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Abstract: With the development of remote sensing technology, classification has become a meaningful
way to explore the rich information in hyperspectral images (HSIs). However, various environmental
factors may cause noise and shadow areas in HSIs, resulting in weak signals and difficulties in
fully utilizing information. In addition, classification methods based on deep learning have made
considerable progress, but features extracted from most networks have much redundancy. Therefore,
a method based on two-dimensional dynamic stochastic resonance (2D DSR) shadow enhancement
and convolutional neural network (CNN) classification combined with an attention mechanism (AM)
for HSIs is proposed in this paper. Firstly, to protect the spatial correlation of HSIs, an iterative
equation of 2D DSR based on the pixel neighborhood relationship was derived, which made it
possible to perform matrix SR in the spatial dimension of the image, instead of one-dimensional
vector resonance. Secondly, by using the noise in the shadow area to generate resonance, 2D DSR
can help increase the signals in the shadow regions by preserving the spatial characteristics, and
enhanced HSIs can be obtained. Then, a 3DCNN embedded with two efficient channel attention
(ECA) modules and one convolutional block attention module (CBAM) was designed to make the
most of critical features that significantly affect the classification accuracy by giving different weights.
Finally, the performance of the proposed method was evaluated on a real-world HSI, and comparative
studies were carried out. The experimental results showed that the proposed approach has promising
prospects in HSIs’ shadow enhancement and information mining.

Keywords: remote sensing image; DSR; shadow area; CNN; attention mechanism

1. Introduction

Owing to remote sensing technology’s rapid growth, hyperspectral images (HSIs)
containing rich information in the spatial and spectral dimensions [1] have extensive use in
agricultural production [2], urban planning [3], environmental monitoring [4], and so on.
By assigning category labels to each image pixel according to the sample characteristics,
classification has become one of the effective means to extract information from HSIs [5].

Classical classification methods, including support vector machine (SVM) [6], k-nearest
neighbor (K-NN) [7], maximum likelihood estimation (MLE) [8], dimension-reduction-
based methods [9], linear discriminant analysis (LDA) [10], independent component anal-
ysis (ICA) [11], principal component analysis (PCA) [12], etc., have been used for HSI
classification with good properties. However, they either need to reduce the dimensions of
the data or can only obtain shallow features. In recent years, deep learning with a strong
performance in extracting nonlinear features has been successfully applied to hyperspectral
data processing [13]. The principle of deep learning classification is to extract features from
basic to deep without pre-designing features. As an effective feature extraction method
in image processing, convolutions can help obtain a feature map of an image after the
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convolutional operations. By arranging and combining low-level features at a higher level
from the input layer to the output layer of the network, the features of an image are contin-
uously extracted and abstracted, and classification and recognition can be achieved based
on these features ultimately [14]. Typical networks such as the deep belief network (DBN)
[15] and stacked auto-encoder (SAE) [16] can obtain deep features by layered training on
the premise that the input should be converted to a one-dimensional vector. Besides, there
are studies and achievements based on the graph neural network (GNN) designed for and
targeted at irregular data, i.e., social networks and molecular networks [17,18].

Frameworks evolved from convolutional neural networks (CNNs), such as generative
adversarial networks (GANs) [19] and Res-Net [20], can extract features with the consider-
ation of both the spatial and the spectral information [21]. However, many feature maps
within a layer show much pattern similarity, so that these features could be redundant,
which means that, if one model has extracted information from one feature map, it will
only need to extract the difference from its similar ones [22]. Meanwhile, on account of
the single structure of these frameworks, all features are considered of equal importance,
and some critical features influencing the classification effect significantly have not been
made full use of. Therefore, the attention mechanism has emerged and is introduced to
the convolutional neural network to evaluate the importance of the extracted features to
ensure that the essential features are taken seriously enough in the classification [23,24].

However, due to the influence of cloud cover, light, and other environmental fac-
tors, some HSIs contain shadow areas, in which signals are weakened and information
extraction, including classification, is difficult [25]. The HSIs spatial–spectral information
enhancement can bring positive effects to HSIs’ classification [26,27]. The conventional
approaches in the spatial domain and the transform domain for image enhancement [28,29],
such as Retinex [30], histogram correction [31], the low pass filter (LPF) [32], the autore-
gressive moving average (ARMA) filter [33], and so on, mainly focus on removing noise,
which would inevitably result in the loss of some signals and may destroy the correlation
of the data [34]. There are methods based on neural networks for image enhancement [35]
with time-consuming calculations and insufficient samples. Currently, the exploration of
rich information in the shadow of hyperspectral images is still a difficult point in existing
research. Using resonance generated by noise to improve the signal, one-dimensional dy-
namic stochastic resonance (DSR) has been introduced to enhance the signal with noise [25].
However, a two-dimensional spatial image must be converted to a one-dimensional vector
before being processed by 1D DSR, which will inevitably destroy the spatial correlation of
the image.

Therefore, an iterative equation of 2D DSR was derived in this paper, which can protect
the spatial correlation of HSIs by performing matrix SR in the spatial dimension of the
image instead of one-dimensional vector resonance. Furthermore, to fully utilize critical
features that affect the classification result substantially, a 3DCNN embedded with two
efficient channel attention (ECA) modules and one convolutional block attention module
(CBAM) is proposed. By distributing the corresponding weights to the feature maps of
the input, the attention mechanism can help the model make estimates more accurate
without more consumption of the storage and computation of the model. The performance
of the proposed shadow enhancement and classification approach was verified on a real-
world HSI.

In this paper, on the one hand, the derivation of 2D DSR can not only develop the signal
enhancement ability, but also protect the spatial correlation of image signals, laying the
foundation for further information extraction. On the other hand, with two efficient channel
attention modules and one convolutional block attention module, an improved 3DCNN
was designed to fully utilize the key features and increase the classification performance.

The remaining content of this paper is organized as follows: Section 2 introduces the
basic theories of the proposed technique, including the principles of the nonlinear bistable
DSR system, the basic construction of the CNN, the derivation of 2D DSR based on the
pixel neighborhood relationship, and the structure of the CNN with attention modules;
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Section 3 introduces the experimental details and results; Section 4 presents the comparison
and discussion; Section 5 gives the conclusion.

2. Materials and Methods
2.1. Dynamic Stochastic Resonance

In image processing, noise affects the quality of the image and usually needs to be
removed to increase the signal-to-noise ratio (SNR) of the image. However, the valuable
signals in the image, especially the correlation between the signals, might inevitably be
destroyed by the noise reduction when the noise spectrum is close to the signal spectrum.
In some specific nonlinear systems, with stochastic resonance occurring, internal or external
noise can help to enhance weak signals because some noise energy can be transferred into
signal energy, and then, the SNR of the system output can be increased [36,37]. DSR is
a spatial domain analysis method that correlates the bistable system parameters of the
double-well potential with the intensity value of the noisy image.

On the basis of Langevin’s equation of motion, the 1D nonlinear expression of the
overdamped dynamic system can be [38]

dh(t)
dt

= −dH(h)
dh

+ I(t) + µ(t) (1)

where I(t) is the periodic input signal, µ(t) is the intensity distribution of the noise, and t
and h(t) are the time and spatial location of a particle moving in a bistable potential well.
H(h) is the potential function affected by the displacement:

H(h) = −1
2

ah2 +
1
4

bh4 (2)

where a and b are system parameters. Figure 1 plots the situation a = b = 2.
H

(h
)

h0 1 2–1–2

1

2

3

4

Figure 1. Situation of the system with a = b = 2.

Substitute Equation (2) for H(h) in Equation (1), then

dh(t)
dt

= ah(t)− bh3(t) + I(t) + µ(t) (3)

where x± = ±
√

a
b are the two stable points in Equation (3) and ∆H = a2

4b is a barrier of the

system. If the periodic driving force, i.e., the periodic input signal I(t), is absent, the system
remains stable. If a periodic force is imposed on the bistable system, the system’s stability
will be damaged and periodic changes will occur in the potential well. By cooperating with
the periodic driving force, noise can provide energy for the particles to transform in two
stable states. In other words, noise can help the signal obtain higher energy in the stochastic
resonance system.
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2.2. Convolutional Neural Network

With a deep structure including convolutional calculation, the CNN has been exten-
sively applied to text, voice, image, video processing, and pattern recognition [39]. Based
on the matrix-weight-sharing structure, representation learning ability, and shift invariance,
the CNN has become a suitable model for processing HSI data [40]. The main structure of
the CNN, including the input, convolutional, pooling, fully connected (FC), and output
layers, is illustrated in Figure 2.

Input Conv1

...

Conv2Pooling1 Pooling2 FC

...

Output

Figure 2. The main structure of the CNN. Conv1 and Conv2 represent Convolutional Layers 1 and 2.
Pooling1 and Pooling2 stand for Pooling Layers 1 and 2.

The input layer of the CNN can process multidimensional data. In the convolutional
layers, convolutional kernels can extract features from the input data, and the activation
function can make it easier to express complicated features. The convolution operation can
be expressed as [41]

CHl
n = A(

M

∑
m=1

N

∑
n=1

CHl−1
m sl

n + rl
n) (4)

where CHl
n is the n-th characteristic matrix of the l-th layer, A(·) indicates the activation

function, M and N represent the number of neurons in the last and the current layer,
respectively, and sl

n and rl
n are the weight matrix and offset of the corresponding convolu-

tion kernel.
After feature extraction, the output feature maps are transferred to the pooling layer to

select features and filter information. The pooling layer can decrease the dimension of the
feature map by downsampling, which can significantly cut down the number of neurons
and the computational difficulty of the network.

By using the existing higher-order features, the fully connected layer can be combined
with the nonlinear extracted features to gain the output. The feature map can be expanded
into vectors in a fully connected layer by connecting each neuron with all the neurons in
the previous layer.

The logic or softmax activation function is generally used to output classification labels
for image classification. The commonly used softmax function can be expressed as

g(OutFC) = so f tmax(wgOutFC + O f f set) (5)

where w and O f f set are the vectors of the weight and offset and OutFC is the output of the
FC layer.

Currently, the CNN has different convolution kernels according to the dimension of
the input data, including 1-dimensional (1D), 2D, and 3D, which have the same element
calculation process and adopt backpropagation to modify the parameters.

2.3. Two-Dimensional DSR Shadow Enhancement for Hyperspectral Image Classification by CNN
Embedded with Multiple Attention Mechanisms

Because of light, cloud cover, and other environmental factors, there are shadow
regions in some HSIs where signals are weak and information can hardly be analyzed.



Remote Sens. 2023, 15, 1820 5 of 20

Meanwhile, all features extracted by the classification methods based on deep learning
are generally considered equally important, so a few key features that seriously affect the
classification result cannot be effectively made use of. Therefore, an iterative equation of
2D DSR was derived to enhance the signal in shadow areas, and a 3DCNN embedded with
multiple attention mechanisms (MAM-3DCNN) is proposed for HSI classification in this
paper. The proposed approach’s main procedure is shown in Figure 3.

Input HSI

Shadow Area

2D DSR

Enhanced 

Shadow Area

Fusion

MAM-3DCNN

Classification

Non-shadow 

Area

Output

Figure 3. The main procedure of the proposed approach.

2.3.1. Two-Dimensional Dynamic Stochastic Resonance

Classical stochastic resonance theory mainly deals with 1-dimensional vectors, so
2-dimensional and multidimensional data must be converted to 1 dimension before res-
onance processing. To preserve the spatial correlation of HSIs, an iterative equation of
2-dimensional DSR carrying out stochastic matrix resonance in the spatial dimension
was derived.

For the shadow areas in HSIs, there are both a weak signal Î(x, y) and noise µ̂(x, y)
with x and y being the spatial position of the pixel. Denoting f̂ = Î(x, y) + µ̂(x, y) and
according to the 1D DSR in Equation (1), a 2D nonlinear expression of the bistable stochastic
resonance system can be

∂h2(x, y)
∂x∂y

= −θ(
∂h
∂x

+
∂h
∂y

) + âh(x, y)− b̂h3(x, y) + f̂ (x, y) (6)

where h(x, y) is the system output and θ (> 0) is the damping term of the system.
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If the damping term ∂h2(x,y)
∂x∂y is large, the second-order term in Equation (6) can be

ignored [42], and Equation (6) can be rewritten as

0 = −(
∂h
∂x

+
∂h
∂y

) +
â
θ

h(x, y)− b̂
θ

h3(x, y) +
f̂ (x, y)

θ
(7)

By replacing â
θ , b̂

θ , and f̂ (x,y)
θ with a, b, and f (x, y), respectively, Equation (6) can be

simplified as the following overdamped partial differential equation:

∂h(x, y)
∂x

+
∂h(x, y)

∂y
= ah(x, y)− bh3(x, y) + f (x, y) (8)

Based on the characteristic line theory [43], Equation (8) can be equivalent to two
ordinary differential equations: 

dx
1 = dh

ah−bh3+ f
dy
1 = dh

ah−bh3+ f

(9)

where the characteristic line here is dx
1 = 1, i.e., y = x + C with C being a constant.

Therefore, in any small neighborhood, the interpretation of Equation (9) is symmetric about
the diagonal direction [43], and solving the equations can be equivalent to independently
solving the following equations:{

dh
dx = ah − bh3 + f (x)
dh
dy = ah − bh3 + f (y)

(10)

The equivalent difference form of Equation (10) can be expressed as [44]{
hi,j,k = tx[ahi,j−1,k − bh3

i,j−1,k + fi,j−1,k] + hi,j−1,k

hi,j,k = ty[ahi−1,j,k − bh3
i−1,j,k + fi−1,j,k] + hi−1,j,k

(11)

where i, j are the abscissa and ordinate positions in the spatial dimension of the input
shadow data f , k represents the k-th band of the HSI, i.e., fi,j−1,k is the pixel at the (i, j − 1)
spatial position on the k-th band, tx and ty represent the sampling interval in the direction
of abscissa and ordinate, respectively, and hi,j,k is the output of the system at (i, j) on the
k-th band.

Since Equation (11) means nonlinear filtering of the input into horizontal and vertical
directions at the same time, it can be extended to a four-way parallel difference form with
the iterative update:

hi,j,k(n + 1) = tx[ahi,j−1,k(n)− bh3
i,j−1,k(n) + fi,j−1,k] + hi,j−1,k(n)

hi,j−1,k(n + 1) = tx[ahi,j,k(n)− bh3
i,j,k(n) + fi,j,k] + hi,j,k(n)

hi−1,j,k(n + 1) = ty[ahi,j,k(n)− bh3
i,j,k(n) + fi,j,k] + hi,j−1,k(n)

hi,j,k(n + 1) = ty[ahi−1,j,k(n)− bh3
i−1,j,k(n) + fi−1,j,k] + hi−1,j,k(n)

(12)

where n indicates the number of iterations. The iterative process of Equation (12) on the
k-th band of the HSI by 2D DSR is shown in Figure 4. Each pixel’s output combines spatial
information in the upper, lower, left, and right directions, so that the correlation between
the spatial pixels can be maintained.
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h(i-1, j)

h(i, j)h(i,  j-1) h(i, j+1)

h(i+1, j)

x

y

①

②

③ ④

... 0 0

...

0

0

...

...0

h(I, j-1) h(I, j) h(I, j+1)

h(i-1, J)

h(i, J)

h(I, J)

...

...

0

0

h(i+1, J)

...

...

0 0 ... 0

...

0

0

...

2    2

0

0 0

0

...

0 0

0

0



Figure 4. The iterative process of 2D DSR on the k-th band of the HSI. A 2 × 2 window is used to
slide the sampling. The dashed lines of different types represent relevant pixels involved in updating
the enhancement value of a pixel through Equation (11). The ¬,. . . , ¯ correspond to the relationship
between the pixels in the first to fourth sub-formulas in Equation (12). I × J represents the size of the
data in each band of the HSI.

2.3.2. Three-Dimensional Convolutional Neural Network with Multiple Attention
Mechanisms

To exert the potential value of critical features that significantly impact the classifi-
cation results, multiple attention modules were embedded into a 3DCNN. On the one
hand, as a local cross-channel interaction strategy without dimension reduction, ECA can
significantly improve network performance and avoid the adverse effect of compression
and dimensionality reduction on the dependence between learning channels [45]. On the
other hand, as a lightweight general module, a CBAM can be integrated into any CNN
by adding a channel attention (CA) mechanism and a spatial attention (SA) mechanism
to emphasize the channel and spatial characteristics [46]. In addition, HSIs have spectral
data in hundreds of dimensions, resulting in complex channel states in the network, so
double ECAs were inserted in the CNN and proven to be more effective in learning chan-
nel attention than one ECA through experiments. The main structure of the proposed
MAM-3DCNN for HSI classification is illustrated in Figure 5.
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8  3DConv

3×3×3

GAP

1DConv 

GAP

1DConv 

CA

SA

256   FC1

128   FC2

Classifier

Prediction

Input

ECA

ECA

CBAM

M
A

M
 M

o
d

u
le

Figure 5. The main structure of the proposed MAM-3DCNN. The size of the convolutional kernel is
3 × 3 × 3, and the 8 3DConv means 3D convolution with 8 convolutional kernels. GAP is the global
average pooling. ⊗ denotes the positionwise dot product. The 256 FC1 is the 1st fully connected
layer with 256 neurons.

Based on the aggregated features obtained by the global average pooling, ECA can
generate channel weights by a fast 1D convolution, and the specific structure is illustrated
in Figure 6.

H

W

C

...

...

H

W

C

1   1   C

GAP Sigmoid

p

  1   1   C 

Figure 6. The specific structure of ECA. The input feature maps’ height and width are represented
by H and W, and C is the number of channels. p represents the required adjacent channels to obtain
the cross-channel interaction information of each channel and can be adaptively determined via a
mapping of C. Sigmoid is the activation function.

The convolutional block attention module is composed of spatial attention and channel
attention in series, as shown in Figure 7. In the CA of the CBAM shown in Figure 8, the
global average pooling (GAP) and global maximum pooling (GMP) are firstly used to
aggregate the spatial information of the input feature map, then the number of channels is
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compressed to C/r, with r being the compression ratio to reduce the parameter overhead,
and the channel feature vectors can be obtained by elementwise summation finally. As a
supplement to the channel attention, in the SA, the average pooling and maximum pooling
are performed and an effective feature descriptor is generated by connecting the results,
then a standard convolutional layer connection and convolution are combined to generate
a 2D spatial attention map.

Channel 

Attention
    Spatial

  Attention

C

W

H

C

W

H

Figure 7. The basic structure of the CBAM. The channel attention module assesses the importance of
each channel and gives the input channels the corresponding weights, and the spatial attention offers
different attention to pixels in each channel according to the significance.

Input 

FC5

FC3

GMP

GAP

FC6

FC4

1×1×C 1×1×C1×1×C/r

1×1×C 1×1×C1×1×C/r

Mean

Max

Concat 3DConv 

Output

H×W×C H×W×C H×W×C

H×W×1

H×W×1

H×W×2 H×W×1

CA SA

Figure 8. The detailed structure of the CA and SA in the CBAM. The H × W × C represents the data
with the H height, W width, and C channels. r is the compression ratio. ⊕ denotes elementwise
summation. Mean and Max represent the average pooling and maximum pooling. Concat means
feature fusion.

2.3.3. The Procedure of the Proposed MAM-3DCNN

In actual HSIs’ processing, the HSIs with shadows are three-dimensional data with a
length (L), width (W), and height (H), and this can be represented as MH×W×L, where L
represents the number of bands in the spectral dimension. The 2D data in each band can be
defined as χ = [X1, X2, . . . , XL], and the pixel at (p,q) in the b-th band is Xb

p,q. Therefore,
the specific steps can be carried out in detail:

Step 1: Firstly, a shadow mask needs to be set to extract the shadow area χsd =
[X1

sd, X2
sd, . . . , XL

sd] in the HSI.
Step 2: For the extracted data, 2D DSR in Equation (12) can be applied to each band of

the data Xb
sd to enhance each pixel Xb

sd(p,q) by making use of the spatial information in the
neighborhood, and then, the enhanced shadow data χsd−ed can be obtained.

Step 3: By fusing the enhanced shadow data with non-shadow data, the 2D DSR-
enhanced HSI χenhanced can be acquired.

Step 4: To reduce the impact of unrelated information and computing costs, the
most-important 10 components are extracted by principal component analysis (PCA) be-
fore classification.

Step 5: Finally, the dimensionality reduced data are divided according to the window
size as the constructed classification network’s input to obtain the final result.
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3. Experiment

To assess the performance of the proposed approach, a real-world HSI dataset was
used and the experiments were carried out in the Ubuntu 16.04 operating system on an
NIVIDIA GTX2080Ti with 11GB memory. The programs and models were built on Keras.

3.1. Dataset

The real-world Hyperspectral Digital Imagery Collection Experiment (HYDICE) data
with a shadow area were adopted in this paper. With a 0.75 m spatial resolution and a
10nm spectral resolution, it consists of 316 rows, 216 columns, and 148 spectral bands from
435 to 2326 nm. Figure 9 lists the original HYDICE image and the ground truth. The labels
and the number of samples are presented in Table 1. In the classification experiments, the
HYDICE data were randomly divided into training and test subsets without overlap, with
the test subset accounting for 80%.

(a) (b)

Figure 9. The original HYDICE and ground truth. (a) HYDICE. (b) Ground truth.

Table 1. Information of the ground truth. The labels, sample number, and represented colors for each
category in the ground truth are displayed.

Number Color Sample Label
1 33,184 Grass
2 10,850 Tree
3 3376 Road
4 1686 Road in shadow
5 323 Grass in shadow
6 537 Target 1
7 514 Target 2
8 4135 Target 3

To compare the classification results quantitatively, as commonly used evaluation
indices for HSIs, the overall accuracy (OA), average accuracy (AA), and Kappa coefficients
were introduced to the experiments [47]. The OA can be defined as

OA =

U

∑
u

Ru,v

G
× 100% (13)

where U indicates the number of labels, R with the size of U × U is the confusion matrix,
Ru,v represents samples belonging to label u, but misclassified into label v, and G is the
number of the tested samples.
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Correspondingly, the AA and Kappa coefficients can be expressed as below:

AA =
1
U

U

∑
u

Ru,u
U

∑
v

Ru,v

× 100% (14)

Kappa =

G
U

∑
u

Ru,v −
U

∑
u

U

∑
v
(Ru,v × Rv,u)

G2 −
U

∑
u

U

∑
v
(Ru,v × Rv,u)

× 100% (15)

Besides, the classification accuracy of each category was calculated by the recall value,
which indicates the correctly predicted positive samples and is calculated as:

Recall =
Ru,u

U

∑
v

Ru,v

(16)

3.2. Parameter Setting
3.2.1. Setup of 2D DSR Parameters

The setting of the parameters in DSR directly affects the depth of the potential well,
the barrier and the vibration state of the system, etc. However, there is no straightforward
algorithm to determine the parameter values of a specific given resonance system, and
in practice, the values are determined numerically by fitting various applications. The
number of parameters to be set in 2D DSR increases from 2 in 1D DSR to 5, which are a, b,
tx, ty, and n in Equation (12).

Since the purpose of DSR enhancement in this paper was to improve the classification
accuracy of ground targets in shadow areas, the OA was used to measure the rationality of
the parameter settings. With a, b, tx, and ty from 0 to 5 and n from 1 to 10, the enhanced
image can be acquired by fusing the shadow area processed by 2D DSR with the non-
shadow area and then classified by the 3DCNN. According to the above principle, the
appropriate parameter for the HYDICE image in Figure 9 can be set as tx = ty = a = b = 0.01
and n = 5. The OA values under different n are shown in Figure 10.

Figure 10. OA values under different n. The best result is obtained when n = 5.

3.2.2. Parameter Setting of MAM-3DCNN

In the experiments, to obtain a stable network performance, the internal parameters
of the MAM-3DCNN in Figures 5–8 were set as shown in Table 2, and the configuration
of the network operation is displayed in Table 3. Moreover, through network debugging,
setting the parameters p in Figure 6 to 3 and r in Figure 8 to 1 was suitable for the HYDICE
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HSI. The OA, AA, and Kappa values under different parameter settings of r are shown in
Figure 11.

Figure 11. Comparison of classification accuracy under different rs. The best result of the OA, AA,
and Kappa can be obtained when r = 1.

Table 2. Internal parameter setting of the MAM-3DCNN.

Layer Kernel Kernel
Size Activation Dropout

3DConv 8 3 × 3 × 3 Relu -

MAM

ECA1 1DConv 1 p = 3 Sigmoid -
ECA2 1DConv 1 p = 3 Sigmoid -

CBAM

FC3/FC5
(3DConv) 8 1 × 1 × 1 Relu -

FC4/FC6
(3DConv) 8 1 × 1 × 1 - -

3DConv 1 3 × 3 × 3 Sigmoid -

FC1 256 - Relu 0.6
FC2 128 - Relu 0.5

Table 3. Configuration of the network operation.

Name Setting

Window size 11
Test ratio 0.8

Learning rate 0.001
Optimizer Adam

Epoch 100
Loss function Categorical cross-entropy

3.3. Experimental Results
3.3.1. Shadow Enhancement by 2D DSR

Theoretically, the expansion of DSR from 1D to 2D can maintain the spatial correlation
of the HSI data, so the effect of shadow enhancement by 1D DSR [25] and 2D DSR was
focused on in this paper. Firstly, the HYDICE data were normalized to meet the small
parameter requirements of DSR. Secondly, a shadow mask constructed from the ground
truth in Figure 8b was applied to acquire the shadow data in HYDICE. Then, each band of
the extracted image can be processed by 2D DSR in Equation (12). Finally, the HSI with
an enhanced shadow area could be attained by fusing the enhanced shadow area with
the original image. The results of HYDICE enhanced by 1D and 2D DSR are shown in
Figure 12, and the classification accuracy of 3DCNN is illustrated in Table 4.
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(a) (b) (c)

Figure 12. The 1ST band of HYDICE enhanced by 1D and 2D DSR. (a) Original HYDICE; (b) 1D DSR;
(c) 2D DSR.

Table 4. Classification accuracy of different data by the 3DCNN.

Data Original Enhanced by
1D DSR

Enhanced by
2D DSR

OA 96.5388 97.0277 97.3508
AA 89.8357 89.8990 91.0473

Kappa 94.0936 94.7531 95.4368

Compared to the original HYDICE in Figure 12a, 1D DSR can help promote the
information expression of the HSI and the ground objects were clearer than before visually.
However, the image of the 2D-DSR-enhanced data in the first dimension had lighter
brightness, which reduced the impact of the shadow to a greater extent. The effect can
be verified as well in the information extraction experiment by the 3DCNN. As shown
in Table 4, compared with the classification results of the original data and the 1D-DSR-
enhanced data, the application of 2D DSR increased the OA by 0.812% and 0.3231%, the
AA by 1.2116% and 1.1483%, and Kappa by 1.3432% and 0.6837%. The application of 1D
DSR had a positive effect in improving the information expression, and the classification
accuracy can be promoted. Whether in the evaluation of the OA, AA, or Kappa coefficient,
the information extraction effect for 2D-DSR-enhanced data was better, which proved the
superiority of 2D DSR in spatial information utilization and had great performance in HSI
shadow enhancement.

3.3.2. Classification Results

To concentrate on the improvement of the classification methods based on the CNN,
the 2D and 3DCNN combined with different attention mechanisms often used for the
CNN, for instance the squeeze-and-excitation module (SE) [48], global attention block
(GAB) [49], dual attention (DA) [50], double ECA (DECA), and CBAM, were compared,
and the classification results of the considered methods are listed in Table 5 and Figure 13.
Compared with the other methods, the OA and Kappa values achieved the best effect,
increasing the OA value by 1.2441%, 1.2369%, 0.9498%, 0.319%, 0.2223%, 0.3358%, 0.4234%,
0.1952%, 0.1677%, 0.1364% and Kappa value by 2.1509%, 2.1274%, 1.1969%, 0.5421%,
0.3838%, 0.2307%, 0.5743%, 0.7304%, 0.4032%, 0.4009%, and 0.2139%, and the AA value of
the proposed technique was 90.9980%, only next to that of the 3DCNN. By observing the
recall of the compared methods, the proposed method had a better effect for most labels’
classification, especially for Target 1, Target 2, and Target 3, the recall values being 0.88%,
4.43%, and 2.86% higher than the 3DCNN.
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Table 5. Classification accuracy of the considered methods. The 2DCNN and 3DCNN with different
attention modules are included.

Method 2D
CNN

GAB-
2DCNN

MAM-
2DCNN

3D
CNN

GAB-
3DCNN

CBAM-
3DCNN

SE-
3DCNN

DA-
3DCNN

ECA-
3DCNN

DECA-
3DCNN

ECA-
CBAM-
3DCNN

MAM-
3DCNN

Grass 0.9900 0.9900 0.9900 0.9900 0.9900 0.9900 0.9900 0.9900 0.9900 0.9900 0.9900 0.9900
Tree 0.9725 0.9700 0.9750 0.9820 0.9840 0.9860 0.9820 0.9800 0.9860 0.9860 0.9855 0.9869
Road 0.9550 0.9600 0.9645 0.9700 0.9740 0.9720 0.9740 0.9680 0.9680 0.9690 0.9695 0.9700

Road in
shadow

0.7925 0.8260 0.8320 0.8820 0.8420 0.8620 0.8560 0.8560 0.8520 0.8520 0.8430 0.8538

Grass in
shadow

0.8975 0.8960 0.9020 0.9440 0.9220 0.9180 0.9240 0.9160 0.9280 0.9120 0.9120 0.9138

Target
1 0.8425 0.8760 0.8946 0.8920 0.8760 0.8940 0.8840 0.8720 0.8840 0.8856 0.8860 0.9008

Target
2 0.6625 0.6920 0.7220 0.7180 0.6260 0.7060 0.6340 0.6020 0.6420 0.6650 0.7130 0.7623

Target
3 0.8775 0.8520 0.8600 0.9060 0.9320 0.9320 0.9200 0.9180 0.9260 0.9200 0.9230 0.9346

OA
(%) 96.4257 96.4329 96.7200 97.3508 97.4475 97.5317 97.3340 97.2464 97.4746 97.5021 97.5334 97.6698

AA
(%) 87.2958 88.3053 88.5750 91.0473 89.3490 90.7666 89.6266 88.7892 89.8707 89.8806 90.1023 90.9980

Kappa
(%) 93.8280 93.8515 94.4820 95.4368 95.5951 95.7482 95.4046 95.2485 95.5757 95.5780 95.7650 95.9789

According to the values of the evaluation indices in Table 5, it can be known that
the classification accuracy of 2DCNN-based methods was not as good as that of 3DCNN-
based methods. Similar inferences can be drawn from the classification results in Figure 13,
especially for the “Road in shadow” pixels. In Figure 13a, some pixels belonging to “Road in
shadow” were misclassified into “Tree in shadow” in orange color, because the 2DCNN can
only use the spatial information of images, but not the spectral information of HSIs, which
plays a vital role in identifying target categories. With the introduction of the attention
mechanisms to the 2DCNN, more pixels of “Road in shadow” in Figure 13b,c were correctly
classified than in Figure 13a. The 3DCNN can fully utilize the three-dimensional tensor
properties of HSIs, which include both spatial and spectral information, so its classification
performance Figure 13d is superior to the 2DCNN. Compared with the results in Figure 13
from (d) to (l), for pixels in the lower-right corner, the classification of the 3DCNN was still
rough, which indicated the effectiveness of the attention modules. Moreover, due to the
single channel attention concentration, the OA values of the GAB-3DCNN, SE-3DCNN,
and ECA-3DCNN were lower than 97.50%, and the CBAM combining both channel and
spatial attention can better help improve the classification than the former modules. In
addition, hundreds of dimensions of spectral data in HSIs lead to complex channel states
in the network, so double ECAs, as in Figure 13j, can be more effective at learning channel
attention than one ECA, as in Figure 13i, especially when they are combined with the
CBAM, as in Figure 13l; the effect is significant.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 13. Classification results: (a) 2DCNN; (b) GAB-2DCNN; (c) MAM-2DCNN; (d) 3DCNN;
(e) GAB-3DCNN; (f) CBAM-3DCNN; (g) SE-3DCNN; (h) DA-3DCNN; (i) ECA-3DCNN; (j) DECA-
3DCNN; (k) ECA-CBAM-3DCNN; (l) MAM-3DCNN.
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4. Discussion
4.1. Analysis of 2D DSR Effect on Shadow Enhancement

As shown in Figure 14, the spectral curves of road and grass in the shadow area
before and after 2D DSR enhancement are plotted, respectively. It can be observed that the
enhancement effect was obvious; specifically, the spectral curve of enhanced grass showed
a similar trend for non-shadow grass in Figure 14b.

(a) (b)

Figure 14. Comparison of spectral curves. Solid, dashed, and dotted lines represent the spectral
curves of road and grass not in the shadow area, in the shadow areas, and after enhancement,
respectively. (a) Spectral curves of road. (b) Spectral curves of grass.

Compared with the original HYDICE image in Figure 12a, 2D DSR can significantly
enhance the shadow area, especially in the 1∼40 bands with Figure 14 observed at the
same time, while 1D DSR had a relatively weak enhancement effect. Table 4 shows that the
application of DSR can effectively promote the classification performance by improving
the ability of image feature expression. The proposed 2D DSR improved the OA, AA,
and Kappa values by 0.8120%, 1.2116%, and 1.3432%, respectively, which were 0.3231%,
1.1483%, and 0.6837% higher than the classification accuracy of 1D DSR, indicating the
positive impact of 2D DSR on information mining.

4.2. The Classification Performance Discussion of Considered Measures

As shown in Table 5, benefiting from large samples, all considered methods had a good
performance on grass classification. Compared to the 2DCNN and 3DCNN, the attention
mechanism had a particular effect of improving the network’s performance. Because the
3DCNN can make full use of the 3D data characteristics of HSIs, the classification effect of
the method based on the 3DCNN was better than that based on the 2DCNN. Although the
GAB-3DCNN, 3DCNN, and ECA-3DCNN performed better on road, road in shadow, and
grass in shadow than the other methods, with an overview of all labels, the classification
effect of the MAM-3DCNN was prominent. In addition, the MAM module improved
the OA and Kappa values of the 3DCNN by 0.3190% and 0.5421%. According to the
classification accuracy of the different methods shown in Figure 15, the proposed method
performed better than the other considered methods under the evaluation of the OA, AA,
and Kappa, among which the AA values were the lowest. Only the AA values of the
3DCNN and MAM-3DCNN were close, but the difference between the AA value of the
MAM-3DCNN and the best AA value was only 0.0493%.

Furthermore, according to the classification accuracy shown in Table 5, ECA had a
certain effect on extracting the channel attention by increasing the influence of the feature
map with a large effect, with the OA and Kappa values improving by 0.1238% and 0.1389%.
With the channel and spatial attention combined, the CBAM also had a good function in
improving the OA and Kappa values of the 3DCNN by 0.1809% and 0.3114%. The MAM-
3DCNN combines the advantages of both the ECA and CBAM attention mechanisms,
which can enlarge the impact of key feature maps to a greater extent through dual-channel
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attention and spatial attention. The pixels of most categories can be classified by the
MAM-3DCNN more accurately than the other considered methods, especially for the
small samples Targets 1, 2, and 3, whose OA values improved by 0.88%, 4.43%, and
2.86%, respectively.

Figure 15. The values of the OA, AA, and Kappa of the considered methods.

It can be observed in Figure 13 that most of the considered methods were not good
at the classification of road in shadow in the lower left, but the error classification rate of
the MAM-3DCNN was lower than the other methods. From Table 5 and Figure 13, the
3DCNN embedded ECA, specially the MAM-3DCNN, can effectively classify labels with
few samples, such as grass in shadow, Target 1, and Target 2. Except for the MAM-3DCNN,
other methods based on the 3DCNN misclassified some of the leftmost pixels belonging to
the tree as grass, as shown in Figure 13e–i. Therefore, the proposed MAM-3DCNN method
can help to improve the classification accuracy for enhanced HSIs.

The comparison with the methods based on the GNN [51] and GAN [21] is shown
in Table 6. Owing to the function of 2D DSR shadow enhancement, the OA values of the
3D-GAN, MARP-GNN, and MAM-3DCNN improved by 0.8%, 0.94%, and 0.84%. It can be
seen that the MAM-3DCNN performed better than the methods in Table 6 because the GNN
is designed for irregular data processing and the GAN takes advantage of overcoming the
difficulty of insufficient samples. In this paper, the HYDICE data were compatible with the
multi-attention combined CNN classification.

Table 6. Classification of the original and 2D-DSR-enhanced HYDICE by methods based on the GNN
and GAN.

Evaluation 3D-GAN MARP-GNN MAM-3DCNN
HYDICE 2D DSR HYDICE 2D DSR HYDICE 2D DSR

OA (%) 96.22 97.02 96.44 97.38 96.83 97.67
AA (%) 87.33 90.13 88.50 90.35 89.61 91.00

Kappa (%) 93.49 94.36 94.55 95.13 94.52 95.98

Owing to the function of 2D DSR shadow enhancement, the results showed that the
OA was improved by 0.8%, 0.94%, and 0.84% under the classification of the 3D-GAN,
MARP-GNN, and MAM-3DCNN, respectively, which indicated that the more spatial
information utilized by the 2D DSR proposed in this paper had a certain effect on the HSI
information improvement and the classification accuracy can be promoted. Compared to
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the results of the methods based on the GAN and GNN, the MAM-3DCNN had better
performance as well. The design of the GNN makes it better at irregular data processing,
and the GAN has more advantage by overcoming the difficulty of insufficient samples. In
this paper, the adopted data had better compatibility with the multi-attention combined
CNN feature extraction.

For the 2DCNN, spectral information from HSIs is not considered, which is crucial for
target classification, although attention mechanisms can improve its classification accuracy
to some extent. Due to the ability of using both the spectral and spectral dimensional char-
acteristics of the HSI data, the 3DCNN is suitable for processing HSIs. The incorporation of
the attention mechanism, especially the embedding of double ECAs and CBAM, further
improved the classification performance of the 3DCNN.

5. Conclusions

Due to complex environmental factors, there are shadow areas in some HSIs, which
negatively affect the HSIs’ classification. Meanwhile, features extracted from most clas-
sification networks have much redundancy. Therefore, a shadow enhancement method
based on 2D DSR and a classification model combining a CNN with multiple attention
mechanisms for HSIs were proposed in this paper. Firstly, to maintain the spatial correlation
of HSIs, an iterative equation of 2D DSR was derived. Next, the weak signal in the shadow
area can be increased by 2D DSR, and enhanced HSIs can be obtained. Then, a 3DCNN
embedded with two ECA modules and one CBAM was designed to utilize the key features
significantly affecting the classification accuracy. Finally, a real-world HSI was used to
estimate the performance of the proposed technique. The numerical results showed that
2D DSR outperformed 1D DSR in shadow enhancement of HSIs and the MAM-3DCNN
had more competitive classification ability than other considered methods. By applying 2D
DSR, the signals and the image quality in the shadow area can be improved. In addition,
the HSI classification performance was upgraded by introducing multiple channel and
spatial attention modules to the 3DCNN. Therefore, the proposed technique has potential
prospects in the shadow information exploration of HSIs.

Although 2D DSR is convenient for processing the image matrix, the 3D tensor charac-
teristic of HSIs was not taken into account. Therefore, these results encourage us to further
expand DSR to 3D to protect the 3D data features of HSIs.
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