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Abstract: Climate change has increased agricultural drought risk in arid/semi-arid regions globally.
One of the common adaptation strategies is shifting to more drought-tolerant crops or switching
back to grassland permanently. In many drought-prone areas, groundwater dynamics play a critical
role in agricultural production and drought management. This study aims to help understand how
groundwater level decline affects the propensity of cropland switching back to grassland. Taking
Union County of New Mexico (US) as a case study, field-scale groundwater level projections and high-
resolution remote sensing data on crop choices are integrated to explore the impact of groundwater
level decline in a regression analysis framework. The results show that cropland has been slowly
but permanently switching back to grassland as the groundwater level in the Ogallala Aquifer
continues to decline in the area. Specifically, for a one-standard-deviation decline in groundwater
level (36.95 feet or 11.26 m), the average likelihood of switching back to grassland increases by 1.85%
(the 95% confidence interval is [0.07%, 3.58%]). The findings account for the fact that farmers usually
explore other options (such as more drought-tolerant crops, land idling, and rotation) before switching
back to grassland permanently. The paper concludes by exploring relevant policy implications for
land (soil) and water conservation in the long run.

Keywords: agricultural drought; groundwater; Ogallala Aquifer; irrigation; crop production; grass-
land; climate change; remote sensing data

1. Introduction

Groundwater decline has become a growing environmental and economic challenge
in the western United States (US) and many places of the world. In arid and semi-arid
regions, climate change-induced precipitation variabilities affect the productivity of sta-
ple food crops by disturbing the match between crop growth stages and soil moisture
dynamics [1]. At the same time, increasing precipitation variability does have a positive
effect on improving groundwater recharge in arid/semi-arid areas assuming that there is
no significant change in mean precipitation level [2]. In the case of irrigated agriculture,
the two effects could mingle into a complicated situation. Crop production in arid and
semi-arid regions commonly relies on groundwater irrigation. With more frequent and
persistent drought conditions, irrigation water withdrawal often exceeds the recharging
of groundwater aquifers [3]. For instance, groundwater overdraft is a critical factor of
drought vulnerability in India [4]. In the US, groundwater conservation and aquifer sustain-
ability efforts that range from national policies to local cooperatives have been proposed,
but their implementations can be difficult [5,6]. There are at least two reasons behind
the difficulty. First, outdated institutional arrangements and the regulatory environment
cause inefficient uses of already scarce water resources, which is particularly true in many
parts of the western United States [7]. Second, it is challenging to strike a sustainable
balance between regional economic development and environmental conservation in rural
regions. Commercial agricultural production (including livestock) often takes priority
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over water resource allocation because of the significant employment and income benefits
it generates [8]. Outside commercial agricultural production hotspots, it becomes even
more challenging to strike a balance between local economic development needs and water
resource conservation because of the lack of diversified economic opportunities.

From a farmer’s perspective, mitigation and adaptation options are limited when
faced with expected groundwater decline. It is a typical “better to be lucky than rich”
situation. If a crop field sits on top of a deep aquifer pocket or is downstream of an aquifer,
its groundwater supply tends to be more stable than other spatially disadvantaged crop
fields. In a typical irrigated region, there are almost surely more “unlucky” farmers in
terms of water resources endowment. Relatively speaking, adaptation strategies are more
accessible to them than mitigation strategies. For instance, mitigation efforts often face
an “access-to-capital” problem [9]. A common adaptation strategy to drought stress and
irrigation water shortage is to switch to more drought-resistant crops or farming practices.
For example, sorghum production has a great yield potential which may allow it to replace
corn production in the western portion of the US corn belt as groundwater aquifers continue
to decline [10]. In worse cases where land is marginal or land sits on top of the portion
of an aquifer with a small saturated thickness, retiring the land from crop production
may be the best option. These retirements are different from the incentivized voluntary
land retirements proposed under federal conservation programs such as the USDA’s
Conservation Reserve Program (CRP). Withdrawing from crop production allows land to
return to grassland/pasture status, which can still generate considerable economic benefits
alongside other environmental benefits if managed properly. Although such practices
have been observed often in practice, the literature has little understanding regarding their
link to groundwater dynamics. Meanwhile, quantifying the impact of groundwater level
decline on the propensity of switching from crop production back to grassland carries
important implications for designing land and water conservation policies. This study aims
to fill this knowledge gap using a case study from the Southern High Plains in the US (see
Figure 1).

Figure 1. The High Plains (Ogallala) Aquifer and irrigated crop fields in Union County, New Mexico.
Data Source: US Geological Survey, US Census, and Google Maps. Note: (1) A total of 472 circular
irrigated fields are illustrated on the map. (2) The aquifer map was published in 2010 by the US
Geological Survey (see https://pubs.usgs.gov/ds/543/ (accessed on 19 March 2023)).

https://pubs.usgs.gov/ds/543/
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In the literature, there has been some general understanding of how cropping systems
adapt to agricultural droughts. For example, Arellano-Gonzalez and Moore showed
that having access to drought-mitigating resources increases the propensity of switching
from lower-value annual crops to high-value perennial tree nut crops [11]. Similarly,
Gebremichael et al. found that, as a response to multi-year droughts in recent decades, the
cropping pattern in California’s Central Valley shifted from alfalfa, cereals, and cotton to
tree crops such as nuts and fruits [12]. Specific to the High Plains, Deines et al. predicted
that around a quarter of irrigated farmland will disappear by 2100 in the Ogallala Aquifer
area [13]. Among this land, a substantial amount of retired irrigated cropland is not
suitable for dryland cropping. Thus, switching back to grassland will become a realistic
option. By looking at specific commercial crops, Cotterman et al., showed that the expected
groundwater level decline in the Central High Plains could lead to an over 50% reduction in
corn and wheat acreage by the end of the century [14]. The same study argues that shifting
to dryland farming will become a major ‘forced’ adaptation strategy for areas without
access to surface irrigation water.

Meanwhile, there are associated environmental impacts when switching cropping
systems, no matter if it is from irrigated crops to dryland crops or from annual crops to
perennial crops. These environmental impacts can then influence land (soil) and water
conservation policies and efforts. For example, switching from irrigated cropland to
dryland farming tends to elevate soil erosion and dust risks if there is no proper land cover
management, such as the use of cover crops. There were historical lessons on these issues
from the early 20th century in the US and South Africa [15]. Another important aspect
concerns groundwater conservation, aquifer sustainability, and managed aquifer recharge
(MAR). Compared to soil conservation, groundwater conservation is more challenging.
At the very least, it is more costly, especially in regions such as the High Plains where
surface water resources and precipitation are limited. Despite this, recent studies have
shown that groundwater conservation strategies such as reduced pumping and MAR do
pay off in the long term (e.g., [16,17]). What is missing in the literature is knowledge about
the linkage between groundwater conservation and soil (land) conservation, especially
studies presented in the form of an aquifer- or region-based empirical study. This body
of knowledge entails parameters and processes essential for tasks such as integrated
ecosystem-wide assessment and regional conservation policy framework design.

In this study, I specifically look into how cropland in historically irrigated areas
switches back to grassland in response to groundwater level decline. The analysis employs
over ten years of high-resolution (satellite) remotely sensed data to capture sub-field level
variations. This allows us to conduct crop-specific comparisons with grassland in terms of
response to expected groundwater level decline. Overall, I show that commercial crops
such as corn and winter wheat are more responsive to groundwater level changes, but only
because they are reversible land allocation choices. The likelihood of switching back to
grassland, given the same level of expected decline in groundwater resources, is smaller.
However, it is necessary to emphasize that switching back to grassland is a permanent
cropland use decision that is irreversible in the near-to-medium term. Hence, it carries
important implications for conservation policy design and rural economic livelihood.
Empirically, the estimated marginal effects that measure the responses to groundwater
level decline can be used for future integrated ecosystem-wide assessment and regional
conservation policy cost-benefit analysis.

With the goal of quantifying the impact of groundwater level decline on the likelihood of
switching back to grassland, the remaining paper is organized as follows. Section 2 discusses
the data employed in the analysis and the empirical methodology. Section 3 reports estimation
results and findings. Section 4 explores their policy implications. Section 5 concludes.
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2. Materials and Methods
2.1. Study Area and Data

The study area of this research is Union County, New Mexico, USA (latitudes 35.74
to 37.00 and longitudes −103.00 to −104.00, approximately; see Figures 1 and A1 in
Appendix A for its relative location in the broader geographic region encompassing the
Southern High Plains). I chose this area because of the growing challenges faced by irrigated
agriculture there and data availability and quality (with engaging local stakeholders who
helped validate some of the data). Additionally, Union County sits on the western edge of
the Ogallala Aquifer (see Figure 1), which makes it an interesting area to study the impact
of groundwater level decline.

The data employed for analysis come from different sources, including existing public
data provided by federal agencies and novel new data collected as part of the current study.
First, I derived sub-field level annual cropland cover data from the Crop Data Layer (CDL)
data developed by the National Agricultural Statistics Service (NASS), USDA. The CDL
data consist of geo-referenced raster files classified from high-resolution remotely sensed
satellite imageries generated by the Landsat 8 OLI/TIRS sensor, the Disaster Monitoring
Constellation DEIMOS-1 and UK2, the ISRO ResourceSat-2 LISS-3, and the ESA SENTINEL-
2 sensors. These data will be used to compute the dependent variable (proportion of crop)
for empirical analysis (details discussed in Section 2.2). Based on the region’s crop produc-
tion history, I simplified the original CDL land cover classifications into fewer categories,
including corn, winter wheat, sorghum, hay, other crops, and grassland (including man-
aged pasture). The current study focuses on corn, winter wheat, sorghum, and grassland.
They together account for over 96% of the (field + year) observations. The study period is
from 2008 to 2019. CDL data were not available for New Mexico before 2008. I excluded
the data from 2020 and 2021, which are available, to avoid any irregularities in cropland
use decisions and data reporting caused by the COVID-19 pandemic. For instance, there
was significant underreporting of USGS groundwater level monitoring data during the
pandemic in the region.

To compute the dependent (outcome) variable and independent (explanatory) vari-
ables for empirical analysis, it is critical to determine the location and boundary of all the
irrigated crop fields in the study area. I proceed with the following steps:

• Field Identification: Based on 2022 Google Maps imagery data, I identified 472 unique
irrigated crop fields in Union County and the center of their X–Y geographic coordi-
nates. For the few unclear ones, I validated them with local stakeholders. Figure A2 in
Appendix A illustrates the circular irrigated fields in the central–eastern and south-
eastern parts of the county where most of the irrigation happens.

• Radius Determination: I measured the radius of each circular field using the ‘Measure
Distance’ tool in Google Maps. The standard circular irrigated field has a radius of
around 400 m (see Figure 2). The radius of all circular irrigated fields ranges from
120 m to 830 m, and over 70% have a standard 400 m radius.

• Buffering: To compute the proportions of each crop and grassland inside a field, I
buffered the field center by 90% of its radius and then counted the shares of different
pixels within the buffered circle (e.g., if the field radius is 400 m, then the buffered
area has a radius of 360 m). This is to reduce potential measurement errors near
field boundaries.
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Figure 2. A standard 400 m radius irrigated field (field #2) in its transition into grassland (left panel)
compared to the remotely sensed Crop Data Layer (right panel, 2019 data) of the same location. Data
Source: NASS, USDA; Google Maps. Note: The remote sensing data in the right panel indicate that
corn (in dark green) was grown in fields #1, #3, and #4 in 2019. Later, in 2021 (corresponding to the
time of the left panel Google Maps imagery), field #3 was in idle status and fields #1 and #4 still
had corn.

I obtained groundwater depth (land surface to the water table) data from the national
groundwater levels monitoring database (https://waterdata.usgs.gov/nm/nwis/gw (ac-
cessed on 19 March 2023)) maintained by the USGS. This study uses groundwater level
data from 2007 to 2018 to generate expected groundwater levels for the years 2008–2019
(study period) with an AR (autoregressive) model of degree 1 (AR (1)). The model statis-
tically regresses the current groundwater level value linearly on its previous value and a
stochastic error term. The estimated linear regression model can then be used to take a
given groundwater level observation to predict the next period’s groundwater level. Its key
model assumption is that the groundwater level time series is stationary over time, which
usually holds for slow-changing measures such as groundwater levels. It is convenient
to use for simple prediction needs such as here, and it captures farmers’ short-memory
decision-making behavior well [18]. During the study period, 607 groundwater level ob-
servations were recorded from 111 wells (see Figure A3 in Appendix A). It is clear that
not every irrigated field had its well’s water level recorded. Hence, I used two spatial
interpolation methods to estimate the annual groundwater level for each of the 472 unique
crop fields: simple average and inverse distance weighted average. The range of the spatial
interpolation is 16 km (roughly 10 US miles). That is, for any given year, all well water level
observations within 16 km of a crop field are used to approximate the groundwater level of
that field if there is no direct water level observation from the given crop field.

Additionally, the planned empirical analysis includes local precipitation and temper-
ature as control variables. Following the convention in the literature, I used the average
monthly mean temperature in the growing season (April–October in the study region) and
total growing season precipitation as control variables. Given that the monsoon season
brings most of the annual precipitation and that it matches the growing season in the
region, the growing season’s climatic conditions are the most relevant to control. The raw
monthly climate data series used to compute the two climatic variables comes from the
PRISM data developed by Oregon State University. Lastly, all of the GIS shapefiles used to
define jurisdictional and aquifer boundaries, such as those in Figure 1, come from the US
Census and the US Geological Survey. Table A1 in Appendix A summarizes the source,
collection time, format, and other relevant information of all data used in this study.

https://waterdata.usgs.gov/nm/nwis/gw
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2.2. The Empirical Methodology

Switching back to grassland as a result of exogenous impacts in a given area can
be modeled from either a probabilistic perspective or a proportional perspective. Both
perspectives share the same mathematical characteristic in that the dependent variable
is measured between 0 and 1 (or equivalently, between 0% and 100%). Such a bounded
dependent variable cannot be directly part of a linear regression model. In this study,
I follow the standard approach of transforming it into a log odds model that is rooted
in the classic logistic regression model [18,19]. This study hypothesizes that an expected
groundwater level change affects crop choice and the probability of switching from cropland
back to grassland. For a given field i in year t, let us denote the proportion of grassland as
Pit, which essentially approximates the probability of being grassland using the empirically
observed proportion of grassland. The statistical odds (ratio) of switching back to grassland
are then defined as Pit/(1− Pit). With the logarithm transformation of the odds ratio being
the dependent variable, we can now use a (transformed) linear regression model to examine
the impact of an expected groundwater level change on the probability of switching back
to grassland:

log
[

Pit
1− Pit

]
= β1 ∗ GWLit + β2 ∗ PPTit−1 + β3Tmeanit−1 + δi + µt + εit (1)

In Equation (1), GWLit is the expected groundwater level at field i in year t, as dis-
cussed in Section 2.1. Coefficient β1 is thus the key associated parameter to be estimated.
PPTit and Tmeanit are control variables for climatic variabilities. As the corresponding
subscripts in Equation (1) suggest, here we choose to use one-year-lagged growing season
total precipitation and average monthly mean temperature measures. First and foremost,
the cropland allocation decision is made early in the spring before the monsoon season
starts. Hence, farmers cannot possibly factor the to-be-observed current-year precipitation
and temperature conditions into production decisions. Second, the one-year-lagged cli-
matic measures provide simple and realistic proxies (i.e., heuristics) for precipitation and
temperature conditions in the coming growing season.

The linear regression model proposed in Equation (1) is often termed a two-way (panel
data) fixed-effects model. Because the model simultaneously controls for two different
fixed effects: spatial and temporal. In this case, δi represents time-invariant spatial fixed
effects to implicitly control any spatial heterogeneities unique to each crop field, and
µt represents time-varying temporal fixed effects to absorb any region-wide time trends
affecting cropland use decisions, such as market prices and policy changes. The error term
εit helps capture any random shocks to cropland allocation decisions. It is worth noting
that the proposed framework in Equation (1) only considers crop choices among major
commercial crops observed in the region and the possible switch between cropland and
grassland. It does not cover the possibility of converting agricultural land to other land
uses such as residential development.

Based on crop statistics from the CDL data during the study period and the recent
New Mexico Agricultural Statistics Bulletins [20], the log odds model is estimated for
three major commercial crops (corn (for silage, mainly), winter wheat, and sorghum) and
grassland. The focus of the analysis is on grassland, while results with the three major
commercial crops serve as comparisons. Table 1 summarizes all variables relevant to the
regression analyses of all four choices. Please note that the actual model estimation can
only use 441 crop fields out of 472. The other 31 fields are automatically excluded due to a
lack of variation during the study period (e.g., due to monocropping).



Remote Sens. 2023, 15, 1698 7 of 15

Table 1. Summary statistics and variable definitions.

Variable Definition Mean Std. Dev.

Freq_corn Proportion of corn pixels, in [0, 1] 0.29 0.42
Freq_wheat Proportion of wheat pixels, in [0, 1] 0.50 0.45
Freq_sorghum Proportion of sorghum pixels, in [0, 1] 0.04 0.17
Freq_grass Proportion of grassland/pasture pixels, in [0, 1] 0.13 0.30
PPT 1-year-lagged growing season total precipitation, mm 390.18 129.90

T_mean 1-year-lagged growing season mean monthly
temperature, ◦C 18.99 0.62

GWL_mean Simple average local groundwater level, feet 210.19 36.95
GWL_inv_dist Inverse distance weighted local groundwater level, feet 216.11 40.48
Lodds_corn Log odds of corn proportion, unit free −5.24 10.04
Lodds_wheat Log odds of wheat proportion, unit free −0.01 10.14
Lodds_sorghum Log odds of sorghum proportion, unit free −11.29 5.21
Lodds_grass Log odds of grassland/pasture proportion, unit free −9.09 6.87

# of obs Number of observations in the estimation sample 5292

# of fields Number of irrigated fields in the estimation sample 441

Years Years covered in the study period 12 (2008–2019)

Note: 1. As 441 × 12 = 5292, this suggests that the estimation sample is a balanced panel dataset. 2. Wheat in the
study region (Union County, New Mexico) is mostly winter wheat. 3. The growing season is the seven-month
period from April to October in the study region. 4. For conversion, 1 US foot = 30.48 cm.

2.3. Marginal Impact

Due to the log odds transformation of the dependent variable in Equation (1), the
parameter estimates β1 to β3 cannot be interpreted as marginal effects directly. Taking
the key variable of interest GWLit as an example, β1 is not directly the marginal impact
of groundwater level change on the proportion of grassland, namely β1 6= ∂Pit/∂GWLit.
To get the true marginal effect of GWLit, we need another transformation. Let β̂, δ̂, and µ̂
denote the estimated coefficients and fixed effects, thus allowing the predicted Pit value to
be obtained by the following:

P̂it =
exp

(
β̂1 ∗ GWLit + β̂2 ∗ PPTit−1 + β̂3Tmeanit−1 + δ̂i + µ̂t

)
1 + exp

(
β̂1 ∗ GWLit + β̂2 ∗ PPTit−1 + β̂3Tmeanit−1 + δ̂i + µ̂t

) (2)

Given Equation (2), the true individual marginal effect can be computed as:

∂P̂it
∂GWLit

=
β̂1∗ exp

(
β̂1 ∗ GWLit + β̂2 ∗ PPTit−1 + β̂3Tmeanit−1 + δ̂i + µ̂t

)[
1 + exp

(
β̂1 ∗ GWLit + β̂2 ∗ PPTit−1 + β̂3Tmeanit−1 + δ̂i + µ̂t

)]2 (3)

Empirical computation of the average marginal effect (AME) of GWLit for the study
area (the entire sample) and the associated estimation of its standard error will be discussed
in the following Section 3.

3. Results
3.1. Regression Estimation Results

As discussed above in Section 2, the empirical estimation takes two steps. The first
step estimates the log odds model in Equation (1) to obtain coefficient and fixed-effect
estimates β̂ (and their variance–covariance matrix), δ̂, and µ̂. The second step computes the
true marginal effects and derives their standard errors using the delta method based on
Equation (3). To implement the estimation steps, some data transformations are necessary.
The raw data sample contains observations with dependent variable values of 0 (e.g., no
grassland pixels) or 1 (e.g., all grassland pixels). In such cases, the log odds transformation
does not work in Equation (1). To address this computational issue, I re-coded observations.
The values were set from 0 to 0.000001 and from 1 to 0.999999. The transformations allow
the estimation procedure to proceed without modifying the data in any significant way.
Table 2 presents the estimation results for three major commercial crops and grassland.
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As mentioned before, two different specifications of groundwater level are explored here:
simple average (specification 1) and inverse distance weighted average (specification 2).

Table 2. Estimation results from the (panel data) two-way fixed-effects model.

Cropland Log Odds Model

Specification Variables Corn Wheat Sorghum Grassland

(1)

P—lagged (mm) −0.0026
(0.0032)

0.0093 ***
(0.0032)

−0.0087 ***
(0.0019)

−0.0072 ***
(0.0016)

T—lagged (C) −4.5465 **
(1.8966)

3.9575 **
(1.9249)

−0.6185
(1.1256)

−4.6738 ***
(0.9615)

GWL (foot):
simple average

0.0499 ***
(0.0141)

−0.0680 ***
(0.0143)

0.0428 ***
(0.0083)

0.0316 ***
(0.0071)

R2—within 0.0580 0.0459 0.0819 0.1617
# of observations 5292 5292 5292 5292

Fixed Effects Field + Year

(2)

P—lagged (mm) −0.0024
(0.0032)

0.0091 ***
(0.0032)

−0.0086 ***
(0.0019)

−0.0071 ***
(0.0016)

T—lagged (C) −4.1878 **
(1.8859)

3.5266 *
(1.9139)

−0.2741
(1.1198)

−4.2991 ***
(0.9572)

GWL (foot):
inverse distance

weighted

0.0467 ***
(0.0142)

−0.0679 ***
(0.0144)

0.0375 ***
(0.0085)

0.0189 ***
(0.0072)

R2—within 0.0576 0.0458 0.0806 0.1595
# of observations 5292 5292 5292 5292

Fixed Effects Field + Year

Note: (1) Asterisks (*, **, ***) indicate statistical significance at levels of 10%, 5% and 1%, respectively, unless
otherwise noted. (2) Standard errors are reported in the parentheses. (3) The growing season is the seven months
from April to October in the study region. (4) For conversion, 1 US foot = 30.48 cm.

Although the coefficient estimates in Table 2 cannot be directly interpreted as the
marginal effects, several qualitative observations related to groundwater level decline can
be established. It is worth emphasizing again that groundwater level is measured as the
distance from land surface to water table. That is, groundwater level decline leads to an
increase in GWL as measured in Equation (1). Looking at Table 2, the positive coefficient
estimates for GWL suggest that groundwater level decline increases the odds of growing
corn (for silage) and sorghum and switching back to grassland. The results for corn
and sorghum are intuitive. Corn for silage does not have to follow a regular irrigation
schedule as it is not planted for grain yield. Hence, it can be considered “drought-resistant.”
Sorghum is a commonly adopted drought-resistant grain crop in the High Plains. Switching
to grassland essentially cuts irrigation water demand to zero. It is expected to be the most
effective adaptation strategy to multi-year persistent droughts. It makes sense to have
more land switching back to grassland to conserve water in anticipation of groundwater
level decline. Second, the negative coefficient estimates for GWL suggest that groundwater
level decline reduces the odds of growing wheat (mainly winter wheat in the study region).
There are two potential explanations. The first explanation is the long growing season
of winter wheat, which is around eight months. This increases the crop’s vulnerability
to droughts. The second explanation is the crop irrigation water demand. Winter wheat
for grain has an irrigation water demand of around 20 inches, which is close to sorghum.
Nevertheless, sorghum is a more drought-resilient option assuming a similar expected
economic return (output revenue minus input costs) between the two crops. This explains
the preference for sorghum over winter wheat in anticipation of groundwater level decline.

By comparing results across four different models (columns in Table 2), one noticeable
pattern is that the three commercial crops are more responsive to groundwater level
changes in terms of coefficient estimate magnitudes. This makes sense because the choice
of field crop is a reversible land allocation choice, while switching to grassland tends to
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be irreversible, at least in the near-to-medium term. Another noticeable pattern from the
comparison is the significantly higher goodness of fit (R2, within) of the grassland model
(last column in Table 2). This suggests that groundwater level coupled with growing season
precipitation and temperature better explain the odds of switching to grassland compared
to other crops. One potential explanation is that commercial crop planting decisions are
more sensitive to market and policy factors. Additionally, the temporal fixed effects in the
model may not absorb them entirely.

One thing to note is that the precipitation and temperature measures here serve
only as control variables. They are more relevant factors in rain-fed cropping regions [1].
Hence, I refrain from interpreting their coefficient estimates to stay focused on the given
research question concerning grassland in this study. Another thing to note is the implicit
assumption embedded in the analysis that farmers usually explore other options (such as
drought-tolerant crops, land idling, and crop rotation) before considering switching back to
grassland permanently. This is consistent with my communications with local stakeholders.

3.2. Marginal Impacts of Groundwater Level Decline

As demonstrated in Equation (3), the true marginal effects require a transformation
derived from the estimates of coefficients and fixed effects in Table 2. For simplicity and
ease of interpretation, I compute the average marginal effect (AME). The first step is to
compute the marginal effect for each observation following Equation (3). Subsequently
taking the average of all individual marginal effects obtains the AME:

AME =
∂P̂

∂GWL
=

1
N ∗ T

T

∑
t=1

N

∑
i=1

∂P̂it
∂GWLit

(4)

where N is the total number of crop fields and T is the total number of years studied.
Such a way of computing the marginal impact of groundwater level decline allows us to
incorporate each of the individual spatial and temporal fixed effects into consideration,
which are important for field-level analyses such as those in the current study.

Table 3 presents the computed marginal effects based on Equation (4) and the cor-
responding standard errors approximated using the delta method. Overall, the three
commercial crops are more responsive to groundwater level decline based on the marginal
effect magnitudes, which is consistent with the estimates in Table 2. However, the estimates
are not statistically significant. This is likely due to the poor overall fit of these three models,
as discussed in the previous section. The potential correlation between GWL and growing
season precipitation and temperature is another possible contributor to the low precision.
The marginal effect of groundwater level decline on grassland, although at a smaller magni-
tude, is statistically significant (5% for specification (1) and 10% for specification (2)). Taking
specification (1) as an example, a marginal effect estimate of 0.0494 means that for every
foot of groundwater level decline, the likelihood of switching back to grassland increases by
roughly 0.05%. In other words, for a one-standard-deviation decline in groundwater level
(36.95 feet, see Table 1), the likelihood of switching back to grassland increases by 1.85%.
Although this is not a large impact in terms of magnitude, it is a permanent cropland use
change, as emphasized before. Its long-term socio-economic and policy implications can be
significant. The following Section 4 will explore the economic and policy implications of
the results.
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Table 3. Estimated average marginal effects of groundwater level decline.

Cropland Proportion Model

Specification Variables Corn Wheat Sorghum Grassland

(1)

GWL—simple
average

(unit: % per foot)

0.1509
(0.6961)

−0.3983
(0.4714)

0.0070
(0.0761)

0.0494 **
(0.0237)

Fixed Effects Field + Year

(2)

GWL—inverse
distance weighted
(unit: % per foot)

0.1412
(0.6885)

−0.4003
(0.4927)

0.0060
(0.0654)

0.0295 *
(0.0172)

Fixed Effects Field + Year

Note: (1) Asterisks (*, **) indicate statistical significance at levels of 10% and 5%, respectively, unless otherwise
noted. (2) Standard errors are reported in the parentheses. (3) For conversion, 1 US foot = 30.48 cm.

4. Policy Discussion

The research question of this study and the following empirical findings directly
concern the economic and social values of grassland. In the agricultural sector, grassland
often serves as pasture to generate private economic value. In other cases, grassland
generates environmental conservation values that benefit the broader society. For example,
grassland is commonly considered one of the best natural carbon sinks [21]. The current
study has shown that, with an anticipated decline in groundwater level in the Ogallala
Aquifer, local farmers are voluntarily (or are forced to) switching back to grassland to adapt
to agricultural droughts. With the changing monsoon dynamics in the southwest US [22],
drought conditions are expected to be more frequent and persistent. Switching to more
drought-tolerant crops or pasture grassland seems to be a natural strategy for adaptation. A
critical question to ask here is whether less crop production and more pasture can generate
enough economic value to sustain the local agribusiness and economy. There are two
aspects to this question. The first aspect concerns the direct economic value of additional
pasture, which is private to landowners or operators. This economic value should consist
of at least two components: (1) the profit from livestock production on natural grassland,
which usually generates a premium on the market; and (2) the complementary value from
the grassland ecosystem that spills over to crop production, such as water catchments
(see [23] for a review), which can be defined as an equitable economic value to the local
agricultural community. The other aspect relates to the broader social value that can
catalyze economic value added beyond traditional agricultural production. For example,
expanded grassland areas can create opportunities for wildlife habitats and recreational
landscapes that offer further opportunities for agritourism. The empirical estimates from
this study can provide necessary parameters for the accounting of these economic values
from added pasture grassland.

Another important policy implication of switching back to grassland is the conserva-
tion values that concern local land (soil) and water resources. In the study region and the
broader Southern High Plains, soil and groundwater conservation are as equally important
as they are interconnected. The dust storms that occurred in the region during the 1930s
were an example of soil conservation failure (and to some extent a water conservation
failure). Nowadays, because of the widespread groundwater irrigation practice in the
region, it has become even more critical to coordinate soil and water conservation. Soil
conservation in the region typically entails reducing soil erosion and improving soil health.
Permanent grassland can help achieve both goals [24]. Water conservation tends to be
more complicated in the region due to the fact that the groundwater aquifer is shared
across the state boundary between New Mexico and Texas. Additionally, crop agriculture
in the region withdraws over 90% of its irrigation water from groundwater aquifers despite
the fact that groundwater wells are relatively well regulated in New Mexico [25]. Given
that groundwater is the dominant water resource in the region, water conservation entails



Remote Sens. 2023, 15, 1698 11 of 15

recharge management, pumping management, and transboundary coordination, among
other things. Even though water conservation is more challenging in the region, it comple-
ments land and soil conservation. As shown in this study, groundwater dynamics affect
cropland allocation decisions. On the other hand, it is common knowledge that land (soil)
conservation facilitates surface infiltration processes and thus affects groundwater aquifer
recharge [26]. Therefore, soil conservation and groundwater conservation can become part
of an integrated two-fold conservation strategy. The empirical results from this study help
us to understand at least one of the mechanisms for integration.

No matter if it is the added value from pasture-based livestock production or the
broader social value from improved soil and water conservation, the bottom line is that
these conservation efforts should be able to help strengthen and sustain rural economic
livelihoods. Otherwise, switching back to grassland may find little practical policy signifi-
cance. Many drought-stressed agricultural communities face not only environmental and
resource challenges, but also demographic stagnation. Brain drain and inadequate agri-
cultural workforce pipelines have been prime challenges in many rural communities [27].
Any policy that aims to address environmental and resource problems but which fails to
simultaneously meet local economic development needs is unlikely to work or last. To
successfully integrate the two (i.e., building environmental and natural resource steward-
ship and promoting local economic development), it is critical to estimate key parameters
and metrics precisely. This is what the current study intends to contribute toward. By
quantifying the impacts of groundwater level decline on field-level cropland allocation
decisions, we can help establish a measurable link between the hydrological sub-system
and the surface land vegetation sub-system for an integrated ecosystem. It can then be
further incorporated into tasks such as resource use efficiency assessment, sustainability
policy design, etc.

5. Conclusions

Groundwater resources play an indispensable role in economic and human develop-
ment in arid/semi-arid regions around the world. When it comes to agricultural production,
groundwater often becomes one of the most critical determinants of yield and profitability.
This is particularly true for the High Plains region in the US. In recent decades, growing
concern over irrigated crop production relates to the increasing variability in agricultural
droughts and groundwater depletion. In the context of changing monsoon dynamics in the
Southwest and growing drought vulnerability faced by farmers, this study aims to help
understand how groundwater level decline affects the likelihood of cropland switching
back to grassland as a way to adapt. Taking Union County of New Mexico as a case study,
this study finds that cropland has been slowly but permanently switching back to grassland
as the groundwater level in the Ogallala Aquifer has continued to decline.

The implication of the findings is long term. In the near term, irrigated commercial
crops such as corn, winter wheat, and sorghum will still dominate the region’s cultivated
landscape. However, as the groundwater level continues to decline, the pace of switching
back to dryland farming and grassland will accelerate. Meanwhile, such cropland use
changes likely go from being voluntary to being forced as choices become limited. The long-
term environmental and socio-economic consequences of such a shift are unknown. What
is clear is that, if this process is not guided and managed properly, there will be catastrophic
consequences similar to or worse than those of the Dust Bowl on the High Plains during
the 1930s. Therefore, understanding this transition process and its potential impacts at each
stage is essential. It is not only for the benefit of designing better groundwater conservation
policies, but also for educating the next generation of the agricultural workforce. Lastly, it is
worth mentioning that this study also showcases how increasingly available remote sensing
data can be integrated with traditional statistical data collected by government agencies
and other organizations to answer urgent rural economic development and environmental
sustainability questions.
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Future research can build upon this study to expand in a few directions. First, new data
analytics methods can help develop better quantification of groundwater scenarios under a
changing climate. For example, machine learning models can help resolve the intermittent
sampling frequency issue associated with groundwater data monitoring [28]. Second,
advanced remote sensing technologies may be integrated with data analytics to develop
alternative measures of groundwater level, which can help improve the spatial solution of
the data (see [29] for an early example). The OpenET data platform (https://openetdata.
org/ (accessed on 19 March 2023)) is an exemplary application in this direction. It integrates
publicly available data to provide satellite-based information on evapotranspiration, which
can provide alternative and better ways to understand groundwater dynamics. Third,
farmers’ adaptation choice sets could expand as new technologies become economically
feasible and more integrated into the existing production system. This study assumes that
farmers are limited to a traditional choice set of field crops and grassland. In the future,
more integrated production systems such as solar gardens (e.g., a crop or produce farm
under a solar farm) and greenhouses powered with renewable energy may become widely
feasible. These newer choices could have new impacts on groundwater resources, positive
or negative, which points to a fruitful direction for future research.

Funding: This research was jointly funded by the USDA National Institute of Food and Agriculture
(NIFA) under award 2022-67020-36265 and the New Mexico Water Resources Research Institute (NM
WRRI) under award Q02304 (the USGS-104B Faculty Water Research Grant Program). The APC was
funded by NM WRRI award Q02304.

Data Availability Statement: The CDL land cover data (raster files) are downloadable at https:
//nassgeodata.gmu.edu/CropScape/ (accessed on 19 March 2023). The climate data (raster files) are
downloadable at https://prism.oregonstate.edu/ (accessed on 19 March 2023). The raw records on
groundwater levels (spreadsheet files) are downloadable at https://waterdata.usgs.gov/nm/nwis/
gw (accessed on 19 March 2023). All other data are available from the author upon request.

Acknowledgments: The author would like to thank Talisha Valdez of the Union County (New
Mexico) Extension Office and Ben Creighton of the USDA NRCS Union County (New Mexico) Office
for their help in motivating this research. All errors belong to the author.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Figure A1. The relative geographic location of Union County, New Mexico, in the broader region.
Note: the local landscape features mainly natural grassland and (mostly irrigated) crop agriculture.
Data source: US Census.

https://openetdata.org/
https://openetdata.org/
https://nassgeodata.gmu.edu/CropScape/
https://nassgeodata.gmu.edu/CropScape/
https://prism.oregonstate.edu/
https://waterdata.usgs.gov/nm/nwis/gw
https://waterdata.usgs.gov/nm/nwis/gw
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Figure A2. Identified circular irrigated crop field boundaries overlapped with Crop Data Layer data
in the central–eastern and southeastern parts of Union County, New Mexico. Note: light green in the
background indicates grassland and other colors indicate different crop covers. Data source: NASS,
USDA; Google Maps.

Figure A3. The USGS monitored wells that recorded groundwater level data during the study period
(2007–2019). Note: A total of 111 well locations are illustrated on the map. There is only one weather
station in the county (Clayton Municipal Airpark (KCAO); Lat: 36.45◦N; Lon: 103.15◦W), located
near Clayton. Data sources: US Geological Survey; US Census.
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Table A1. Supplemental information on datasets used in this study.

Data Source Collection Time Format

Crop Data Layer NASS, USDA Annual Raster
Groundwater levels US Geological Survey Annual CSV

PRISM Oregon State University Annual Raster
Field location and size Google Maps 2022 CSV

GIS Maps US Census; US Geological Survey 2020 Shapefiles

Note: for annually available datasets, data from the years 2007 to 2019 have been retrieved.
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