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Abstract: Unlike aerial or terrestrial navigation, the global navigation satellite system (GNSS) is not
available underwater. This is a big challenge for underwater navigation. The inertial navigation
system (INS) aided by the single-beacon acoustic positioning system (APS) provides one solution,
but the long-range case is limited by low-SNR conditions. Inspired by passive synthetic aperture
detection, we proposed a new tightly coupled navigation algorithm based on spatial synthesis
and one-way-travel-time (OWTT) range measurement. We design two estimators: the DOA/range
estimator using the model-based method and the tightly coupled INS/APS navigation estimator.
Based on the improved UKF, all information is combined. Simulation is carried out in MATLAB.
Compared with range-only tightly coupled INS/APS navigation, synthetic long baseline (SLBL)
algorithm and Doppler velocity logger (DVL) aided centralized extended Kalman filter (CEKF) based
single beacon INS/OWTT navigation, the proposed method’s performance is proven. The main
contributions of this work are: (1). Propose a new architecture of underwater integrated navigation;
(2). Apply the passive acoustic detecting method in the navigation to improve accuracy. (3). Apply the
tightly coupled method to improve availability.

Keywords: INS/APS single beacon navigation; tightly coupled navigation; passive synthetic aperture;
joint DOA/OWTT estimation

1. Introduction

The increasing requirement for ocean exploration promotes the development of under-
water vehicles. Autonomous underwater vehicles (AUVs) are now widely used in resource
exploitation, defense, and environmental monitoring. One of the most urgent problems
limiting AUVs’ application is its long-term and long-range navigation. The navigation
scenarios of AUVs can be concluded into three types:

1. Surface cruise.
2. Periodically sink and float.
3. Underwater cruise.

This paper focuses on the underwater phase of scenario 2 and scenario 3, where
GNSS is not available. Widely acknowledged, inertial navigation system (INS) aided by
other sub-navigation system is the most commonly used scheme underwater. Although
acoustic positioning systems such as long baseline (LBL), short baseline (SBL), and ultra-
short baseline (USBL) can substitute for the role of GNSS, their effective range is limited.
Another challenging fact for long-range underwater navigation is the low signal–noise ratio
(SNR) which influences its accuracy. So, the positioning method based on one-way travel
time (OWTT) range measurement using long-period ranging signals provides a potential
way for long-range underwater navigation.
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OWTT acoustic range measurement for underwater navigation has been discussed
in [1–3]. All the research focuses on the underwater positioning methodology without
GNSS. In [1], Webster et al. used the frequency modulation (FM) sweep signal to measure
the range from beacon to AUV. The central frequency of the signal is 780 Hz, and the
bandwidth is 5 Hz. After a 155.6 km voyage, the final positioning error is about 13.7 km
with the aid of range measurement, whereas pure dead reckoning’s error is about 74.1 km.
In [3], Webster et al. used a 40s-long 900 Hz central FM signal with 25 Hz bandwidth.
The result shows that the range error at approximately 200–250 km is 40 m from beacon to
beacon. In [2], Graupe et al. used the acoustic arrival matching (AAM) method. The signal
for range measurement is with 250 Hz central frequency and 100 Hz bandwidth which
lasts 135 s. The best standard deviation is 835 m at the range of 480 km.

On the other hand, researchers show great interest in DOA estimation with passive
acoustic detection. One method that provides super-resolution is passive synthetic aperture
(PASA). Sullivan and Stergiopoulo proposed this concept at the end of the last century [4].
In the following decades, systems such as the extended towed array method (ETAM) [5,6],
Fourier transform synthetic aperture method (FFTSA) [7,8], and maximum likelihood
estimation method (ML) [9] were continuously proposed. Sullivan also proposed the
underwater model-based acoustic signal processing method using state models to estimate
the target’s bearing angle, which provides a new aspect to realizing PASA [10]. Yang used
the PASA method to estimate the depth of underwater objects [11].

Integrating all sensors’ information and providing the best estimation for long-range
underwater navigation is also a problem. INS/DVL or INS/USBL/LBL/SBL integrated
navigation schemes are well researched [9,12,13]. Most of them are based on the loosely
coupled strategy. The vehicles should receive acoustic signals from more than three beacons.
This feature limited the working area and makes the deployment of APS more complex.
To find a more flexible approach, we attach interest to INS/Single Beacon integrated
navigation algorithms. On the other hand, to keep the stealth of underwater vehicles,
the passive OWTT acoustic positioning method is more attractive. The synthetic long
baseline (SLBL) algorithm was proposed by Larsen which used one beacon to realize
localization [14]. Casey combined the INS and single acoustic positioning beacon for UUV
navigation [15]. Webster et al. proposed a centralized Kalman filter algorithm for single-
beacon OWTT acoustic navigation aided by Doppler velocity logger (DVL) [16]. Qin et al.
proposed a variational Bayesian approximation method for single-beacon-based integrated
navigation [17].

Several research are related to passive single-beacon navigation. Rypkema presents a
closed-loop single-beacon passive acoustic navigation system for AUVs. The navigation
system uses a single acoustic beacon to provide position updates to the AUV by measuring
the time of arrival (TOA) of the acoustic signal. The author uses Kalman filter to combine the
measurement of sensors [18,19]. Sun proposed a new flexible passive single-beacon method
for underwater navigation. The phase difference between the beacon’s signal and the
AUV’s received signal is measured. However, the effective range limits its application [20].
Zhao uses the adaptive network fuzzy inference system and extended Kalman filter in
single-beacon navigation [21].

In addition, Refs. [15,22–26] also provide some ideas to solve the problem of under-
water navigation. To summarize, recent research about underwater navigation which is
related to this study are shown in Table 1.

This paper focuses on improving the INS/APS navigation accuracy in low-SNR condi-
tions for long-range underwater navigation. We proposed an integrated INS/APS navigation
algorithm based on spatial synthetic DOA/range joint estimation. Two unscented Kalman
filter (UKF)-based joint estimators are designed to integrate the received acoustic signal and
inertial measurement. The tightly coupled INS/APS integrated navigation architecture is
designed to improve the availability of the navigation system. In addition, due to the OWTT
method being used, the underwater vehicle is not required to transmit acoustic signals to
external devices or beacons. The simulation was carried out in MATLAB. We compare the pro-
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posed method with range-only tightly coupled INS/APS navigation, SLBL, and the method
proposed by [16]. The results prove the performance of the proposed method.

The remainder of this paper is organized as follows: Section 2 discusses the basic
navigation system model. Section 3 describes the mathematical derivation and the whole
process of the proposed navigation algorithm. Section 4 presents the results of the simu-
lation experiments and compares the proposed algorithm with other methods. Section 5
describes the scheme of the future field experiment. Section 6 presents the conclusions and
our plan for further research.

Table 1. Some related studies about underwater detection and navigation.

Field Institution Research

PASA

Defence Research Establishment
Atlantic

Extended Towed Array Method

Naval Undersea Warfare Center
of USA

The model-based space-time
array processing approach

Zhejiang University Source depth estimation based
on synthetic aperture beam-forming

OWTT

University of Washington Real-Time Under-Ice Acoustic
Navigation

University of Rhode Island Localization using broadband
acoustic sources at long-range

INS/OWTT integrated
navigation

Woods Hole Oceanographic
Institution

A Navigation Solution Using a
MEMS IMU, Model-Based Dead-
Reckoning, and OWTT Acoustic

Range Measurements
Long-Range Acoustic Communications

and Navigation in the Arctic
Closed-loop OWTT navigation
using low-grade odometry for

AUVs

Johns Hopkins University
Centralized extended Kalman
filter based single beacon INS

/OWTT navigation

Passive single-beacon
navigation

Massachusetts Institute of
Technology

Passive inverted ultra-short
baseline navigation using

single beacon
Harbin Engineering

University
Single beacon asynchronous

navigation based on the phase
difference

2. The Basic Underwater Navigation Model

After reviewing several studies, Refs. [13,27] describe the detailed mathematical deriva-
tion of the state-space model based on the INS/acoustic beacon systems. In this paper,
we establish the underwater integrated navigation model based on these studies. Four
frames are used in this paper: body frame (subscript b denotes body frame), East-North-Up
local-level frame (subscript n denotes body frame), Earth-Cantered Earth-Fixed Frame
(subscript ECEF denotes this frame), Longitude-Latitude-Altitude frame (subscript LLA
denotes this frame). Detailed information about these frames can be found in [28].

The overview block diagram of the integrated navigation system is displayed in
Figure 1. Aiming to improve the accuracy of navigation in low-SNR conditions, we try
to use any possible information that helps reduce the accumulating error of INS. Using
the APS system, we can analyze the signal from beacons and obtain DOA and range
information directly. The beacon transmits a narrow-band signal (single-frequency signal)
and a modulated broadband signal in the meantime. The underwater vehicle equipped
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with a hydrophone array receives and processes the signal, and then obtains the bearing
and distance information.

Furthermore, transforming temporal gain to spatial gain is also possible to increase
the accuracy of acoustic DOA and range measurement. Inspired by the model-based signal
processing methods for underwater array [10], we design a model-based estimator and
realize the joint spatial synthetic DOA/range estimation.

The diagram in Figure 1 shows that the system can be divided into DOA/range estima-
tion and tightly coupled navigation. The former estimates the bearing angle and distance
between AUV and beacons. This process is aided by the navigation result. The latter uses
the bearing and range information to correct the results of INS dead reckoning.

Two discrete-time state-space models are established. A detailed description of the
models are discussed in Section 3. INS computation and cross-correlation algorithms are
well-researched [28], which will not be discussed in this paper.

IMU

Hydrophone

Dynamic Model

Model-based DOA/
Range Estimator

Tightly coupled INS/
APS integrated 

Estimator

INS Computation

Cross Correlation

CTD sensors & 
Magnetic Compass

Narrow-band 
Signal

Broad-band 
Signal (BPSK/

LFM)

Sound Speed, 
Depth and Yaw 

Angle

Accelaration and 
Angular Velocity

Peseudo-
Range

Dynamic
Restrict

Position, Velocity 
and Attitude

Distance from 
Beacons to 

Vehicle

Position, 
Velocity, 

Attitude and 
Bias 

Compensation

Bearing
Angle 

between 
Vehicle & 
Beacon

Figure 1. The block diagram of the underwater integrated navigation system.

3. Methodology

In this section, mathematical modeling and derivation of the DOA/range estimator
and the tightly coupled INS/APS integrated estimator are discussed. Both estimators are
based on the unscented Kalman filter (UKF). In the discrete-time domain, the state-space
model is as follows:

Xk+1 = F(Xk) + Wk (1)

Zk+1 = H(Xk+1) + Vk (2)

where Xk, Zk, Wk, and Vk represent the state vector, the measurement vector, the system
noise, and the measurement noise, respectively. Both Wk and Vk are viewed as zero-mean,
Gaussian white noise. F() and H() represent the state transition function and measurement
transition function, respectively. Although the model is not restricted to the single beacon
situation, to simplify the problem, we only discuss the single beacon case in this section.
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3.1. DOA/Range Estimator

One possible way to improve positioning accuracy in low-SNR conditions is trans-
forming temporal gain into spatial gain. Based on the theory of Sullivan [10], we establish
a DOA/range joint estimation model. Figure 2 shows the basic application scenario of the
moving hydrophone array.

Acoustic 
Beacon

θ

Element1 Element2 Element3 ElementN

d

Direction of 
Voyage

V = speed in the direction of voyage

Figure 2. The basic application scenario of the moving hydrophone array. If the distance between
the moving hydrophone array is long enough (distance > (N × d)2/λ), the reaching angle θ of the
signal at each element can be viewed as the same. So, θ is defined as the bearing angle between
array and beacon. The interval between adjacent elements is d. N is the number of elements. λ is the
wavelength of the signal.

3.1.1. The System Model

The state vector is defined as follows:

Xk = [θk, bk, Rk, Vk, ωk, εk, ak]
T (3)

where θk represents the bearing angle; bk represents the bearing rate; Rk represents the
distance between the vehicle (can be viewed as the first hydrophone node) and the beacon;
Vk represents the velocity component in the voyage direction; ωk is the frequency of the
single-frequency signal; εk is the frequency deviation due to environmental disturbance; ak
is the amplitude of the single-frequency signal. The subscript k represents the kth epoch.

Based on Figure 2, the acoustic signal can be viewed as a plane wave. The dynamic
model of the vehicle is assumed to be the mild-change constant-velocity model. So, in
system estimation, the bearing rate bk and vehicle’s voyage velocity Vk of the current epoch
are equal to the values of the next epoch. We define T as the time interval of each epoch.
Then, we can obtain θk = θk−1 + bk−1T. According to cosine law (as Figure 3 shows), the
recurrent equation between Rk and Rk−1 can also be established. The frequency ωk can be
viewed as invariant in the system model. Therefore, the system state predicting equations
of each component in Xk are shown in (4). In this way, the recurrence relation between the
state vectors in the current and the next epochs is built.
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

θk = θk−1 + bk−1T
bk = bk−1

Rk =
√

R2
k−1 + (Vk−1T)2 − 2Rk−1(Vk−1T sin θk−1)

Vk = Vk−1

ωk = ωk−1

εk = εk−1

ak = ak−1

(4)

In real applications, before the next epoch starts, the value of Vk will be assigned to
the velocity calculated by the navigation update.

Acoustic 
Beacon

θ1

Vehicle at 
moment t1

Vehicle at 
moment t2 Direction of Voyage

V = speed in the direction of voyage

Figure 3. The relation of the distance between the vehicle and the beacon at two different moments.

3.1.2. The Measurement Model

The measurement vector Zk is defined as (5)~(7):

Zk = [Prk, Disk, ∆ωk]
T (5)

Prk = [Prk,1, Prk,2 . . . Prk,N ] (6)

Disk = [Disk,1, Disk,2 . . . Disk,N ] (7)

Prk,i in (6) represents the received sound pressure of ith hydrophone element. The sound
pressure describes the arriving sound signal. Prk represents the vector consisting of Prk,i.
Disk,i in (7) represents the measured distance between the ith hydrophone element and
the beacon. Prk is the vector consist of Prk,i. ∆ωk represents the difference in frequency
between the measured narrow-band signal and the ideal frequency of the original signal.
Note that Prk,i is directly measured by the hydrophones; Disk,i is indirectly obtained by
calculating the distance between each hydrophone element and beacon position. ∆ωk is
obtained from the frequency spectrum of a certain length of the signal sequence (a sliding
temporal window).

According to Sullivan’s theory [10], the received sound pressure can be expressed
by a function of θk, bk, ak ωk, and Vk. As more information can be provided by INS and
OWTT, in this model, the received sound pressure Prk,i is a function of θk, bk, ak, ωk, Vk,
and εk. To avoid carrying the amplitude as a nuisance parameter, the phase of Prk,i is
expressed by θk, bk, ωk, and εk instead of using one parameter. The Disk,i can be expressed
as a function of Rk and θk based on the shape of the array shown in Figure 2. According
to the definition of ∆ωk, ∆ωk contains two components: Doppler shift and environmental
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disturbance. In this way, ∆ωk can be expressed as a function of θk, Vk, ωk, and εk. So, the
predictive equations of measurement are shown in (8).

Prk,i = ak cos[(ωk + εk)tk + βi(tk) sin θk]

Disk,i = Rk − (i− 1)d sin θk

∆ωk = (ωk + εk)(1 +
Vk
c sin θk)−ω0

(8)

βi(tk) =
ωk
c
[d(i− 1) + Vktk] (9)

In (8), tk represents the time point of the kth epoch. The definition of βi(tk) is shown
in (9). c represents the sound speed ω0 represents the ideal frequency of the narrow-
band signal.

In this way, equations sets (4) and (8) can be written as two functions FD(Xk) and
HD(Xk). So, the state model is finally written as (10).

Xk+1 = FD(Xk) + WD
k

Zk = HD(Xk) + VD
k

WD
k ∼ N(0, Qk)

VD
k ∼ N(0, Rk)

(10)

The resolution of the hydrophone array is approximately 0.886 λ
D , where λ and D are

the wavelengths of the signal and the aperture of the array. After iterations, the vehicle’s
trajectory just synthesizes a long aperture of detection (although it is not formed at the
same time). In this way, the temporal gain is transformed into spatial gain. The DOA
estimation will be more accurate.

3.1.3. Observability Analysis

The observability of linear systems is well-researched while the observability of nonlin-
ear systems is still a field of interest for many researchers. Based on the theorem established
by these publications [29–32], one possible and convenient way to analyze the observ-
ability of the proposed model is linearizing the nonlinear system model and testing the
observability matrix rank conditions.

The first-order linearized system model of the system (10) can be written as (11), which
is a time-varying system. To be concise, we omit the noise terms in the model.{

Xk+1 = ∂FD
∂X |Xk Xk = Ak|k+1Xk

Zk =
∂HD
∂X |Xk Xk = CkXk

(11)

The detailed components of the matrices Ak|k+1 and Ck is shown in (12)–(15). Un-
like time-invariant systems, several different observability methods are defined for time-
varying systems. They are complete observability, differential observability, instantaneous
observability, and local observability [32–34]. In this paper, we analyze the local observ-
ability of the proposed model. In this way, we will know the restrictions when the model
is available.

Ak|k+1 =



1 T 0 0 0 0 0
0 1 0 0 0 0 0

A3,1 0 A3,3 A3,4 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


(12)
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

A3,1 = −[R2
k + (VkT)2 − 2Rk(VkT sin θk)]

− 1
2

·(RkVkT) cos θk

A3,3 = [R2
k + (VkT)2 − 2Rk(VkT sin θk)]

− 1
2

·(Rk −VkT sin θk)

A3,4 = [R2
k + (VkT)2 − 2Rk(VkT sin θk)]

− 1
2

·(T2Vk − RkT sin θk)

(13)

Ck =



Pr1,1 0 0 Pr1,4 Pr1,5 Pr1,6 Pr1,7
Pr2,1 0 0 Pr2,4 Pr2,5 Pr2,6 Pr2,7

...
...

...
...

...
...

...
PrN,1 0 0 PrN,4 PrN,5 PrN,6 PrN,7
Dis1,1 0 1 0 0 0 0
Dis2,1 0 1 0 0 0 0

...
...

...
...

...
...

...
DisN,1 0 1 0 0 0 0
∆ω1,1 0 0 ∆ω1,4 ∆ω1,5 ∆ω1,6 0


(14)



Pri,1 = −ak · βi(tk) · cos θk sin[(ωk + εk)tk + βi(tk) sin θk]

Pri,4 = −ak
ωktk sin θk

c sin[(ωk + εk)tk + βi(tk) sin θk]

Pri,5 = −ak(tk +
[d·(i−1)+Vktk ]·sin θk

c ) sin[(ωk + εk)tk

+βi(tk) sin θk]

Pri,6 = −aktk · sin[(ωk + εk)tk + βi(tk) sin θk]

Pri,7 = cos[(ωk + εk)tk + βi(tk) sin θk]

Disi,1 = (1− i) · d · cos θk

∆ωi,1 = (ωk + εk) · cos θk

∆ωi,4 = (ωk + εk) · sin θk
c

∆ωi,5 = 1 + Vk
c sin θk

∆ωi,6 = 1 + Vk
c sin θk

(i = 1, 2, 3 · · ·N)

(15)

Definition 1 (Local Observability). Let n denote the dimension of the state vector xk. A time-
varying system is defined as:

xk+1 = fk(xk)
yk = hk(xk)
If the state xk can be determined from yj where j = k, k + 1, · · · , k + n− 1, then the system is

locally observable.

Then, the local observability matrix of System (11) on the kth iteration can be written
as (16).

Ok =


Ck

Ck+1Ak
Ck+2Ak+1Ak

...
Ck+n−1Ak+n−2 . . . Ak+1Ak

 (16)

If the system is locally observable, the rank of Ok should be of rank n, where n = 7
in this case. After testing the local observability matrix of the (11), two interesting results
are obtained:
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1. When there is only one element of the hydrophone “array”, rank(Ok) = 5. So the sys-
tem is unobservable if the hydrophone “array” only contains one element. This prop-
erty is also proven by [10,35], but in a different way.

2. The system (10) is undifferentiable if R2
k + (VkT)2 − 2Rk(VkT sin θk) = 0. This will

happen if and only if θ = ±π
2 and Rk = ±Vk · T. Therefore, the model is unobserv-

able if the trajectory of the AUV overlaps the position of the beacon. This result is
also supported by the research of [9] but in a different aspect. Wang discussed the
basic TOA/DOA single beacon localization geometric model and pointed out that the
geometric state transformation matrix is not invertible when the vehicle’s trajectory
overlaps the position of the beacon. However, unlike pure DOA or pure TOA local-
ization method, when θ = π

2 and Rk 6= Vk · T (the trajectory of the vehicle is collinear
with the beacon but does not overlap the beacon), the system is still observable.

3.1.4. UKF

One fact is that FD(Xk) and HD(Xk) are not linear function. The conventional Kalman
filter is not a suitable choice when we consider the data-fusion problem. While using the
extended Kalman filter to solve the problem, it is hard work to calculate the time-varying
Jacobian matrix in every iteration. So, we finally choose the unscented Kalman filter (UKF).
The mathematical principle of UKF is well researched [36], so this paper will not list the
concrete derivation of UKF. The specific steps of UKF in this model are shown in Table 2.

Table 2. The process of UKF in DOA/range estimation.

Set up parameters

Nx—the dimension of the state vector Xk 

G0
m = λ

Nx+λ

Gi
m = λ

2(Nx+λ)

Gi+Nx
m = λ

2(Nx+λ)

G0
c = λ

Nx+λ + 1 + β− α2

Gi
c =

λ
2(Nx+λ)

Gi+Nx
c = λ

2(Nx+λ)

i = 1, 2, 3 . . . Nx

Ny—the dimension of the measurement vector Zk
α—a tuning parameter, commonly set to be 10−3

β—a tuning parameter, commonly set to be 2
κ—a tuning parameter, a heuristic rule commonly
used is to set Nx + κ = 3
λ—λ = α2 × (Nx + κ)− Nx
Gi

m—the weight value in state prediction
Gi

c—the weight value in state error covariance
prediction
Qk—the system noise covariance matrix
Rk—the measurement noise covariance matrix
Pk —- the state error covariance matrix

Generate sigma points

Define Cholesky(A) as the Cholesky decomposition
of A. Pk = U AkV T —(SVD)

Sk = U · Cholesky(Ak)
X0

k = Xk

X i
k = Xk + (

√
Nx + λSk)i

X i
k = Xk − (

√
Nx + λSk)i

Define (A)i as the ith column of matrix A. The total
number of the sigma points is 2Nx + 1.

i = 1, 2, 3 . . . Nx

State prediction

Calculate the results after state transformation of all
sigma points, and then calculate the weighted summation.

X i
k|k+1 = FD(X i

k)

i = 0, 1, 2, 3 . . . 2Nx

Xk|k+1 = ∑2Nx
i=0 Gi

mX i
k|k+1
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Table 2. Cont.

State error covariance prediction

Predict the state error covariance matrix. X̃ i
k|k+1 = X i

k|k+1 − Xk|k+1

i = 0, 1, 2, 3 . . . 2Nx

Pk|k+1 = ∑2Nx
i=0 Gi

cX̃ i
k|k+1 · (X̃ i

k|k+1)
T + Qk

Update sigma points

Generate the new sigma points after state prediction. Pk|k+1 = U Ak|k+1V T —(SVD)
Sk|k+1 = U · Cholesky(Ak|k+1)

Y0
k|k+1 = Xk|k+1

Y i
k|k+1 = Xk|k+1 + (

√
Nx + λSk|k+1)i

Y i
k|k+1 = Xk|k+1 − (

√
Nx + λSk|k+1)i

i = 1, 2, 3 . . . Nx

Measurement prediction

Predict the measurement vector by state vector. Zi
k|k+1 = HD(Y i

k|k+1), i = 1, 2, 3 . . . 2Nx

Zk|k+1 = ∑2Nx
i=0 Gi

mZi
k|k+1

Z̃i
k|k+1 = Zi

k|k+1 − Zk|k+1

Pz
k|k+1 = ∑2Nx

i=0 Gi
cZ̃i

k|k+1 · (Z̃i
k|k+1)

T + Rk

Pxz
k|k+1 = ∑2Nx

i=0 Gi
cX̃ i

k|k+1 · (Z̃i
k|k+1)

T + Rk

State update

Update the state by introduce real measurement. Kk+1 = Pxz
k|k+1(Pz

k|k+1)
−1

X̂k+1 = Xk|k+1 + Kk+1(Zk+1 − Zk|k+1)

Pk+1 = Pk|k+1 − Kk+1Pz
k|k+1KT

k+1

Because of the floating-point error in real computation, when the elements of Pk are
small, Pk will sometimes become negative definite using the standard UKF algorithm.
There is no solution for Cholesky decomposition in this case. To guarantee the positive
semidefiniteness of Sk, unlike the standard UKF algorithm, we add a singular value
decomposition (SVD) step before Cholesky decomposition, which is shown in the “Generate
sigma points” step of Table 2.

The covariance matrix Pk can always be decomposed as (17):

Pk = UAkV (17)

Based on the definition of SVD, Ak always meets the condition of positive semidefinite.
Because the covariance matrix is symmetric. Then we can obtain:

Pk = U
√

AkAT
k UT (18)

Cholesky(Pk) = U · Cholesky(Ak) (19)

This method prevents the anomaly of Cholesky decomposition over iterations which
is also used in the filter of the tightly coupled INS/APS navigation Estimator.

3.2. Tightly Coupled INS/APS Navigation Estimator

For underwater vehicles’ navigation, yaw angle and depth are instrumented ade-
quately with the compass and the depth gauge. So, long-range underwater navigation can
be viewed as a 2D problem. Traditional single beacon integrated navigation algorithms
should calculate the position of the vehicle, and then the position error model is used for
data-fusion. This strategy has disadvantages, such as motion restriction and multi-results.
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So, in the proposed model, inspired by the tightly coupled INS/GNSS navigation, the
tightly coupled strategy is chosen for INS/APS navigation. Kepper proposes an open-loop
architecture for 2D underwater integrated navigation [37]. However, it has been proven
in INS/GNSS integrated navigation that the closed-loop architecture is more stable and
has better performance in practice [38]. The closed-loop architecture is then used in the
proposed model.

3.2.1. The System Model

The state vector is defined as follows:

Xnk = [δPE,k, δPN,k, δVE,k, δVN,k, δφk, δθk,

δγk, δbx,k, δby,k, δbz,k, δgx,k, δgy,k, δgz,k, δclkk]
T (20)

δPE,k, δPN,k represent the error in Longitude and Latitude respectively; δVE,k and δVN,k
represent the error of eastward velocity and northward velocity respectively; φk, δθk, and
δγk represent the error of the pitch, roll, and yaw angle, respectively; δbx,k, δby,k, and δbz,k
are the error of 3-axis accelerometers’ bias in body frame; δgx,k, δgy,k, and δgz,k are the error
of 3-axis gyroscopes’ bias in body frame; δclkk is the drift of OWTT caused by clock defects
or propagation channel.

Because the changing process of bias and drift are modeled with first-order
Gauss–Markov process [13], the bias can be written in the form of (21), where Tc is the
correlation time, dt is the sample period of the filter and wb is the zero mean Gaussian noise
of bias.

bk = e
dt
Tc bk−1 + wb (21)

Based on the classic inertial error model [28], the state transition model can be finally
written as (22) to (27).[

δPE,k+1
δPN,k+1

]
=

[
0 dt

RM+h
dt

(RN+h) cos(Lon) 0

][
δVE,k
δVN,k

]
+

[
δPE,k
δPN,k

]
(22)

[
δVE,k+1
δVN,k+1

]
=

[
δVE,k
δVN,k

]
+ Cn

b (1 : 2, 1 : 3)

 δbx,k
δby,k
δbz,k

 (23)

 δφk+1
δθk+1
δγk+1

 =

 δφk
δθk
δγk

+ Cn
b

 δgx,k
δgy,k
δgz,k

dt

+

 0 dt
RM+h

−dt
RN+h 0

−dt tan(lon)
RN+h 0

[ δVE,k
δVN,k

] (24)

 δbx,k+1
δby,k+1
δbz,k+1

 = e−
dt

Tc1

 δbx,k
δby,k
δbz,k

 (25)

 δgx,k+1
δgy,k+1
δgz,k+1

 = e−
dt

Tc2

 δgx,k
δgy,k
δgz,k

 (26)

δclkk+1 = e−
dt

Tc3 · δclkk (27)
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RN represents the local normal radius; RM represents the local meridian radius; Cn
b

is the 3 × 3 rotation matrix from body frame to ENU frame; dt is the updating period
of navigation. Tc1, Tc2, Tc3 are introduced, which are the correlation time constants of
accelerators, gyroscopes, and clock, respectively.

3.2.2. The Measurement Model

The measurement vector is defined as (22) to (24).

Znk = [δρk, δ sin θk]
T (28)

δρk = ρINS
k − ρAPS

k (29)

δ sin θk = δ sin θ INS
k − δ sin θAPS

k (30)

δρk represents the difference between the distance measured by OWTT range and
calculated by the navigation results of the last iteration; δ sin θk represents the differences
between the bearing angle measured by DOA and calculated by the navigation results of
the last iteration.

The measurement vector can be predicted by state vector as equations in (31) to
(36) show.

PEST
ECEF =

 xk
yk
zk

 = CECEF
LLA

 PE,k − δPE,k
PN,k − δPN,k

PU,k

 (31)

Pbeacon
ECEF =

 x1k
y1k
z1k


ECEF

(32)

Pbeacon
LLA =

 Pbeacon
E

Pbeacon
N

Pbeacon
U


LLA

(33)

PINS
ECEF = CECEF

LLA

 PE,k
PN,k
PU,k

 (34)

δρ =
∥∥∥PINS

ECEF − Pbeacon
ECEF

∥∥∥− ∥∥∥PEST
ECEF − Pbeacon

ECEF

∥∥∥
− c · δclk(k)

(35)

δ sin θk = sin[bearing((PE,k, PN,k), (PE
m, PN

m ))]−
sin[bearing((PE,k − δPE,k, PN,k − δPN,k), (PE

m, PN
m ))]

(36)

CECEF
LLA is 3 × 3 rotation matrix from LLA frame to ENU frame; Pbeacon

ECEF is the bea-
con’s position in ECEF frame; Pbeacon

LLA is the beacon’s position in LLA frame; bearing(A, B)
represents the bearing of point B from point A.

By combining the transformation equations, the state model of the tightly coupled
model can be written in a concise form as (37).

Xnk+1 = FTC(Xnk) + WTC
k

Znk+1 = HTC(Xnk+1) + VTC
k+1

WTC
k ∼ N(0, Qnk)

VTC
k ∼ N(0, Rnk)

(37)

Note that the model can be transformed into the multi-beacon form by extending the
measurement vector and transform function; similar to what (38) to (41) show, where m
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is the number of beacons. The only difference between each Hi
TC() is the position of the

ith beacon.

Znk = [δρk, δbeark]
T (38)

δρk = [δρ1
k , δρ2

k , δρ3
k . . . δρm

k ] (39)

δbeark = [δ sin θ1
k , δ sin θ2

k , δ sin θ3
k . . . δ sin θm

k ] (40)

Znk+1 =


H1

TC(Xnk+1)
H2

TC(Xnk+1)
H3

TC(Xnk+1)
...

Hm
TC(Xnk+1)

+ Wmulti−TC
k+1 (41)

The observability of the tightly coupled model is not discussed in this paper because
it is a well-researched topic in INS/GNSS tightly coupled navigation area. Some of the
analyses can be found in [28,39,40].

3.2.3. UKF

UKF is also used to realize the data fusion procedure of the tightly coupled nonlinear
state model. The whole streamline is shown in Table 3.

According to Sections 3.1 and 3.2, it is possible if we combine two estimators into one by
merging the state vectors and reorganizing the state-space model. However, the proposed
model has lower computational consumption compared to the combined estimator with
higher order. We quantified the computational complexity of every step in UKF, as shown
in Table 4. It is evident that the combined estimator will always require at least 56,593 more
floating-point operations (flops) than the proposed model each filtering iteration.

On the other hand, the robustness of UKF will decrease if the dimension is too high.
The results of the high-dimension filter will be hard to converge in some cases. Fur-
thermore, it is difficult to select the best value of tuning parameters for high-dimension
UKF. In consideration of these aspects, we choose the two estimators’ architectures in the
proposed algorithm.

Table 3. The process of UKF in tightly coupled navigation.

Set up parameters

Nx1—the dimension of the state vector Xnk


G0
m = λ

Nx1+λ

Gi
m = λ

2(Nx1+λ)

Gi+Nx
m = λ

2(Nx1+λ)

G0
c = λ

Nx1+λ + 1 + β− α2

Gi
c =

λ
2(Nx1+λ)

Gi+Nx
c = λ

2(Nx1+λ)

i = 1, 2, 3 . . . Nx1

Ny1—the dimension of the measurement
vector Znk
α, β, κ, λ, Gi

m, Gi
c,—the definition of these

parameters are the same as in Table 2
Qnk—the system noise covariance matrix
Rnk—the measurement noise covariance
matrix
Pnk—the state error covariance matrix

Generate sigma points

Pnk = U AnkV T —(SVD)
Snk = U · Cholesky(Ank)

Xn0
k = Xnk

Xni
k = Xnk + (

√
Nx1 + λSnk)i

Xni
k = Xnk − (

√
Nx1 + λSnk)i

i = 1, 2, 3 . . . 2Nx1

State prediction

Xni
k|k+1 = FTC(Xni

k), i = 0, 1, 2, 3 . . . 2Nx1

Xnk|k+1 = ∑2Nx
i=0 Gi

mXni
k|k+1
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Table 3. Cont.

State error covariance prediction

X̃n
i
k|k+1 = Xni

k|k+1 − Xnk|k+1

i = 0, 1, 2, 3 . . . 2Nx1

Pnk|k+1 = ∑2Nx1
i=0 Gi

cX̃n
i
k|k+1 · (X̃n

i
k|k+1)

T + Qnk

Update sigma points

Pnk|k+1 = U Ank|k+1V T —(SVD)
Snk|k+1 = U · Cholesky(Ank|k+1)

Yn0
k|k+1 = Xnk|k+1

Yni
k|k+1 = Xnk|k+1 + (

√
Nx1 + λSnk|k+1)i

Yni
k|k+1 = Xnk|k+1 − (

√
Nx1 + λSnk|k+1)i

i = 1, 2, 3 . . . Nx1

Measurement prediction

Zni
k|k+1 = HTC(Y i

k|k+1), i = 1, 2, 3 . . . 2Nx1

Znk|k+1 = ∑2Nx
i=0 Gi

mZni
k|k+1

Z̃n
i
k|k+1 = Zni

k|k+1 − Znk|k+1

Pnz
k|k+1 = ∑2Nx1

i=0 Gi
cZ̃n

i
k|k+1 · (Z̃n

i
k|k+1)

T + Rnk

Pnxz
k|k+1 = ∑2Nx

i=0 Gi
cX̃n

i
k|k+1 · (Z̃n

i
k|k+1)

T + Rnk

State update

Update the state by introducing the real
measurement, note that the updating step
of X̂nk+1 is different.

Knk+1 = Pnxz
k|k+1(Pnz

k|k+1)
−1

X̂nk+1 = Xnk|k+1 + Knk+1Znk+1
Pnk+1 = Pnk|k+1 − Knk+1Pnz

k|k+1KnT
k+1

Table 4. The computational complexity of UKF.

Step
Computational Complexity
(N Is the Dimension of State Vector, L Is
the Dimension of Measurement Vector)

Flops in State Prediction 13
3 N3 + 11N2 + 14

3 N

Flops in Measurement Update
8
3 L3 + 12NL2 + 2N2L + 15

2 L2 + 34NL + 4N2

+ 157
6 L + N + 3

Flops in SVD 8
3 N3

Square Roots in Cholesky decomposition N

3.3. Parameters’ Selection and Motion Restriction
3.3.1. Parameters’ Selection

The system noise covariance matrix Q and the measurement covariance matrix R are
the most important parameters for estimation for both estimators. It is hard to summarize a
quantified rule of parameter selection. To say the least, however, we can obtain a qualitative
rule. For DOA/range estimator, the selection of Q is based on the user’s trust in the
constant-velocity dynamic model. R can be obtained from the noise of the navigation
results and the measurement noise of sound pressure. For the tightly coupled navigation
estimator, the selection of Q is based on the measurement noise of IMU and clock source. R’s
selection is influenced by the measurement noise of OWTT and the estimation covariance
of DOA. Most of the time, the value of Q should not be set too large, or the filter would
be hard to converge. The value of R should be slightly larger than the measurement noise,
which will help stabilize the filter’s results.
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3.3.2. The Motion Restriction

There is no motion restriction for the tightly coupled navigation estimator, and it has
already been proven observable all time [28]. However, for DOA/range estimator, because
the basic assumption of the system model is constant velocity, the vehicle should move with
a relatively stable velocity during estimation or the result of DOA/range estimation will
deteriorate.

On the other hand, most of the single beacon navigation algorithms require the vehicle
not to move radially towards or away from the beacon or the system will be unobservable. It
has been proven in Section 3.1.3 that the proposed DOA/range estimator is also observable
in the radial motion case if the trajectory does not overlap the position of beacons. In
addition, there should be more than one element in the hydrophone array. The numeric
analysis is presented in Section 4.1.

3.4. The OWTT Measurement

According to [1,3,13] and our experiments in East China Sea in 2021 (ECS2021), mea-
suring the TOA of long-range through long-period modulated signal in shallow water
is possible.

Figure 4 shows the error distribution of OWTT range measurement in the real stable
experiment in ECS2021 (the acoustic transceiver and the hydrophones array are stable).
The acoustic transceiver sent m-sequence data modulated by BPSK. The source level is
about 170 dB re micro-pascal and the carrier frequency of the signal is 160 Hz with 16 Hz
bandwidth. The correlation period is 30 s. The distance between the two ends is about
50 km. The result shows that the standard deviation of range measurement is about 8.5 m
at 50 km. However, the error distribution shows that the noise is not zero-mean Gaussian
noise, so we add a noise estimation variable δclkk in the state vector of the tightly coupled
navigation model.

The pseudo-code of the proposed algorithm is shown in Algorithm A1 (list in
Appendix A).

Range Error Distance:50km. Std: 8.5m

−15 −10 −5 0 5 10 15

error/m

0

0.02
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0.08

0.1

0.12
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ili

ty

Figure 4. The histogram of the error in the acoustic OWTT range estimates.

4. Simulation

To verify the proposed method, we design a series of simulations including motion
restriction and comparison of the proposed method with the pure inertial update and some
recently proposed single-beacon algorithms in the same condition. The simulations were
carried out in MATLAB. The block graph of the simulation system is shown in Figure 5.
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Trajectory 
generator

Signal generator

Underwater 
Environment 

simulator 
toolbox

The proposed 
algorithm

IMU simulator

Navigation 
results

Original 
signal
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trajectory

Signal after 
propagation

IMU data 
with noise 
and bias

Figure 5. The block diagram of the simulation process.

4.1. Motion Restriction Research

In this section, we use the numeric method to research the motion restriction of
DOA/range estimator. To obtain the variation in accuracy of DOA/range estimator when
the initial bearing is different, we set different start points of the vehicle in simulation.
Except for bearing, the other parameters including heading direction, velocity and UKF
parameters are all the same. The detailed configuration is shown in Table 5.

Table 5. Simulation configuration in motion restriction research.

Parameter Value

Number of hydrophone
elements 10

Spatial interval of elements 5 m
Sample rate of hydrophone 4000 Hz
Sample rate of IMU 100 Hz
Time of simulation of each
iteration 450 s

Times of repetition 50
Initial distance between the
beacon and the vehicle 50 km

Voyage direction East (yaw = 90◦)
Voyage speed 2 m/s
Accuracy of depth sensor 0.1 m
Accuracy of Compass 0.1◦

SNR −20 dB
Frequency of narrowband
signal 100 Hz

Broadband signal (a period) LFM (130 ∼ 230 Hz, 40 s)
Qk Diagonal(10−7, 10−8, 10−6, 10−9, 10−4, 10−5, 10−6)
Rk I21×21 × 10−3

P0 Diagonal(0.1, 0.01, 0.01, 0.01, 0.01, 0.01, 10−8)

Qnk
Diagonal(10−10, 10−10, 10−8, 10−8, 10−10, 10−10, 10−10,
10−12, 10−12, 10−12, 10−12, 10−12, 10−12, 10−12)

Rnk Diagonal(104, 104)

Pn0
Diagonal(10−8, 10−8, 10−6, 10−6, 10−8, 10−8, 10−10,
10−8, 10−8, 10−8, 10−10, 10−10, 10−10, 10−10)

Assuming that the DOA measuring range of the hydrophone array is [−90◦, 90◦]
because of the array’s directivity, we set the bearing of the initial point from −90◦ to 90◦

with 1◦ step. For each iteration, we generate the same 450 s eastward trajectory, acoustic
signal after propagation and IMU data with noise. Then, we calculate the error between the
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true value and the output of the DOA/range estimator. The simulation repeats 50 times to
eliminate the randomness. The averaged root mean square error (ARMSE, defined as (34))
is used to evaluate the accuracy. M represents the times of repetition in simulation; N is the
number of sample points; xij is the output results of simulation at each sampling moment;
x̂ij is the true value.

ARMSE =
1
M

M

∑
i=1

√√√√ 1
N

N

∑
j=1

(xij − x̂ij)2 (42)

The updating rate of the navigation (100 Hz) is much lower than the updating rate of
the DOA/range estimator (4000 Hz, which is equal to the sampling rate of the hydrophone).
So, before the next navigation update, the range measurement input of the DOA/range
estimator is viewed as invariant.

The results is shown in Figures 6 and 7. When the initial bearing angle between the
vehicle and the beacon is −90◦~−60◦ or 60◦~90◦, the DOA estimation deteriorates, but
there is no obvious degradation in range estimation. So, radial or near radial movement
will influence the accuracy of estimation. Such kinds of movement should be avoided
in real applications of the proposed method. In future work, the bearing of the current
position can be a criterion to determine the confidence of the DOA/range estimator and
adjust the parameters of UKF adaptively.

−100   −80 −60 −40 40 60 80 100−20       0         20

 Initial bearing/°

0

0.5

1

1.5

2

2.5

3

3.5

4

A
R

M
S

E
/°

SNR=−20dB

Figure 6. The variation in accuracy of bearing estimation when initial bearing is different.
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E
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SNR=−20dB

Figure 7. The variation in accuracy of range estimation when initial bearing is different.
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4.2. Performance Comparison

To verify the navigation performance of the proposed method, we compare it in
the same conditions with INS only, the INS/APS tightly coupled model with range-only
measurement (algo1), the algorithm (algo2 with DVL) proposed in [16] and the synthetic
baseline algorithm (algo3) which is proposed in [14]. The configuration is shown in Table 6.
The simulating trajectory is shown in Figure 8. The simulation results are shown in Figure 9.

Table 6. Simulation configuration in performance comparison.

Parameter Value

Number of hydrophone
elements 10

Spatial interval of elements 5 m
Sample rate of hydrophone 4000 Hz
Sample rate of IMU 100 Hz
Duration of simulation 2460 s, 4000 s
Times of repetition 1
Initial distance between the
beacon and the vehicle 50 km

Initial bearing angle 0◦

Voyage speed 2 m/s
Accuracy of depth sensor 0.1 m
Accuracy of Compass 0.1◦

SNR −30 dB
Frequency of narrowband
signal 100 Hz

Broadband signal (a period) LFM (130 ∼ 230 Hz, 40 s)
Qk Diagonal(10−7, 10−8, 10−6, 10−9, 10−4, 10−5, 10−6)
Rk I21×21 × 10−3

P0 Diagonal(0.1, 0.01, 0.01, 0.01, 0.01, 0.01, 10−8)

Qnk
Diagonal(10−10, 10−10, 10−8, 10−8, 10−10, 10−10, 10−10, 10−12,
10−12, 10−12, 10−12, 10−12, 10−12, 10−12)

Rnk Diagonal(104, 104)

Pn0
Diagonal(10−8, 10−8, 10−6, 10−6, 10−8, 10−8, 10−10, 10−8, 10−8,
10−8, 10−10, 10−10, 10−10, 10−10)

119.99 120 120.01 120.02 120.03 120.04 120.05 120.06

Longitude/°

29.95

30

30.05
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30.25

30.3

La
tit

ud
e/

°

Simulated Trajectory

Acoustic Beacon
(120.000000°,30.270624°)

voyage velocity: 2m/s

Figure 8. The simulated trajectory.

The average root means square error (ARMSE) after the simulation of every algorithm
are listed in Table 7. From the results, we can see that with the aid of the acoustic positioning



Remote Sens. 2023, 15, 1854 19 of 26

system, the navigation accuracy of three integrated algorithms are improved apparently.
They all effectively restrict the accumulating error which is caused by the drift of inertial
sensors. From Table 7, algo2 and the proposed algorithm are much better than algo1.
Although the ARMSE in the east direction of algo3 is smaller than other algorithms, the
majority of the positioning error lies in the north direction. The total ARMSE of algo1 and
algo3 are on the same level. The accuracy of the proposed method is relatively worse than
the algo2. It should be noted that algo2 is an integrated navigation scheme that combines
INS, DVL, and OWTT measurements, while the proposed method only uses information
from INS and OWTT. Despite this difference, the proposed algorithm performs nearly so
well as algo2 when the AUV follows the trajectory shown in Figure 8. The results clearly
demonstrate the superiority of the proposed algorithm over algo1 and 3 in INS/OWTT-
based navigation.
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Figure 9. (a) Error curve of INS only, algo1, algo2, algo3 and the proposed method in east position;
(b) error curve of algo1, algo2, algo3, and the proposed method in east position; (c) error curve of INS
only, algo1, algo2, algo3, and the proposed method in north position; (d) error curve of algo1, algo2,
algo3, and the proposed method in north position.

Table 7. The ARMSE of each algorithm.

East ARMSE (m) North ARMSE (m) Total (m)

INS Only 608.48 966.39 1142.00
Algo1 91.65 49.58 104.20
Algo2 15.67 14.43 21.30
Algo3 9.15 102.31 102.72

Proposed 20.47 25.77 32.91
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Figure 10 shows another type of simulated trajectory, for which the constant-velocity
model was found to be unsuitable due to a 40-s time interval between each state. Table 8
displays the ARMSE of each algorithm. Error curves and the AUV’s trajectory for the
navigation results generated by pure inertial navigation, algo1, algo2, algo3, and the
proposed algorithm are shown in Figures 11 and 12, respectively. The results indicate that
the proposed algorithm has higher accuracy than algo1, algo3, and the pure inertial cases.
However, compared to algo2, which is aided by DVL and APS, it cannot achieve the same
level of accuracy in this case.

Table 8. The ARMSE of each algorithm.

East ARMSE (m) North ARMSE (m) Total (m)

INS Only 453.30 947.77 1050.69
Algo1 265.25 880.55 919.63
Algo2 8.05 26.10 27.32
Algo3 442.96 103.11 454.80

Proposed 155.89 79.39 174.95
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Figure 10. The simulating trajectory.
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Figure 11. (a) Error curve of INS only, algo1, algo2, algo3, and the proposed method in east position;
(b) error curve of algo1, algo2, algo3, and the proposed method in east position.
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Figure 12. The comparison of trajectories calculated by different algorithms.

5. Field-Experimental Design

The field experiment is required if we want to verify the real performance of the
proposed algorithm. Currently, the field experiment has not been carried out; however, the
design of the field experiment is presented.

5.1. Experimental Requirements

Firstly, the field experiment should be conducted in the ocean, and the area should
be at least 2500 nmile square. An AUV is needed as an experiment platform. The AUV
should be equipped with a hydrophone array, GNSS receiver, IMU, an on-vehicle computer,
DVL and so on. The AUV should automatically travel through the pre-set route, in the
meantime, record the data including IMU’s data, hydrophones’ data and navigation results.
In addition, according to the field experiments in previous research, the number of elements
of the hydrophone array should be more than four.

Secondly, a high-power acoustic beacon is needed as the signal transmitter. The band-
width of the beacon should at least cover 50 Hz to 1000 Hz. The beacon should be pro-
grammable so that the researchers can freely set the signal’s format. In addition, the
maximum source level of the beacon should be no less than 180 dB.

Last but not least, a high-accuracy LBL system is needed. This system should be
deployed near the AUV and the effective range of the LBL system should cover the trajectory
of the AUV. This system is served as a reference system which provides the benchmark for
the experiment.

5.2. Experimental Procedure

Before the field experiment, several position points and areas should be preset which
are: the voyage area of the AUV where the LBL system is deployed; a point locates 50 km
away from the voyage area; a point locates 100 km away from the voyage area; a point locates
150 km away from the voyage area. The whole procedure of the experiment is as follows.

1. Two ships carry the AUV and the beacon, respectively, and reach the preset positions.
The beacon should be firstly at the 50 km point. Then, the AUV and the beacon are
released into the ocean.
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2. The beacon plays the acoustic signal (single-frequency signal + wide bandwidth
ranging signal). Note that the bandwidth of the signal should not overlap the LBL’s
bandwidth. In the meantime, the AUV voyages along with the preset trajectory (the
velocity of the AUV should be approximately constant and no more than 4 m/s).
The AUV records the sensors’ data and the LBL positions. The whole process should
last at least one hour. The 50 km-point test repeats three times.

3. Then, the beacon should be deployed at the 100 km-point and play the same signal.
The AUV repeats the same process as 50 km-point test.

4. Repeat the same process for the 150 km-point test.
5. Collect the data recorded by the AUV. Post-process the IMU’s data and the hy-

drophones data using the conventional single beacon method, range-only tightly
coupled method, some state-of-the-art single beacon methods and the proposed
method, respectively. Compare every method’s results with LBL data. Attention
should be attached to three values: the average positioning error, the system available
time, and the effective range of the acoustic aid.

6. Discussion and Conclusions

This work focuses on improving the accuracy of underwater navigation in long-range
and low-SNR conditions. To achieve this target, a new scheme of INS/APS integrated
navigation is proposed. This method combines passive synthetic aperture detection and
tightly coupled navigation. The signal for range and bearing measurement is a composite
signal, which contains a single-frequency signal and a modulated signal. We design a
DOA/range estimator and a tightly coupled INS/APS integrated estimator based on UKF.
The two estimators’ architecture is proven to be slighter in computation compared with
one estimator’s architecture. The motion restriction simulation reveals that the accuracy of
the proposed method varies from the relative direction between the voyaging direction and
the beacon. Meanwhile, the simulation results shows its superiority compared with other
INS/APS integrated navigation algorithms and even performs as good as the algorithm
aided with DVL.

Although research has made significant progress in proposing new algorithms, there
are still limitations that need to be addressed. Firstly, field experiments are necessary to ver-
ify the proposed algorithm. Secondly, the algorithm is not suitable for single hydrophone
conditions. Thirdly, compared to conventional INS/APS integrated navigation, the pro-
posed algorithm requires higher computational resources, necessitating more advanced
on-board hardware.

Future research of this work will focus on these aspects:

1. The practical experiments verification. The real environment will be much more
complex. Some parameters which are suitable for simulation may not be the same
case in the real world. Practical experiments will help improve the model and verify
its real performance.

2. The implementation of auto-tuning and adaptive data-fusion algorithm will be also
important in the next step of the work. Although there are lots of KF-based adaptive
data-fusion algorithms, most of them just introduce some new hyperparameters such
as fading factors. So, it is still a game of tuning. We hope that we can design an
adaptive estimator which can provide the appropriate UKF parameters based on the
underwater environment.

3. Generalize the model. The current model is established based on the constant ve-
locity model. However, a more general model is needed, as the motion type of the
underwater vehicle is required to be more flexible.
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4. A better updating strategy. During the research of this work, we find that the updating
rate of each subsystem is different. Especially, the OWTT range measurement is much
lower than others. This problem causes the fluctuation of estimation error. The error
curve is saw-toothed because of the long updating period. On the other hand, due to
the disturbance of ocean circumstances, we cannot guarantee a stable updating rate of
OWTT data. We want to find some methods such as temporal predictions to eliminate
such fluctuation when OWTT measurement is not available.

Further research of long-range underwater navigation without GNSS will make a
contribution to deep-sea exploration, oceanic science, and flexible navy application.
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Abbreviations
The following abbreviations are used in this manuscript:

GNSS Global navigation satellite system
INS Inertial navigation system
APS Acoustic positioning system
SNR Signal–noise ratio
OWTT One-way-travel-time
DOA Direction-of-arrival
UKF Unscented Kalman filter
DVL Doppler velocity logger
CEKF Centralized extended Kalman filter
LBL Long Baseline
SBL Short Baseline
USBL Ultra Short Baseline
FM Frequency modulation
AAM Acoustic arrival matching
PASA Passive synthetic aperture
ETAM Extended towed array method
ML Maximum likelihood
FFT Fourier transform synthetic aperture method
SLBL Synthetic long baseline
UUV Unmanned underwater vehicles
ENU East-North-Up
ECEF Earth-Cantered Earth-Fixed Frame
LLA Longitude-Latitude-Altitude frame
SVD singular value decomposition
LFM Linear frequency modulation
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Appendix A

Algorithm A1 Pseudo code of the proposed algorithm

Require: N > 0
Xk, Zk, Pk, Qk, Rk ← X0, Z0, P0, Q, R
Xni, Zni, Pni, Qni, Rni ← Xn0, Zn0, Pn0, Qn, Rn

. Initialize the vectors and matrices
Navj ← Nav0
Rangek, Pressurek, IMUk ←MeasureInit()

. Navigation and measurement initialization
while k ≤ N do

if mod(k, fDOA/ fNAV) = 0 then
if mod(j, fNAV/ fOWTT) then

Zni ← MeasureUpdt1(OWTTi, Xk−1)
Xni, Pni ← IntNav(Xni−1, Zni, Pni−1)
Navj−1 ← NavCrct(Xni)
i ++

end if
Navj ← InsUpdt(Navj−1)
Rangej ← RangeGet(Navj)
j++;

end if
Zk ← MeasureUpdt2(Rangej, Pressurek)
Xk, Pk ← DOA_RangeEst(Xk−1, Zk, Pk−1)
k ++

end while

fDOA is the updating rate of DOA estimator; fNAV is the updating rate of INS nav-
igation; fOWTT is the updating rate of OWTT range; MeasureInit() is the measerement
initialization function; MeasureUpdt1() is the function to calculate Zni with the input of
OWTT range measurement and the result of DOA/range estimation; IntNav() is the func-
tion to realize the proposed tightly coupled navigation; NavCrct() is the function to correct
results of navigation; InsUpdt() is the function of inertial navigation update; RangeGet()
is the function to calculate the range from each element to the beacon; MeasureUpdt2() is
the function to calculate Zk with the input of range and the detected value of hydrophone;
DOA_RangeEst is the function to realize the proposed DOA/Range estimator.
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