and hex-bin scatterplots show the DEM 

differences with FVCover. When 0 ≤ FVCover < 0.1, the MAE of these five DEMs has a 

high value. One explanation is that when the FVCover value is low, it includes glaci-

ers/bare areas, increasing MAE. When 0.1 ≤ FVCover < 0.4, except for TanDEM-X90, the 

MAE values of the other DEMs remain stable and do not change with FVCover. When 

FVCover ≥ 0.4, the quality of all DEMs decreases slowly with increasing FVCover. 

(a) (b) 

 
 

(c) (d) 

  

(e) 

 
 

Figure 10. The differences (i.e., bias) between five DEM products and ICESat GCP, shown as box-

plots (with 0.1 intervals) and hex-bin scatter plots according to FVCover changes: (a) Tan-DEM-X, 

(b) SRTM, (c) NASA, (d) ASTER GDEM, and (e) AW3D30. 

To reveal the consistency of DEM accuracy on different land cover types and vegeta-

tion cover, we introduced a dotted line map shown in Figure 11, with the range of varia-

tion of the same color as the dashed dotted line reflecting the consistency of DEM accu-

racy, and the larger the range of variation, the worse the consistency. The maximum 

change in MAE is over 10 m with the change in vegetation coverage (4 m for TanDEM-X90 

FVCover 0.1 and more than 14 m for FVCover 1) and approximately 11 m with the change 

Figure 10. The differences (i.e., bias) between five DEM products and ICESat GCP, shown as boxplots
(with 0.1 intervals) and hex-bin scatter plots according to FVCover changes: (a) Tan-DEM-X, (b) SRTM,
(c) NASA, (d) ASTER GDEM, and (e) AW3D30.

4.3. Quantitative Analysis of the Significance of Influencing Factors

Here, we developed a quantitative evaluation approach for exploring the impact of
the slope, aspect, vegetation coverage, and landcover type on the accuracy of the DEM,
as shown in Table 4. We designed 16 experimental conditions and calculated the MAE
values under different conditions. We could then determine the S/N ratio according to the
equation (7). Table 5 shows the impact on the MAE of factor combinations at different levels.
The bold numbers in Table 5 refer to the maximum and second-largest signal-to-noise ratio
values in the 16 experiments. These values are distributed in the factor level combination
under the fourth-grade slope. The S/N maximum values of SRTM, NASA, and ASTER
GDEM are obtained in the forest. Figure 15 shows that S/N fluctuates periodically in
16 experiments. The S/N ratio in low-slope areas is at wave troughs, and S/N values In
high-slope areas are at wave peaks.
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Figure 12. Landcover and its relationship to slope.

Table 6 and Figure 16 exhibit the percentage contribution of each factor to the MAE
value of the DEM. Factor B (slope) has the largest contribution percentage among all DEMs.
The contribution of the slope for TanDME-X90, SRTM, NASADEM, and ASTER GDEM
is more than 80%. Even the lowest AW3D30 has 64%, showing that slope is the most
significant factor affecting the quality of DEM. The other crucial factor is vegetation cover-
age. There are slight differences between the different DEMs. For SRTM and NASADEM,
landcover type is more significant than vegetation coverage. For TanDEM-X90, SRTM,
and NASADEM, the contribution of factor D (aspect) to the MAE is less than 1%, which
can be almost ignored. For AW3D30, the contribution of the slope aspect is 11%, which
cannot be ignored. For ASTER GDEM and AW3D30, produced using optical image data,
the contribution percentage of error is significantly higher than that of SAR data. One
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reason is that optical satellite image data quality is more vulnerable to weather factors,
which brings some inevitable errors.
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Figure 13. Slope-grouped boxplots of differences (i.e., bias) according to landcover types.



Remote Sens. 2023, 15, 1952 17 of 22

Remote Sens. 2023, 15, x FOR PEER REVIEW 18 of 24 
 

 

Figure 13. Slope-grouped boxplots of differences (i.e., bias) according to landcover types. 

(a) (b) (c) 

   

(d) (e)  

 

 

 

Figure 14. Relationship between quality indicators (MAE on the top and NMAD on the bottom) and 

slope under different landcover types. (a) TanDEM-X90, (b) SRTM, (c) NASA, (d) ASTER GDEM, 

and (e) AW3D30. 

4.3. Quantitative Analysis of the Significance of Influencing Factors 

Here, we developed a quantitative evaluation approach for exploring the impact of 

the slope, aspect, vegetation coverage, and landcover type on the accuracy of the DEM, as 

shown in Table 4. We designed 16 experimental conditions and calculated the MAE values 

under different conditions. We could then determine the S/N ratio according to the 

Figure 14. Relationship between quality indicators (MAE on the top and NMAD on the bottom) and
slope under different landcover types. (a) TanDEM-X90, (b) SRTM, (c) NASA, (d) ASTER GDEM,
and (e) AW3D30.



Remote Sens. 2023, 15, 1952 18 of 22

Table 4. Taguchi experimental conditions were used in this study.

NO. L16 (Combination of Different Levels)
Influence Factor

A B C D

1 1 1 1 1 Cropland 0–10◦ 0–0.3 North
2 1 2 2 2 10–20◦ 0.3–0.5 East
3 1 3 3 3 20–30◦ 0.5–0.7 South
4 1 4 4 4 30–45◦ 0.7–1 West
5 2 1 2 3 Forest 0–10◦ 0.3–0.5 South
6 2 2 1 4 10–20◦ 0–0.3 West
7 2 3 4 1 20–30◦ 0.7–1 North
8 2 4 3 2 30–45◦ 0.5–0.7 East
9 3 1 3 4 Grassland 0–10◦ 0.5–0.7 West

10 3 2 4 3 10–20◦ 0.7–1 South
11 3 3 1 2 20–30◦ 0–0.3 East
12 3 4 2 1 30–45◦ 0.3–0.5 North
13 4 1 4 2 Shrubland 0–10◦ 0.7–1 East
14 4 2 3 1 10–20◦ 0.5–0.7 North
15 4 3 2 4 20–30◦ 0.3–0.5 West
16 4 4 1 3 30–45◦ 0–0.3 South

Table 5. The results of Taguchi experiment, in which the S/N ratio of each experiment is generated
by different combinations of factors and levels.

NO.
MAE (m) S/N

TanDEM-X90 SRTM NASA ASTER GDEM AW3D30 TanDEM-X90 SRTM NASA ASTER GDEM AW3D30

1 2.93 2.04 1.94 6.73 2.42 9.34 6.18 5.74 16.56 7.68
2 7.82 3.65 3.92 8.99 2.97 17.87 11.24 11.86 19.07 9.44
3 12.18 5.39 5.36 9.57 4.05 21.71 14.63 14.58 19.61 12.16
4 19.70 7.83 8.90 14.14 6.45 25.88 17.87 18.93 22.79 16.20
5 5.21 4.22 4.13 8.46 2.45 14.33 12.51 12.32 18.55 7.79
6 8.18 4.53 4.73 7.18 2.96 18.25 13.12 13.51 17.13 9.41
7 13.67 6.60 6.68 10.71 6.66 22.71 16.39 16.50 20.60 16.48
8 17.78 9.25 9.53 13.79 7.23 25.00 19.32 19.58 23.01 17.18
9 4.60 3.21 3.23 8.61 1.94 13.26 10.13 10.19 18.70 5.74

10 9.22 5.30 5.12 9.58 3.66 19.30 14.48 14.18 19.63 11.28
11 13.35 5.50 6.23 11.31 3.47 22.51 14.80 15.88 21.07 10.81
12 18.35 8.91 8.84 13.62 10.64 25.27 19.00 18.98 22.68 20.54
13 5.72 4.13 4.15 9.77 2.88 15.15 12.31 12.37 19.80 9.19
14 8.92 4.30 4.28 9.48 3.50 19.01 12.66 12.63 19.54 10.87
15 12.81 5.45 5.34 9.23 4.09 22.15 14.73 14.55 19.30 12.23
16 12.56 6.15 6.78 12.41 3.90 23.98 16.78 16.63 21.87 13.83
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Table 6. The contribution to the DEM quality index MAE of each factor in the study area.

Factor
PC (%)

TanDEM-X90 SRTM NASADEM ASTER GDEM AW3D30

A (GlobaLand30) 0.9 8.3 5.9 1.9 4.2
B (slope) 89.3 80.8 85.0 82.7 64.9

C (FVCover) 4.9 6.5 5.2 5.1 10.5
D (aspect) 0.9 0.1 0.6 2.1 11.4

Error 3.6 4.3 3.4 8.2 9.0
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5. Discussion
5.1. Penetration of Different Data

Different DEM data have diverse levels of penetration to the vegetation canopy due to
different production methods, which can cause some errors. Figure 17 shows a schematic
diagram of data penetration and the percentage of surface cover types corresponding to
GCP points. The laser signal of ICESat/GLAS can partially penetrate the canopy through
the gap between leaves, while the optical image cannot penetrate. Thus, the two DEMs
generated from optical images, AW3D30 and ASTER GDEM, produce some overestimation
due to the vegetation cover and have positive MED values. The TanDEM-X90 produced
by X-band SAR images is also weak in penetrating vegetation, and its MED value is also
positive. SRTM and NASADEM are mainly produced by C-band SAR images, which
have a certain penetration. The data acquisition time is 5 years earlier than the average
acquisition time of ICESat/GLAS data. The growth of plants may be the reason for the
negative MED value.

It should be noted that the GCP points in forests and shrublands in the study area
account for 70% of the total points, which makes the measurements of ICESat/GLAS
larger than the actual DEM. However, it does not affect the relative accuracy of using
ICESat/GLAS to compare different DEM products.

5.2. The Relationship between Landcover Types and DEM Quality

In Section 4.3, we conclude that slope is the most crucial factor affecting the DEM
quality in complex mountain environments, followed by vegetation cover, while vertical
accuracy is insensitive to both land cover and slope orientation. This is similar to the results
of Nadi et al. [27], which show that the DEM errors are only directly related to the slope
changes. However, Gdulová et al. [33] reported that landcover has a profound impact on
the accuracy of TanDEM-X12 in the mountain environment of Europe. All DEMs have the
worst consistency in terms of slope. As the distribution of slope varies considerably from
region to region, some different but not contradictory results are obtained.
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Figure 17. (a) The left curve in the figure is the ICESat/GLAS echo waveform curve from the
vegetation-covered flat ground, and the blue dotted line represents the actual position of the ICESat
elevation point. The right side of the figure shows that the penetration of the DEM into the forest
canopy is different due to the different wavelengths used by the sensors generating DEM products.
The approximate depth of penetration is shown by the arrow. (b) The proportion of GCP points in
different landcover types in the study area.

We changed the slope division in Table 3 with the division of the flat surface and
calculated the contribution value of DEM accuracy, as shown in Table 7. The parameters
except the slope are consistent with those used in the results of Table 6. We can find that the
influence of vegetation and landcover has dramatically increased and is comparable to or
even higher than the impact of the slope. The effect of vegetation and landcover types on
ASTER GDEM errors in flat areas reaches 76% (Table 7), but only about 7% (Table 6) when
all the slopes are considered. This also indicates, on the other hand, that the slope has a
more significant effect on DEM accuracy than vegetation cover and surface type.

Table 7. The contribution to the DEM quality index MAE of each factor in the flat area. (The parameters
are the same as in Table 3 except for the slope. The slope is separated to 0–3◦/3–6◦/6–8◦/8–10◦).

Factor
PC (%)

TanDEM-X90 SRTM NASADEM ASTER GDEM AW3D30

A (GlobaLand30) 22.0 22.6 14.0 31.3 15.9
B (slope) 52.9 31.7 33.6 9.2 25.1

C (FVCover) 20.4 23.3 18.5 44.8 13.8
D (aspect) 2.5 20.8 25.1 1.8 23.7

Error 2.2 1.6 8.9 12.9 21.5

A + C 42.4 45.9 32.5 76.1 29.7

6. Conclusions

This study evaluates the accuracy of five globally covered and open-accessed DEM
products (TanDEM-X90 m, SRTEM, NASADEM, ASTER GDEM, and AW3D30) in the
mountain area in Southwest China. The processed high-precision ICESat/GLAS data are
used as the elevation GCPs to validate the vertical accuracy of different DEM products.
The robust evaluation indicators were utilized to compare the accuracy of the five DEMs
and to explore the relationship between these errors and slope, aspect, landcover type, and
vegetation coverage. The Taguchi method is introduced to quantify the impact of these
surface characteristics on DEM errors.

The experimental results demonstrate that AW3D30 supplies the most robust and
accurate DEM, followed by the NASADEM and SRTM. As a product reprocessed by SRTM,
the accuracy of NASADEM has no noticeable improvement in MAE, except for the area
with steep terrain (slope > 50◦). TanDEM-X90 has the lowest MAE only on very flat terrain
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(slope < 2◦) among these five DEM products, but its MAE increases shapely. When the
slope exceeds 15◦, TanDEM-X90 has the worse overall accuracy, while for the area with a
slope < 15◦, the accuracy of ASTER GDEM is the worst.

Among the factors that affect the accuracy of DEMs, the slope has the most significant
influence, and the aspect has the least. Through the Taguchi experiment, it can be quantita-
tively calculated that the influence of the slope on DEM accuracy accounts for 90%, 81%,
85%, 83%, and 65% for TanDEM-X90, SRTM, NASADEM, ASTER GDEM, and AW3D30,
respectively. While the influence of surface cover type only accounts for 1%, 8%, 6%, 2%,
and 4% for these DEMs. This shows that the slope is the main factor affecting the accuracy
of DEM in mountainous areas.

The surface types and vegetation cover also have significant influences on DEM
accuracy, especially in the flat area. Among all types of land cover, the MAE of DEM in
the artificial surface area is much smaller than that of other landcover types. NASADEM
performs best among these five DEMs. In mountainous areas, the MAE of glaciers/bare
land fluctuates greatly, which may be due to the terrain changes, such as snow cover and
glacier melting. In areas with sparse vegetation (FVCover < 0.4), DEM accuracy is not
sensitive to vegetation coverage change. In the dense vegetation-covered area, TanDEM-
X90 was most affected by vegetation cover.
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