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Abstract: Polar sea ice profoundly affects atmospheric and oceanic circulation and plays a significant
role in climate change. Sea ice concentration (SIC) is a key geophysical parameter used to quantify
these changes. In this study, we determined SIC products for the Arctic and Antarctic from 2019 to
2021 using data from the Chinese marine satellite Haiyang 2B (HY-2B) with an improved bootstrap
algorithm. Then the results were compared with similar operational SIC products and ship-based data.
Our findings demonstrate the effectiveness of the improved algorithm for accurately determining
SIC in polar regions. Additionally, the results of the study demonstrate that the SIC product obtained
through the improved bootstrap algorithm has a high correlation with other similar SIC products.
The daily average SIC of the different products showed similar inter-annual trends for both the Arctic
and Antarctic regions. Comparison of the different SIC products showed that the Arctic BT-SMR SIC
was slightly lower than the BT-SSMIS and BT-AMSR2 SIC products, while the difference between
Antarctic SIC products was more pronounced. The lowest MAE was between the BT-SSMIS SIC and
BT-SMR SIC in both regions, while the largest MAE was between the NT-SMR and BT-SMR in the
Arctic, and between the NT-SSMIS and BT-SMR in the Antarctic. The SIE and SIA time series showed
consistent trends, with a greater difference in SIA than SIC and a slight difference in SIA between
the BT-AMSR2 and BT-SMR in the Arctic. Evaluation of the different SIC products using ship-based
observation data showed a high correlation between the BT-SMR SIC and the ship-based SIC of
approximately 0.85 in the Arctic and 0.88 in the Antarctic. The time series of dynamic tie-points better
reflected the seasonal variation in sea ice radiation characteristics. This study lays the foundation for
the release of long-term SIC product series from the Chinese autonomous HY-2B satellite, which will
ensure the continuity of polar sea ice records over the past 40 years despite potential interruptions.

Keywords: sea ice concentration; HY-2B; bootstrap; Arctic; Antarctic

1. Introduction

The Arctic region is warming at more than twice the global average rate due to
the physical mechanism of the ocean–sea ice–atmosphere interaction, and the warming
amplification trend is most noticeable in winter [1,2]. Regional warming in the Antarctic is
substantial, with sea ice melting accelerating in the Antarctic Peninsula and its southwest
region [3]. As an essential component of the global climate system, sea ice not only
influences atmospheric and oceanic circulation, but is also an important indicator of climate
change [4]. Sea ice uses the albedo effect to regulate the overall radiation balance of the
Earth and the exchange of heat, momentum, and gases between the atmosphere and
oceans in polar regions [5]. Since 1972, satellite observations have demonstrated a marked
decreasing tendency in Arctic sea ice extent (SIE), sea ice area (SIA), and multi-year ice
thickness [6,7]. However, Antarctic sea ice exhibits an overall weak rising tendency with
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substantial seasonal and regional variations due to a combination of external forcing (e.g.,
ozone) and internal variability (e.g., multi-year intergenerational oscillations in the North
Atlantic) [8]. The duration of Arctic sea ice melting is expanding at a rate of 5–10 days
per decade, making Arctic commercial shipping a promising prospect. The opening of
the Northeast Passage in summer will shorten the voyage and reduce greenhouse gas
emissions [9]. Therefore, studying polar sea ice change patterns is important for the
practical understanding and exploration of sea ice in the universal climate system, the
evolution of ecosystems, and economic development.

Sea ice concentration (SIC), one of the most important parameters for describing sea
ice, is defined as the proportion of sea ice cover per unit area. SIE and SIA can be estimated
from SIC. Due to the harsh environment of polar regions, in addition to limited in situ
observations, multiple satellites are relied upon to obtain multifactor distribution charac-
teristics and changes in the polar regions on an all-weather, near real-time, and long-term
continuous basis [10]. Microwave radiometry is the largest data source of all satellite data
applied to polar region observations [11]. The Electrically Scanning Microwave Radiome-
ter (EMSR), which was launched in 1972, was the first sensor to acquire global sea ice
distribution with a relatively high temporal resolution. However, the sensor was merely
a single-channel horizontally polarized radiometer, and the accuracy of the sea ice infor-
mation acquired was restricted [12,13]. Since 1978, the Scanning Multichannel Microwave
Radiometer (SMMR), the Special Sensor Microwave/Imager (SSMI), the Special Sensor
Microwave/Imager Sounder (SSMIS), the Advanced Microwave Scanning Radiometer for
EOS (AMSR-E), and the subsequent Advanced Microwave Scanning Radiometer 2 (AMSR2)
have been successfully used to retrieve long-term time series SIC products. At present,
the Scanning Microwave Radiometer (SMR) mounted on Chinese HY-2B satellites and the
Microwave Radiation Imager (MWRI) mounted on FY-3 satellites have been successfully
used to measure SIC [14–17]. The parameters of these different satellite sensors applied
to sea ice monitoring are summarized in Table 1. In this table, only the SMMR sensor
was sampled every other day before July 1987, with daily temporal resolution available
since October 1978. The international SSMIS-F18 and AMSR2 sensors that are currently
in orbit have exceeded their service lives, and there are no plans for subsequent launches.
The microwave radiometer data from sea ice records, which have lasted for more than
40 years, are at risk of being discontinued [18]. The microwave radiometers carried by
the Chinese HY-2B and FY-3 series satellites have similar observation channels to those of
international microwave radiometers, and they may become one of the data sources for
polar sea ice observation.

Table 1. An overview of satellite microwave sensors for monitoring sea ice.

Sensor Platform Frequencies in GHz View Angle Operation Date

ESMR Nimbus-5 19.4 0–50◦ 1972–1976
SMMR Nimbus-7 6.6, 10.7, 18.0, 21.0, 37.0 50.2◦ 1978–1987
SSM/I DMSPF8-F11 13–F15 19.4, 22.2, 37.0, 85.5 53.1◦ 1987–2009
SSMIS DMSP F16–F19 19.4, 22.2, 37.0, 91.7 53.1◦ 2003–today

AMSR-E Aqua 6.9, 10.7, 18.7, 23.8, 36.5, 89.0 55◦ 2002–2011
AMSR2 GCOW-W1 6.9, 7.3, 10.7, 18.7, 23.8, 36.5, 89.0 55◦ 2012–today

SMR HY-2B 6.4, 10.7, 18.7, 23.8, 37.0 53◦ 2018–today
MWRI FY-3B/C/D 10.7, 18.7, 23.8, 36.5, 89.0 52◦ 2010–today

Over the last few decades, a considerable number of different algorithms have been
developed to calculate SIC from microwave satellite TB data. A majority of algorithms
estimate SIC by comparing TB between open water and sea ice at typical viewing angles
(50–55◦) using horizontal (H) and vertical (V) polarizations. Typically, TB polarization
ratios (PRs) and temperature gradient ratios (GRs) are used. These algorithms primarily
contain NASA Team (NT) [19], bootstrap (BT) [20–23], Bristol [24], and OSI-SAF [25,26],
which mainly utilize TB data from the 19 and 37 GHz low-frequency channels to obtain SIC
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products with a spatial resolution of 25 km due to the moderately low raw spatial resolution.
The spatial resolution of SIC products has improved significantly with the application
of high frequency channels (85/89 GHz) in different algorithms, mainly including the
Enhanced NASA Team (NT2) [27,28] and Arctic Radiation and Turbulence Interaction
Study (ASI) [29,30] algorithms. Among the many algorithms, the NASA Team algorithm
and the NT2 algorithm can measure the overall SIC and the first-year ice and multi-year
ice concentrations.

Two different forms of internal comparison of sea ice concentration usually exist [31].
One is to compare SIC products based on different algorithms without using independent
data sources [32,33]. This form of inter-comparison can provide information on time series
and trends in the overall SIC distribution as well as SIA and SIE and consistency between
products. Simultaneously, it can reveal regional differences and seasonal cycles in the SIC
values calculated by different algorithms. Nevertheless, it does not provide information
about the accuracy of the SIC products. The other type of algorithm inter-comparison study
involves high-resolution satellite information, such as optical images, or active microwave
sensors, such as synthetic aperture radar (SAR) [34–36]. Additionally, ice charts [37,38] and
ship-based observations [29,39–42] are used for this type of comparison. To demonstrate
their functionality under different ice and weather conditions, different algorithms were
repeatedly compared with each other [33,43].

Beitsch et al. [40] evaluated the SIC products of six different algorithms using 21,600
ship-based observations in the Antarctic and showed that the bootstrap algorithm was in the
most-consistent agreement with the shipboard observations. Spreen et al. [29] compared SIC
data based on different algorithms with data based on shipboard observations. He found
that the ASI, NT2, and BT algorithms had correlations of 0.80, 0.79, and 0.81, respectively,
with the bootstrap algorithm showing the best overall performance. Kern et al. [31] assessed
ten SIC products using shipboard observational datasets and showed that the BT-AMSR-E
and BT-SSMI products have a small bias and relatively high correlation coefficients. Kern
et al. [44] evaluated 10 types of passive microwave (PM) SIC products using SIC calculated
from over 300 Landsat images and showed that the BT-based SIC products had the lowest
bias. According to many quantitative evaluations, the BT algorithm is one of the most
accurate at estimating SIC. However, it was challenging to apply the algorithm to China’s
autonomous HY-2B SMR when the tie-points were chosen as fixed coefficients at an early
algorithm stage. Currently, the selection of dynamic tie-points of the bootstrap algorithm
requires a detailed description, and the application to HY-2B needs further study.

In this paper, we propose an improved BT SIC algorithm using the SMR TB data from
HY-2B. The published SIC datasets, the ship-based observation data gathered for validation,
and the SMR TB data are all described in Section 2. Section 3 describes the whole process of
the BT algorithm, which mainly includes the dynamic selection methods of tie-points, the
use of weather filters, and the removal of land spillover effects. In Section 4, a long-term
time series analysis of the BT algorithm tie-points is performed, the SIC values obtained in
this study are compared in detail with other SIC products, and the accuracy of SIC products
is assessed using ship-based observation data. In Section 5, a long-term time series analysis
of the SIE and SIA is performed, with an assessment of the SIE of the different BT SIC
products in the marginal ice zone (MIZ). The conclusions are summarized in Section 6.

2. Data
2.1. HY-2B SMR Sensor

HY-2B is the first operational marine dynamic environment monitoring satellite for
China, and combines active and passive microwave remote sensors in an integrated system,
with high-precision orbit measurement, orbit setting capability, and all-weather, all-day,
global detection capability. The satellite carries radar altimetry, a microwave scatterometer,
a scanning microwave radiometer (SMR), and a calibration microwave radiometer. The
SMR has five operational frequencies, 6.6, 10.7, 18.7, 23.8, and 37 GHz, but does not include
the 23.8 GHz frequency, as it is only vertically polarized, and the other four frequencies
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have both horizontal (H) and vertical (V) polarizations. The SMR sensor has a swath width
of over 1600 km. It has a sensitivity of better than 0.8 K in the 37 GHz band and better
than 0.5 K in the rest of the frequency band, allowing for the retrieval of global data for sea
surface temperature, sea surface wind field, sea surface water vapor content, liquid water,
and rainfall intensity. The main specifications of the HY-2 SMR are listed in Table 2.

Table 2. Specifications of the HY-2B SMR instrument.

Configuration
Parameter Values

Frequency (GHz) 6.925 10.7 18.7 23.8 37.0
Polarization V H VH VH V VH

Bandwidth (MHz) 350 100 200 400 1000
Sensitivity (K) 0.5 0.6 0.5 0.5 0.8

Calibration Error (K) 1
Ground Resolution (km) 90 × 150 70 × 110 36 × 60 30 × 52 20 × 35

Dynamic Range (K) 3–350
Scan Mode Conical scanning

Orbit Width (km) 1600
View angle (◦) 53

In this study, Arctic and Antarctic TB data from 2019–2021 were collected. Related
studies have shown that the bias of SIC obtained from swath data (Level 2A) and using daily
average data (Level 3A) is less than 1% [29]. Therefore, within the margin of error, in this
paper, we utilize Level 3A daily average TB data for the retrieval of SIC, excluding factors
such as data loss due to the sensor’s inherent instability, and we use 1059 days (Arctic) and
1058 days (Antarctic) of data, accounting for 96.8% (Arctic) and 96.7% (Antarctic) of the
total number of days over the three years, respectively.

2.2. Published SIC datasets

In this study, SIC datasets were analyzed based on three sensors, SSMIS, AMSR2, and
HY-2B SMR; four SIC retrieval algorithms were included, and all datasets cover the Arctic
and Antarctic and a time range from 2019 to 2021. Table 3 lists the main datasets used in
our study.

Table 3. Summary of the SIC datasets applied in this study.

Datasets Source Period Sensor Algorithm Resolution (km)

BT-SMR This study 2019–2021 SMR BT 25
NT-SMR NSOAS 2019–2021 SMR NT 25

NT-SSMIS NSIDC 2019–2021 SSMIS NT 25
BT-SSMIS NSIDC 2019–2021 SSMIS BT 25

NT2-AMSR2 NSIDC 2019–2021 AMSR2 NT2 25
BT-AMSR2 NSIDC 2019–2021 AMSR2 BT 25
ASI-AMSR2 Bremen 2019–2021 ASMR2 ASI 6.25

The NT-SMR dataset was obtained by Shi et al. [17] based on the HY-2B satellite-borne
SMR TB data with the NT algorithm. A cross-calibration study of HY-2B SMR TB was
conducted using DMSP-F17 SSMIS TB data as a reference. The results were cross-validated
against ship-based observation data, NT products released by the National Snow and Ice
Data Center (NSIDC), and SAR products. Overall, the accuracy was satisfactory.

The NT-SSMIS dataset is the NSIDC-0051 product of the NSIDC [45]. The dataset is
based on TB data from SMMR, SSM/I, and SSMIS sensors since 1978. SIC values at the
North and South Poles are generated by the NT algorithms.

The BT-SSMIS dataset is the NSIDC-0079 product of the NSIDC [46], which generates
North and South Pole SIC values based on the BT algorithm with daily dynamic tie-points.
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The NT2-AMSR2 and BT-AMSR2 datasets are from the AMSR-E/AMSR2 Unified
L3 Daily 25 km Brightness Temperatures & Sea Ice Concentration Polar Grids version 1,
which are available and accessible on the NSIDC website. The BT-AMSR2 dataset is not
directly provided in a manner different from NT2-AMSR2. It uses AMSR2 Level-1R input
TB calibrated by JAXA in AMSR-E and AMSR2 Level-1R products. Both datasets have
a spatial resolution of 25 km with polar stereo grid projection.

The ASI-AMSR2 dataset was obtained by the Institute of Environmental Physics at the
University of Bremen (https://seaice.uni-bremen.de, accessed on 6 December 2022) based
on the ASI algorithm with 89 GHz TB data inversion with a spatial resolution of 6.25 km.
The high-frequency channels are used with increased sensitivity to weather variability. The
ASI algorithm uses the same weather filter as the NT algorithm.

2.3. Ship-Based Sea Ice Cover Observations

This study collected shipboard data from underway observations in the Antarctic and
Arctic regions from 2019 to 2021. Figure 1 shows the spatial distribution of ship-based
observation data, with approximately 3983 independent observations, including 3367 in the
Arctic and 616 in the Antarctic. The North and South Poles have 464 and 91 pairs of data
available after averaging the data each day, respectively. In the Arctic, observations are
mainly located in the Barents Sea, Laptev Sea, East Siberian Sea, Chukchi Sea, Beaufort Sea,
and Central Arctic. However, there are fewer or almost no observations in other regions. In
the Antarctic, observations are mainly located in the South Atlantic, Weddell Sea, and the
Antarctic Peninsula Annex. The PM SIC datasets used in this paper have spatial resolutions
of 6.25 and 25 km. However, shipboard data have higher temporal and spatial resolutions,
making direct comparisons difficult [47]. According to the methodology of Beitsch et al. [40],
we spatiotemporally matched PM SIC to selected ship-based observations by calculating
the minimum distance between the geographical location of the ship-based observations
and the grid cells of the PM SIC products, and finally averaged all ship-based and PM
SIC on a daily basis. The ship-based and PM SIC values are compared with each other
using scatter plots, linear regression analysis, heatmap analysis, and statistical analysis for
summer data, winter data, and overall data in Section 4.3.
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3. Methods
3.1. Basic BT Algorithm Technique

Assuming that within each data grid, the proportion of open water is CO and the
proportion of sea ice is CI , the observed TB can be expressed as follows:

TB = TO
B CO + T I

BCI (1)

In Equation (1), TO
B and T I

B denote the TB of open water and sea ice, respectively. Since
CO + CI = 1,

CI =
TB − TO

B
T I

B − TO
B

(2)

In Equation (2), I and O represent the two different surface types of sea ice and
seawater, respectively. From Equation (2), if the tie-points T I

B and TO
B are known, the SIC of

each grid cell within the footprint can be calculated from the observed TB. The tie-points are
not fixed due to the radiative properties of sea ice and surface snow, the spatial variability
in the physical temperature, and the spatial and temporal variabilities in atmospheric
conditions. The nonlinearity and large variability in TB are mainly caused by the emission
of radiation scattered in the interior of the ice [21]. The 37 and 19 GHz channels are used in
the BT algorithm to identify the tie-points of TO

B and T I
B.

The schematic diagram of the BT algorithm is represented in Figure 2. The data points
distributed along the AD line in the figure represent close to 100% SIC, but they have
different emissivity or temperature values. In Equation (2), point I is 100% SIC of a specific
type of sea ice based on its emissivity or temperature. The line OI represents linearly
varying SIC values of this sea ice type. The algorithm is effective when most of the 100%
SIC is distributed along the AD. Therefore, the accuracy and objective acquisition of the
AD line determines the accuracy of SIC retrieval. The TB represented by data point I is
the value of the intersection of lines AD and BO. The selection of the dynamic tie-points
is specifically described in Section 3.2. The scattered points along the OW line in the
diagram represent data in open seawater. The TB of these points can increase due to severe
weather conditions, such as storms. They can affect the estimation of the actual SIC values.
A detailed description of the method for removing the effect of weather conditions can be
found in Section 3.3. To simplify the calculation of the actual SIC values, TB − TO

B denotes
the distance between points O and B, and T I

B − TO
B denotes the distance between points O

and I [21].
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The BT algorithm in the specific application process mainly involves the polarization
mode (HV37) and frequency mode (V1937), and Figure 3 represents the scatter of the
HV37 pattern and V1937 pattern in the Arctic region observed by HY2B SMR on 1 January
2020 (land mask has been performed). The high correlation between the 37 GHz (H) and
37 GHz (V) channels, named the polarization mode of the BT algorithm (HV37), is most
often used in retrieving Arctic SIC. This combination of channels is ideally suited for the
retrieval of high SIC values because the standard deviation of linear clustering of data
points distributed along the AD line is less than 2.5 K, which is appropriate for Arctic winter
SIC of more than 95% [21]. The slope of the AD line is almost always close to 1.0 for sea ice
close to 100% SIC. This scenario has the same effect on the SMMR, SSMI, SSMIS, and SMR
sensors. Due to the considerable regional variation in horizontal polarization TB over the
low SIC area, 19 V and 37 V GHz are usually used for inversion. Statistical analyses have
shown that the V1937 pattern provides more coherent SIC values than the HV37 pattern in
low-concentration ice areas [22,48]. In the Antarctic and Arctic seasonal ice regions, where
the ice cover consists mainly of first-year ice, the radiance is more uniform than in the
central Arctic region. Points in these regions are less affected by volume scattering from the
ice interior. Usually, they do not form nonlinear clusters for multi-year ice observations, so
the V1937 pattern is used to obtain low SIC values. Comiso et al. [23] demonstrated that
the SMMR and SSMIS sensors’ inverse SIC values for the data points along the AD line
in the V1937 pattern were smaller than those in the HV37 pattern. The results of the SMR
sensor were the same as those of the microwave radiometers, mainly because the different
polarization modes are sensitive to ice layers and roughness [49].
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Figure 3. Scatter diagrams of polarization mode and frequency mode on 1 January 2020. (a) Polariza-
tion mode. (b) Frequency mode. AD line for sea ice close to 100% SIC, the letter I indicates different
types of ice, the letter B indicates the SIC value at any point, the letter O indicates water tie-point.

When performing SIC calculations, ideally, the scatter plots are concentrated in the
OAD triangle. However, in the actual SMMR, SSM/I, SSMIS, and SMR data, some points
are subject to random noise and large physical temperature and spatial variability, so they
require special consideration. These points in Figure 1 fall to the right of OA, mainly
consisting of young ice and floating ice in MIZ [21]. According to the Comiso et al. [21]
processing method, the SIC values of these data points are calculated by replacing OI with
OA. It is possible to provide more reliable SIC values by processing the data points in
this way.
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In the central Arctic region, i.e., away from the ice edge, the HV37 pattern is used, and
the points above AD-5 in the middle line of Figure 3b are delineated during the process of
SIC inversion. In the MIZ, i.e., points below AD-5, the SIC results are calculated using the
V1937 pattern. This −5 K offset is mostly due to the presence of 5–10% open water in the
central Arctic winter region [21]. The parameters of −5 K used in this study are consistent
with the BT-based SIC datasets published by Comiso et al. [21] and NSIDC [48].

3.2. Choice of Tie-Points

The selection of tie-points is a critical process for the inversion of SIC, which is related
to the accuracy of the final SIC values. In the BT algorithm, TI and TO are mainly determined
from the scatter plot. As described in the previous section, sea ice with 100% SIC is
distributed along line AD. Then, point I can be obtained by determining the feature values
of line AD and point O. Determination of lines AD and AO involves selecting points
along line AD and near AO. Then, a linear regression is performed to determine the linear
equation of AD and AO and solve for the coordinates of intersection point A.

In the Arctic, for the HV37 pattern, given initial point A0 (250, 235) and point D0 (186,
173) (as close as possible to the center of linear clustering of AD, as shown by the black
dashed line in Figure 4a), initial point A0 (250, 235) and point O0 (202, 130) (as close as
possible to the center of linear clustering of AO), determined by the initial point of lines
A0D0 and A0O0, which are increased by ±10 intercepts (magenta dashed line in Figure 4a),
the scatter points distributed along AD (light blue point in Figure 4a) and AO (green point
in Figure 4a) are selected, and the linear AD and AO equations used for SIC inversion
are obtained by linear regression. For the V1937 pattern, similar to the above method,
given initial point A0 (250, 252) and point D0 (183, 222), and initial point A0 (250, 252)
and point O0 (203, 177), the A0D0 and A0O0 determined from the initial point increase
the ±10 intercepts (magenta dashed line in Figure 4b). To obtain the linear equation, we
linearly regressed scatter points along the AD (light blue point in Figure 4b) and AO (green
point in Figure 4b). In the Antarctic, the frequency pattern is given by the initial A0 (255,
256), D0 (206, 235), and O0 (205, 178). The ±10 K parameter is chosen based on the HY-2B
SMR TB scatter distribution. In the melting period, the TB of sea ice increases, and the
clustering features are relatively scattered compared with winter, and ±10 K considers
this scatter.
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The surface characteristics of the open water inside the high-SIC area are smoother
because the ice floes have significantly weakened many wave effects. Therefore, the TB
of this part of the open water is closer to TO. The value of the actual TO is chosen at
approximately the intersection of OW and OA. In the V1937 pattern, the points with TB
(19 GHz) < 182 K (corresponding to the points in the black area in Figure 3b) are selected,
and the average value of 37 GHz (V) is calculated as the tie-point of TO at 37 GHz, which is
used in the linear AO equations of the V1937 pattern and the HV37 pattern to obtain TO
at 19 GHz (V) and 37 GHz (H), respectively. This method realizes the dynamic selection
of TI and TO according to the daily TB scattering point distribution. Since the daily TB
variation is influenced by short-term weather, this study averaged all dynamic tie-points on
a [−7, +7] day sliding mean, and the practice of averaging dynamic tie-points on a [−7, +7]
day sliding mean is consistent with that of Lavergne et al. [25] and Zhao et al. [16].

3.3. Weather Filters

In the marginal regions of the open ocean and sea ice, weather effects, such as liquid
water in clouds, sea surface water vapor, rainfall, and wind, cause a significant increase in
TB. This algorithm applies to regions with unrealistic SIC values by using weather filters
and atmospheric corrections. For the BT algorithm, the data points from open water are
mainly clustered along the OW, as shown in Figure 2. It is possible to separate open water
from the ice-covered area by straight lines, but the slope and intercept of the straight lines
are more challenging to determine. Subtle changes in the slope and intercept have the most
significant impact on the points in the red curve in Figure 2 because the SIC value is set
to 0% for all points below the straight lines. During the summer, when sea ice melts, the
straight line determined by the slope and intercept fails to completely remove the spurious
sea ice.

In this study, the removal of spurious SIC is achieved using the spectral gradient ratio
(GR) commonly used in the NT and ASI algorithms, which consists of two primary filters,
GR(37V, 19V) and GR(22V, 19V):

GR(37V, 19V) =
TB(37V)− TB(19V)

TB(37V) + TB(19V)
(3)

GR(22V, 19V) =
TB(22V)− TB(19V)

TB(22V) + TB(19V)
(4)

The thresholds applicable to the HY2B SMR weather filter are described as follows:

(1) The SIC is set to 0% if GR(37V, 19V) > 0.05 (Arctic) or GR(37V, 19V) > 0.055 (Antarctic),
which mainly removes the effects of liquid water and ice crystals in the clouds.

(2) The SIC is set to 0% if GR(22V, 19V) > 0.035 (Arctic) or (GR(27V, 19V) > 0.035)
(Antarctic), which mainly removes the effect of water vapor over open water.

Based on the two weather filters, the monthly maximum SIE data were also used for
masking, and spurious sea ice in open water was primarily removed.

3.4. Land Spillover Correction

Land contamination is a blurring effect arising from the relatively coarse width of
the sensor antenna pattern, resulting in overestimation of SIC in the nearshore region,
especially in summer. In this study, the method of Cavalieri et al. [50] was used, assuming
that the minimum SIC observed near shorelines without sea ice residuals results from land
spillover, which is subtracted from the image.

4. Results
4.1. BT Algorithm Tie-Points Time Series Analysis

The 37 GHz(V) open water (To) is plotted for 2019–2021 using the method of identifying
dynamic tie-points introduced in Section 3.2. As shown in Figure 5, the yellow dash
represents the tie-point of open water obtained from the actual scatter plot, and the red
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curve is the result of performing a ±7 day sliding average. To has seasonal variation
characteristics, especially in the Arctic. In general, the tie-point of open water was relatively
low and varied slightly in winter. The To values increased and varied significantly in
summer, which is consistent with the trend of Comiso et al. [21], who used fixed open water
tie-point values in winter and summer [21]. The tie points of open water in the Arctic winter
(November–April) and summer (May–October) are 204.79 ± 0.45 K and 205.87 ± 0.79 K,
respectively. In the Antarctic winter (May–October) and summer (November–April), the
tie-points of open water are 205.98 ± 0.43 K and 206.48 ± 0.45 K, respectively. The tie-points
of open water in the Antarctic are ~1 K higher than those in the Arctic.
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Figure 5. Daily HY-2B SMR bootstrap algorithm tie-points TO for open water (orange line)
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As introduced in Section 3.1, the Arctic SIC is mainly calculated by the HV37 and
V1937 patterns, and in this subsection, a time series analysis is conducted on the regression
parameters with scatter points selected in different patterns, as shown in Figure 6a–l. For
the HV37 pattern, the mean slope of line AD in winter was approximately 0.96 (close to
1) with small overall fluctuations (standard deviation of 0.02), which is consistent with
the earlier values of fixed tie-points used by Comiso et al. [21]. In summer, the slope of
line AD increases and fluctuates strongly, with interannual variability characterized by
a maximum slope of approximately 1.4 (Figure 6b). The intercept of the line AD has an
opposite trend to the slope (Figure 6c), which is relatively stable in winter and decreases
sharply in summer as the slope increases, with a minimum value of approximately −100 K.
The RMSE of the regressed linear AD is slightly smaller in winter than in summer, and
the difference is mainly caused by the disappearance of the multi-year ice scatter feature
around the linear AD in summer. Concerning the frequency pattern, the average slope
of the linear AD is 0.42 ± 0.04 in winter and 0.46 ± 0.14 in summer (Figure 6h), and the
intercept decreases with increasing slope. The RMSEs of the fitted linear AD (Figure 6g)
were 3.24 ± 0.29 and 3.90 ± 0.84 in winter and summer, respectively, which were greater
than the fitted parameters in the HV37 pattern. The trend of the linear AO is consistent
in both the HV37 pattern and the V1937 pattern. The Antarctic SIC values are calculated
from the V1937 pattern only, and the time series of the regression parameters are shown in
Figure 6m–r. The average slope of the fitted line AD was 0.47 ± 0.07, with a slight overall
difference; the seasonal trend of the line AO in winter was noticeable, with an average
slope of 1.64 ± 0.02, and the slope decreased in summer. The RMSE of the regression line
AD was greater than that of the line AO.
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4.2. Comparisons of the BT-SMR SIC Products

SIC datasets, derived from HY-2B SMR TB with the BT algorithm, are compared with
similar products in this subsection. Unlike the comparison based on monthly average SIC
by Ivanova et al. [43], the comparison results in this section are based on daily average SIC,
and both SIE and SIA can be derived from the daily average SIC. The SIE is calculated by
summing over the grid cells with SIC > 15%. The SIA is calculated by summing the SIC
over the ice-covered area in each grid cell. All data have been land-masked to exclude the
influence of lakes and other inland waters on SIC estimates.

A time series analysis of six 25 km SIC products is conducted in Section 4.2.1 (Arctic)
and Section 4.2.2 (Antarctic) using the bias and mean absolute error (MAE) and comparing
the spatial distribution of SIC for specific months selected during the winter and summer.
An interval assessment approach is used in Section 4.2.3 to quantitatively compare the
different SIC products.

4.2.1. Arctic SIC and Spatial Distribution Differences

As shown in Figure 7a, the six 25 km SIC products have similar interannual variability
trends. In November–April, SIC values are relatively stable, mainly in the range of 85–97%,
and the NT2-AMSR2 values are relatively large at approximately 96%; NT-SMR and NT-
SSMIS have the most negligible inversion results at 92%; the results obtained in this study
are slightly lower than those of BT-SSMIS and BT-AMSR2 at approximately 94%. In May–
October, SIC values are highly variable due to rising temperatures and increasing melting
ponds. The variability is much higher for different SIC products, with SIC values mainly
within the range of 65–90%. As in November–April, most SIC values for NT2-AMSR2 were
more significant, approximately 90%, than those for NT-SMR or NT-SSMIS, which were
approximately 70%. Compared to BT-SSMIS and BT-AMSR2, the BT-SMR results were
lower than the BT-SSMIS and BT-AMSR2 results by approximately 80%, and the difference
reached its maximum during August and September each year. The correlation coefficients
of NT-SMR, NT-SSMIS, BT-SSMIS, BT-AMSR2, and NT2-AMSR2 with BT-SMR SIC were
0.94, 0.94, 0.97, 0.96, and 0.97, respectively. Overall, the SIC products based on the same
algorithm had the most negligible bias and more consistent interannual trends.

Based on daily average SIC products in the Arctic, bias (Figure 7b) and MAE (Figure 7c)
were calculated, and time series were plotted. Bias was calculated by subtracting BT-SMR
from the five SIC products. From the bias parameters, the five products can be classified
into two categories: the first category is BT-SSMIS, BT-AMSR2, and NT2-AMSR2, which
all exhibit positive deviations from BT-SMR, with overall biases of 2.89, 3.25, and 3.26,
respectively; the second category is NT-SMR and NT-SSMIS, which both exhibit negative
deviations from BT-SMR, with overall biases of −8.87 and −7.96, respectively. In summary,
a slight difference was found between BT-SSMIS and BT-SMR, and the most significant
negative difference was between NT-SMR and BT-SMR. Moreover, the differences in SIC
products based on the NT algorithm start increasing earlier in May–October and end later
than those based on the BT and NT2 algorithms, which means that the results based on
the NT algorithm are biased longer in May–October compared to the other products. NT-
SSMIS, NT-SSMIS, BT-SSMIS, BT-AMSR2, and NT2-AMSR2 showed overall MAEs of 9.00,
8.20, 3.64, 4.71, and 4.16, respectively, compared to BT-SMR. Therefore, the MAE difference
between the BT-SSMIS and BT-SMR products in the Arctic is the smallest, while the MAE
difference between the NT-SMR products is the largest.
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In the Arctic, multi-year ice is dominant in winter with relatively small deviations, and
the most significant deviations occur in August and September during the summer, based
on time series analysis of SIC datasets. Figure 8 shows the typical winter and summer
months of March and September. The map shows differences in the spatial distribution of
SIC products. Figure 8a–e depicts the overall SIC differences, and Figures 8f–j and 8k–o
represent the differences in March and September, respectively. The evaluation parameters
are presented in Table 4. Overall, the differences among the five SIC products show a
trend of gradually increasing from high to low latitudes, with BT-SMR, BT-AMSR2, and
NT2-AMSR2 showing positive deviations and NT-SMR and NT-SSMIS showing negative
deviations. For the BT-SMR, BT-AMSR2, and NT2-AMSR2 products, the deviation in
the central Arctic region is almost zero, and the MIZ exhibits a positive deviation. For
the NT-SMR and NT-SSMIS products, the central Arctic region shows a slight positive
deviation, while the MIZ shows the most negative deviation; the most negative deviation
occurs in the Sea of Okhotsk. When sea ice melt is in its final stages in September, BT-SMR,
BT-AMSR2, and NT2-AMSR2 show a positive bias in the central Arctic, while a slightly
negative bias is observed along the coast in Hudson Bay, Canadian Islands, Beaufort Sea,
and Chukchi Sea. All regions experienced negative deviations for NT-SMR and NT-SSMIS,
which were much higher than the March average or overall deviations. According to
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the evaluated parameters in Table 4, the September bias for BT-SMR, BT-AMSR2, and
NT2-AMSR2 was smaller than that overall and the March average, mainly due to the
offset between positive and negative biases. According to the MAE and RMSE metrics, the
slightest difference in overall assessments, March assessments, and September assessments
was between BT-SSMIS and BT-SMR, the most remarkable negative difference was between
NT-SMR and BT-SMR, and the most positive difference was between NT2-AMSR2 and
BT-SMR. Generally, the March average outperformed both the September average and the
overall average.
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Figure 8. Maps of the overall Arctic difference (a–e) between five SIC datasets and BT-SMR from
January 2019 to December 2021, as well as the months of March (f–j) and September (k–o). Grey
indicates land, red indicates positive deviations, and blue indicates negative deviations.

Table 4. Parameters for assessing Arctic SIC differences between different SIC datasets and BT-SMR.
Bias is the mean difference PM SIC minus BT-SMR SIC, and MAE is the mean absolute error. RMSE
is the root mean square error, and R2 is the squared linear correlation coefficient. All concentration
values are given as percentages.

ID NT-SMR NT-SSMIS BT-SSMIS NT2-AMSR BT-AMSR

O
ve

ra
ll Bias −8.87 −7.96 2.89 3.26 3.25

MAE 9.00 8.20 3.64 4.71 4.16
RMSE 10.59 10.35 6.74 7.55 7.48

R2 0.97 0.96 0.96 0.95 0.95

M
ar

ch

Bias −5.38 −4.68 2.01 2.06 2.11
MAE 5.87 5.36 2.33 3.44 2.77
RMSE 8.71 8.50 4.09 5.92 5.13

R2 0.97 0.97 0.98 0.96 0.97

Se
pt

em
be

r Bias −11.91 −11.34 1.98 2.14 2.18
MAE 12.12 11.57 4.43 6.06 4.86
RMSE 13.21 12.96 8.21 9.08 8.37

R2 0.96 0.95 0.91 0.90 0.91
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4.2.2. Antarctic SIC and Spatial Distribution Differences

Similar to the Arctic, the six SIC products have similar interannual trends, but the
differences among the products were larger than those in the Arctic, as shown in Figure 9a.
In winter, the values of daily average SIC were relatively stable, mainly in the range of
75–95%, with NT2-AMSR2 being the largest at ~95% and NT-SMR and NT-SSMIS products
being the smallest at ~75–80%. The BT-SMR results obtained in this study were slightly
higher than those of BT-SSMIS and BT-AMSR2, with approximately 85–90%. As the sea
ice in the Antarctic mainly consists of first-year ice, the daily average SIC is significantly
different in November–April, the difference increases significantly, and the values of daily
SIC are concentrated primarily in the range of 60–80%. The NT2-AMSR2 inversion results
are the largest at approximately 90%; the NT-SMR and NT-SSMIS inversion results are
the smallest at approximately 65–75%, the inversion results based on the BT algorithm are
between those of the NT2 and NT algorithms at approximately 70–80%, and the difference
peaks around March each year. Overall, the SIC variation based on different sensors using
the same algorithm is less than 5%, with a more consistent interannual variability trend.
SIC variation based on different algorithms that use the same sensor is less than 10%, and
the SIC obtained by the NT2 algorithm is up to 25% higher than the SIC produced by the
NT algorithm. For the BT algorithm, the three-year trend shows that the BT-SMR in summer
is slightly smaller than the BT-SSMIS and BT-AMSR2, and that the BT-SMR in the winter is
slightly larger than these two algorithms. Simultaneously, all algorithms reveal that the daily
average SIC in summer 2021 in the Antarctic was smaller than that in the previous two years,
which may be associated with a warming climate and accelerated melting of sea ice.
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The differences between different SIC products and BT-SMR can be seen more clearly
based on the bias (Figure 9b) and MAE (Figure 9c) time series plots between different SIC
products and BT-SMR. The five SIC products can be classified into three categories based
on the bias metric, the first being NT-AMSR2, which exhibits an absolute positive deviation
from BT-SMR with an overall bias of 5.17%. The second category was BT-SSMIS and BT-
AMSR2, which showed less than 1% bias with BT-SMR in winter and a positive bias of less
than 5% in November–April, with overall biases of −0.75 and −0.12, respectively. The third
category was NT-SMR and NT-SSMIS, which showed a negative bias of less than 10% with
BT-SMR in winter and less than 5% in November–April, and NT-SMR was better than NT-
SSMIS, with overall biases of −8.11 and −10.89 for both products, respectively. In terms of
MAE parameters, the overall MAEs between NT-SSMIS, NT-SSMIS, BT-SSMIS, BT-AMSR2,
and NT2-AMSR2 and BT-SMR were 8.25, 11.03, 1.93, 5.81, and 2.50, respectively. As a result,
the BT-SSMIS and BT-SMR products in the Antarctic had the smallest differences, while the
NT-SSMIS and BT-SMR products had the most significant differences.

The same method was applied to the spatial and temporal distribution of the difference
in Antarctic SIC. We selected the months of September and March in winter and summer,
respectively, to plot the difference in the spatial and temporal distributions of different SIC
products compared to BT-SMR, as shown in Figure 10. The differences in daily average
SIC during March and September are shown in Figure 10f–o, and the detailed statistical
parameters are shown in Table 5. In the overall spatial distribution, NT-SMR and NT-SSMIS
revealed more significant differences in the high-concentration ice area and relatively
more minor differences in MIZ, indicating an overall negative deviation. BT-SSMIS and
BT-AMSR2 showed a slightly negative deviation in the high-concentration ice area and
a slightly positive deviation in the MIZ. However, NT2-ASMR2 showed an overall positive
deviation, and the positive differences in MIZ were more extensive than those in the high-
concentration ice area. During March, when it is late summer in the Antarctic and the SIE
is at its minimum, NT-SMR and NT-SSMIS showed a negative deviation in most areas but
a slightly positive deviation in the Antarctic Peninsula and Princess Astrid Coast. BT-SSMIS
and BT-AMSR2 were similar to the NT-based algorithm, exhibiting a negative deviation
in most areas and a slightly positive deviation in the Antarctic Peninsula, Amundsen
Sea, and Princess Astrid Coast. However, NT2-AMSR2 showed a positive deviation in
almost all areas, with the most significant positive deviation in the Weddell Sea near the
border with the Antarctic Peninsula and the Amundsen Sea. In September, when it is late
winter in the Antarctic and the SIE reaches its maximum, NT-SMR and NT-SSMIS exhibited
negative deviations, with NT-SSMIS showing the most extensive negative deviation of
approximately −10.51. BT-SSMIS and BT-AMSR2 differed by less than 1%. The deviation
was negative in the high-SIC ice regions and positive in the MIZ, with BT-AMSR2 showing
the slightest deviation of approximately −0.24, mainly due to the mutual offset of positive
and negative deviations. NT2-AMSR2 showed a positive deviation, with the most significant
positive deviation in the MIZ and a relatively small deviation in the high-SIC ice regions.
According to the MAE and RMSE parameters of Table 5, the overall average, March average,
and September average show that the difference between BT-SSMIS and BT-SSMIS was the
most negligible, the negative difference between NT1-SSMIS and BT-SMR was the largest, and
the positive difference between NT2-AMSR2 and BT-SMR was the largest. The assessment of
the September average was better than the overall average and better than the March average.
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Table 5. Same as in Table 4 but in the Antarctic.

ID NT-SMR NT-SSMIS BT-SSMIS NT2-AMSR BT-AMSR

O
ve

ra
ll Bias −8.11 −10.89 −0.75 5.17 −0.12

MAE 8.25 11.03 1.93 5.81 2.50
RMSE 8.79 11.61 2.64 7.22 3.62

R2 0.99 0.98 0.99 0.97 0.99

M
ar

ch

Bias −7.86 −12.43 −1.88 9.23 0.68
MAE 9.97 13.84 5.83 10.72 6.66
RMSE 11.65 15.53 7.61 13.66 8.92

R2 0.91 0.90 0.93 0.89 0.90

Se
pt

em
be

r Bias −7.74 −10.51 0.96 4.22 −0.24
MAE 7.95 10.72 2.23 4.95 2.67
RMSE 8.94 11.72 2.95 7.04 3.65

R2 0.98 0.97 0.99 0.97 0.99

4.2.3. Assessing SIC Differences by Intervals

Whether in the Antarctic or the Arctic (Figure 11a–f), the SIC difference was the slight-
est in the high-SIC (70–100%) regions and most extensive in the medium-SIC (70–100%)
regions. In the Arctic SIC (70–100%) region, BT-SSMIS, NT2-AMSR, and BT-AMSR2 had
positive deviations from BT-SMR with biases of 2.70, 2.75, and 2.25 and MAEs of 3.17, 4.31,
and 3.72, respectively. NT-SMR and NT-SSMIS showed negative deviations from BT-SMR,
with NT-SMR having the most considerable negative differences for bias and MAE at −6.63
and −7.31, respectively. In the Antarctic SIC (70–100%) region, only the NT2-AMSR2 and
BT-SMR products showed positive deviations, with BIAS and MAE values of 5.02 and 6.61,
respectively. NT-SSMIS, BT-SSMIS, and BT-AMSR2 all showed negative deviations from
BT-SMR, with SSMIS showing the slightest negative deviation and NT-SSMIS showing the
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largest. The NT-SMR, NT-SSMIS, BT-SSMIS, and BT-AMSR2 products had a more signif-
icant bias and MAE than Antarctic SIC (15–30%) and medium SIC (70–100%), with only
NT-AMSR2 being slightly smaller than Antarctic SIC (15–30%) and medium SIC (70–100%).
Overall, the difference between Arctic SIC products and BT-SMR was greater than that
of the Antarctic. The difference in the assessment parameters between products in the
high-SIC regions was more significant than those in the low- and medium-SIC regions.
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Figure 11. Violin chart of SIC differences between the five different SIC products and BT-SMR SIC
with BT-SMR SICs of 15–30%, 30–70%, and 70–100% from January 2019 to December 2021. The
x-axis denotes different SIC products; (a–f) the y-axis denotes bias; (g–l) the y-axis denotes the mean
absolute error; the first and third rows of the diagram depict the Arctic, and the second and fourth
rows depict the Antarctic.
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4.3. Inter-Comparison of the Ship-Based SIC

In this Subsection, we compare and evaluate six SIC products based on ship-based
visualization data. Ship-based observations of manual sea ice cover conditions have their
limitations. The observation values are collected by numerous observers with different
experiences during vessel movement, making it quite challenging to evaluate the sea ice
cover as 50% or 60% of the 1 km radius area around the ship. As a result, the estimation
accuracy for ship-board moderate SIC (30–70%) is further reduced [31], which has signifi-
cant implications for evaluating SIC at different spatial resolutions. Worby and Comiso [47]
analyzed sea ice observations from different observers for the same scenario and derived
approximately 5–10% uncertainty estimates for the overall SIC.

Ship-based observations are often used as essential truth data to evaluate the SIC
products acquired by satellite-based microwave radiometers. It was necessary to evaluate
bootstrap SIC values using ship-based observations since they were applied to the HY2B
SMR sensor for the first time.

4.3.1. Arctic

For the Arctic, all six SIC products compare well with ship-based data (Figure 12). For
the high-SIC (70–100%) regions, NT-SMR and NT-SSMIS show asymmetric distributions,
with a significant fraction of satellite SIC below 60%, which implies that the negative
differences between the NT-based SIC products and ship-based SIC are larger than other
products; BT-SMR shows the best symmetric distribution; BT-SSMIS, BT-AMSR2, and NT2-
AMSR2 all show asymmetric distributions, with all three products slightly overestimating
ship-based observations and NT2-AMSR2 overestimating ship-based observations the most.
According to the red fitted curve, BT-SMR is closer to ship-based observations than the other
five products in moderate SIC (30–70%). Out of the six SIC products, the overall deviation
of NT-SMR, BT-SMR, and NT-SSMIS was negative, with the largest negative deviation of
NT-SSMIS being approximately −9.42% and the smallest negative deviation of BT-SMR being
approximately −0.70%. The overall deviation of BT-SSMIS, BT-AMSR2, and NT2-AMSR2
was positive, and the maximum positive deviation of NT2-AMSR2 was approximately 5.53%.
Overall, among the PM SIC products, the ship-based SIC matches well in the high SIC regions,
and NT-SMR and NT-SSMIS tend to underestimate the ship-based SIC in the low SIC regions;
BT-SSMIS, NT2-AMSR2, and BT-AMSR2 significantly overestimate the ship-based SIC, and
BT-SMR matches best with ship-based observations in the medium SIC regions. Moreover,
BT-AMSR2 has the highest correlation with ship-based SIC; however, the slope of the BT-SMR
fitted curve is closer to the 1:1 identification line, which is consistent with the assessment of
Kern et al. [31], who used ship-based observations.

In addition to the evaluation of the overall data, winter (November–April) and summer
(May–October) parameters were also calculated, and the values are shown in Table 6. For
the three different types of assessments, the highest correlation was found in winter. The
winter and summer data accounted for 40.54% and 49.46% of the overall Arctic data,
respectively, representing a uniform and representative distribution. BT-SMR had the
lowest bias and MAE (−0.39% and 4.87%, respectively), while NT-SSMIS had the most
remarkable differences (−8.04% and 9.76%) from ship-based SIC in winter. In summer,
BT-SMR deviated from ship-based SIC the least, by approximately −0.91%. Generally,
SIC products based on the BT algorithm are superior to those based on the NT and NT2
algorithms. The MAEs of different SIC products increase by approximately 5% in summer
compared to winter, which means that PM-based SIC has better accuracy in winter. This
result is mainly due to the high sensitivity of microwaves to atmospheric conditions and
sea ice surface melting.
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Figure 12. Scatterplots of co-located daily average SIC from visual ship-based observations (Ice
Watch/ASSIST, x-axis) and the six satellite SIC algorithm products (y-axes) for the Arctic during
2019–2021. The blue solid lines denote the identity line. The red solid lines denote the linear regression
of the respective value pairs. The linear regression equation, bias, and squared linear correlation
coefficient (R2) are given at the top of every image.

Table 6. Summary of statistics of the comparison between daily average ship-based and PM SIC data
for the entire year, only winter, and only summer.

ID NT-SMR BT-SMR NT-SSMIS BT-SSMIS NT2-AMSR BT-AMSR

O
ve

ra
ll Bias −7.83 −0.70 −9.42 4.16 5.53 4.43

MAE 11.23 8.53 12.72 8.69 8.47 7.99
RMSE 16.06 13.12 18.46 12.71 12.87 11.73

R2 0.83 0.85 0.82 0.83 0.84 0.86

W
in

te
r Bias −6.39 −0.39 −8.04 1.17 6.52 1.83

MAE 7.96 4.87 9.76 5.23 5.44 5.07
RMSE 12.17 7.41 15.02 7.74 7.97 7.12

R2 0.85 0.90 0.84 0.89 0.90 0.91

Su
m

m
er Bias −8.80 −0.91 −10.36 6.19 6.90 6.20

MAE 13.46 11.02 14.72 11.06 10.53 9.99
RMSE 18.24 15.87 20.46 15.19 15.34 14.04

R2 0.80 0.82 0.78 0.80 0.81 0.84

A heatmap diagram was drawn to illustrate the differences between the PM SIC and
the ship-based SIC, as shown in Figure 13a. Most differences between the PM SIC and
the ship-based SIC are between −20% and 20%. In the Arctic, BT-SMR, BT-SSMIS, and
BT-AMSR2 differed from ship-based SIC in the range of [−20%, 20%], accounting for 89%,
90%, and 92% of the total number of samples, respectively; NT2-AMSR2 also accounted for
a 90% proportion; and NT-SSMIS accounted for a 75% proportion. Overall, three types of
SIC products based on the BT algorithm have higher accuracy, and SIC products based on
the NT algorithm tend to underestimate SIC.
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Figure 13. SIC differences between the PM SIC products and ship-based SIC. The number in the grid
denotes the proportion of data pairs for the PM SIC products. The horizontal axes denote six different
PM SICs. The SIC differences are grouped with an interval of 20% from −100% to 100% (vertical axis).
The (a) diagram indicates the Arctic and the (b) diagram indicates the Antarctic.

4.3.2. Antarctic

In Antarctica, the scatter plots of PM SIC and ship-based SIC along the ship’s trajectory
are shown in Figure 14. In the high SIC (70–100%) region, all five products show sym-
metrical distributions, except NT2-AMSR2. NT-SMR and BT-SMR show slightly negative
deviations. NT-SSMIS, BT-SSMIS, and BT-AMSR2 show slightly positive deviations, but
NT2-AMSR2 is significantly higher than ship-based SIC, with almost no points below the
1:1 identification line. For the moderate SIC (30–70%), BT-SMR is closest to the shipboard
observations, except for NT-SMR, which exhibits an overall positive deviation, and the
NT2-AMSR2 overestimation is the largest. Overall, the slope of the linear regression fitted
curve for SIC products based on the BT algorithm is closer to 1, and the slope of the linear
regression fitted curve for NT2-AMSR2 is the largest. NT-SMR shows a negative deviation
of approximately −3.75%, NT2-AMSR2 has the largest negative deviation of approximately
14.25%, and BT-SMR has the smallest deviation of approximately 1.42%. We also obtained
the parameter statistics in winter (May–October) and summer (November–April), and the
corresponding values are shown in Table 7. The table also shows that the deviations of
NT-SMR and NT-SSMIS decrease in winter compared to the overall data, and the devi-
ations of the remaining four products increase accordingly and are positive. The MAE
and RMSE become smaller for all five products except BT-SMR, and the main reason for
this difference is the relatively small sample size of the winter data, which accounts for
only 16% of the overall Antarctic sample sizes. The bias of BT-SMR decreases to −0.15% in
summer compared to the winter data and decreases accordingly for all products except
NT-SMR and NT-SSMIS. In terms of the RMSE parameters, the SIC products increased by
approximately 4–6% in summer compared to winter. The correlation coefficients for the
different products are higher in summer than in winter, mainly because summer samples
account for most of the overall sample, approximately 84%. Overall, the difference between
the SMR-based SIC products and ship-based observations is the smallest, and the BT-SMR
and ship-based SIC are negligible in summer. The difference between SIC products and
ship-based SIC is greater in the Antarctic than in the Arctic, and NT2-AMSR2 shows an
overestimation with a larger magnitude in both the Antarctic and the Arctic.
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Table 7. Same as in Table 6 but in the Antarctic.

ID NT-SMR BT-SMR NT-SSMIS BT-SSMIS NT2-AMSR BT-AMSR
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ll Bias −3.75 1.42 4.53 5.02 14.25 6.60

MAE 10.13 11.56 12.65 12.43 17.26 12.68
RMSE 16.12 17.64 18.53 18.46 25.21 18.64

R2 0.91 0.88 0.88 0.90 0.88 0.90
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r Bias 0.93 11.79 −1.99 10.72 17.01 11.08

MAE 8.96 13.08 9.30 12.64 17.00 12.27
RMSE 10.80 17.02 11.35 15.89 20.12 15.41

R2 0.71 0.68 0.68 0.66 0.64 0.69
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er Bias −4.47 −0.15 5.52 4.15 13.83 5.92

MAE 10.32 11.33 13.16 12.39 17.31 12.74
RMSE 16.78 17.74 19.39 18.82 25.89 19.08

R2 0.90 0.87 0.87 0.89 0.87 0.90

Similar to the Arctic, a heat map was created representing the difference between PM
SIC and ship-based SIC, as shown in Figure 13b. The difference between PM SIC and ship-
based SIC was overwhelming, within [−20%, 20%], and NT2-AMSR2 was within [40–80%]
for approximately 13% of the total samples. In contrast to the Arctic, the SIC products
based on the NT algorithm tend to overestimate the SIC values, which may be related to
the size of the Antarctic sample selected for this study. In the Antarctic, the differences were
located within the [0%, 20%] interval, which is significantly higher than [−20%, 0%]. BT-
SMR, BT-SSMIS, and BT-AMSR2 differed from ship-based SIC in the [−20%, 20%] interval,
accounting for 87%, 82%, and 82% of the overall Antarctic sample size, respectively, which
was smaller than that of the Arctic. Generally, the difference between satellite-based SIC
products and ship-based observations is greater in the Antarctic than that in the Arctic.
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The scale differences and observational limitations between ship-based and satellite-
based sea ice concentration observations are noteworthy, and the variability in ship-based
observations depends significantly on the proportion of thin ice [29]. The spatial and
temporal distribution of SIC values is limited by the small Antarctic shipboard observa-
tions collected for 2019–2021; thus, the results of the accuracy validation are to be further
evaluated. In the Antarctic, sea ice is dominated by first-year ice. In future works, we
will assess the stages of sea ice during the melting period based on MODIS (Moderate
Resolution Imaging Spectroradiometer) or SAR (Sentinel-1A) data, and also evaluate the
accuracy of BT-SMR results obtained in this study in MIZ.

5. Discussion
5.1. Arctic SIE and SIA Time Series Analysis

The time series of Arctic SIE (Figure 15a) and SIA (Figure 15b) from 2019 to 2021
reveal consistent trends, with the March SIE and SIA reaching maximum values and the
September SIE and SIA reaching minimum values. The maximum and minimum values of
SIE for the ASI-AMSR2 products are 14.497 × 106 km2 and 3.385 × 106 km2, respectively;
the maximum and minimum values of SIA are 13.565 × 106 km2 and 2.900 × 106 km2,
respectively. The SIE and SIA of the six SIC products with 25 km spatial resolutions are
smaller than those of the ASI-AMSR2 products, but the differences in SIE with the exact
spatial resolution of 25 km are minor. The missing data near the North Pole due to satellite
orbit inclination and width of the swath were filled with a constant SIC = 98%, and the
fixed value used in this study is consistent with the value used by Kern et al. [31]. Andersen
et al. [51] compared passive microwave SIC with SAR observations in winter at high
latitudes and found an average SIC of approximately 98%, with a slightly smaller value of
approximately 95% in summer. In summer, a fixed value of 98% instead of 95% would tend
to overestimate the SIA by approximately 1 × 104 km2. However, this difference seems
negligible compared to the other factors that contribute to the difference. Time series plots
are shown in Figure 15b,d, demonstrating the differences in SIE and SIA between different
SIC products and BT-SMR. The SIE difference between ASI-AMSR2 and BT-SMR is larger at
approximately 0.385 × 106 km2; the SIE difference between other 25 km SIC products and
BT-SMR is less than 0.05 × 106 km2. The difference in SIEs between BT-SSMIS and BT-SMR
is the smallest. The negative difference between NT-SSMIS and BT-SMR is the largest, at
approximately −0.047 × 106 km2, which means that products with 25 km spatial resolutions
can monitor whether there is extensive sea ice in the image grid. The difference is mainly
reflected in SIC values, which can be better reflected in SIA. ASI-AMSR2 shows the most
considerable positive difference in SIA with BT-SMR at approximately 0.359 × 106 km2,
followed by NT2-AMSR2 with 0.313 × 106 km2. The SIA difference between NT-SMR and
BT-SMR is the largest at approximately −0.535 × 106 km2; the SIA difference between
BT-AMSR2 and BT-SMR is the smallest at approximately 0.210 × 106 km2.
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the SIC datasets used.

5.2. Antarctic SIE and SIA Time Series Analysis

The Antarctic SIE and SIA time series from 2019 to 2021 show similar trends to those
of the Arctic. The SIA and SIE reach their minimums in March for the Antarctic and their
maximums in September. For the SIE, the ASI-AMSR2 product has the largest value of
~19.33 × 106 km2 and the NT-SSMIS product has the smallest value of approximately
1.93 × 106 km2. As shown in Figure 16b, SIE differences between different products and
BT-SMR are shown in the graph. The difference in SIE products for all 25 km spatial
resolutions is small at ~−0.1 × 106 km2, and the SIE of ASI-AMSR2 products shows a
positive deviation from BT-SMR in winter at approximately 0.2 to 0.3 × 106 km2. In summer
(December–March), the ASI-AMSR2 SIE shows a negative deviation of approximately
−0.2 × 106 km2. However, in 2020 and 2021, the negative variance is as high as −0.6 to
−0.8 × 106 km2. For SIA, the NT2-AMSR2 product has the largest value of approximately
18.31 × 106 km2; NT-SSMIS has the smallest value of ~1.33 × 106 km2; the difference
between different products and BT-SMR SIA is shown in Figure 16d with seasonal variation
tendency. The positive deviation between NT2-AMSR2 and BT-SMR is the largest at
approximately 0.5 × 106 km2 in winter and 1.0 × 106 km2 in summer. The difference
between ASI-AMSR2 and BT-SMR is ~0.4 × 106 km2 in winter and nearly negligible in
summer. The difference between BT-SSMIS and BT-AMSR2 and BT-SMR SIA is always
less than 0.2 × 106 km2. The positive deviation in January–March is mainly due to the
slightly larger BT-SSMIS and BT-AMSR2 SIC than BT-SMR SIC. Nevertheless, the difference
is almost zero in April–October, resulting from the offset positive and negative differences
in SIC values. The NT-SMR and NT-SSMIS differences from BT-SMR SIA are negative,
and the maximum negative difference is up to −2.0 × 106 km2. At the end of summer, the
difference is relatively stable around March each year, and the negative difference increases
from March to December, and decreases from December to February, with interannual
variation characteristics, where the difference between NT-SMR and BT-SMR is smaller
than that of NT-SSMIS.
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5.3. Assessing MIZ SIE with Different BT SIC Products

The differences between the different BT SIC products in the MIZ SIE are shown in
Figure 17. The MAE of the MIZ SIE of BT-SMR and BT-SSMIS increases by 0.19 × 106 km2

for the Arctic and Antarctic compared to the total SIE. For both BT-SMR and BT-AMSR2,
the increase in MAE of the MIZ SIE is 0.12 × 106 km2, indicating a more significant
difference in PM SIC in the MIZ compared to the overall sea area. This study identified
the region with SIC < 70% as the marginal ice zone. In the Arctic, the BT-SMR MIZ SIE is
higher than the BT-SSMIS MIZ SIE and BT-AMSR2 MIZ SIE, which is mainly caused by
the BT-SMR underestimating the BT-SSMIS and BT-AMSR2 SIC values, with the BT-SMR
classifying more pixels as marginal ice areas. The MIZ SIE of the three products accounted
for approximately 5% of the total SIE, but with the increase in temperature and melting
pool, it peaked in August at approximately 20% of the total SIE, with MAEs of BT-SMR,
BT-SSMIS, and BT-AMSR2 MIZ SIE fractions of 2.50% and 2.56%, respectively. In the
Antarctic, the PM MIZ SIE is approximately 0.95~3.7 × 106 km2, which is significantly
larger than that in the Arctic, mainly because the sea ice type in the Antarctic is dominated
by first-year ice. Compared with the BT-SSMIS MIZ SIE, the BT-SMR MIZ SIE is closer
to the BT-AMSR2 MIZ SIE, with a difference of 0.10 × 106 km2. However, the BT-SMR
MIZ SIE was lower during the Antarctic August–December summer period, possibly due
to partially overestimating BT-SMR during the summer period. Regarding the MIZ SIE
fraction, the proportion of SIE for the three SIC products is approximately 10% in winter,
and the proportion of SIE is larger during the summer period, accounting for nearly 50% of
the overall SIE in the maximum period. The MAEs between the BT-SMR MIZ SIE fraction
and BT-SSMIS MIZ SIE fraction, and the BT-AMSR2 MIZ SIE fraction, are 1.70% and 1.59%,
respectively. In general, the differences between BT-SMR and BT-SSMIS MIZ SIE are smaller
in the Arctic, and the differences between BT-SMR and BT-AMSR2 MIZ SIE are relatively
slight in the Antarctic. The three SIC products based on the bootstrap algorithm show
consistent performances for the MIZ SIE, and their variations have seasonal characteristics.
In winter, the MIZ SIE is relatively small and accounts for a small proportion of the total
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SIE. However, as the temperature rises, the MIZ SIE increases rapidly, and the proportion
gradually increases. The Antarctic is dominated by first-year ice, so the SIE and SIE fraction
increase much faster than in the Arctic.
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Figure 17. Monthly MIZ SIE and MIZ SIE fraction during 2019–2021. Additionally, the differences
in MIZ SIE and MIZ SIE fraction between the BT-SMR and BT-SSMIS (blue number) and between
the BT-SMR and BT-AMSR2 (green number) are shown. The shading presents the 2 STDs from the
monthly MIZ SIE and MIZ SIE fraction.

6. Conclusions

In this study, the SIC retrieval method based on the T_B data of HY-2B SMR was
applied to the dynamic tie-points from an improved bootstrap algorithm. The SIC products
of the Arctic and Antarctic during 2019–2021 of the established method were compared with
the published similar datasets and evaluated with the ship-based observations. BT-SMR
products present the similar interannual trends as the other products for the Arctic and
Antarctic. BT-SMR and BT-SSMIS from NSIDC showed the slightest difference, with MAE
of 3.64% in the Arctic and 1.93% in the Antarctic. Comparison of the six 25 km SIC products
with ship-based observations reveals that the correlation coefficient between BT-SMR and
ship-based SIC is 0.85 in the Arctic, and the slope of the fitted curve is close to the 1:1
identification line.

In summary, the BT algorithm was first applied to SMR TB data of HY-2B. The overall
performance was satisfactory, but the difference between other SIC products and similar
BT-based SIC products in the summer was relatively larger. Therefore, subsequent work
will thoroughly analyze the reasons for this difference. The TB data used in this paper are
not cross-calibrated with the SSMIS and AMSR2 sensors. The calibrated TB data will be
used in subsequent work to optimize the dynamic tie-points and obtain more consistent
long-term time series SIC products.
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Data Availability Statement: The HY-2B SMR TB data can be requested from the website of the
National Satellite Ocean Application Service (NSOAS) of China (http://www.nsoas.org.cn/index.
html, accessed on 6 December 2022). The NT-SSMIS dataset can be requested from NSIDC (https:
//nsidc.org/data/NSIDC-0051/versions/1, accessed on 6 December 2022). The BT-SSMIS dataset
can be downloaded from NSIDC (https://nsidc.org/data/nsidc-0079/versions/3, accessed on 6
December 2022). The NT2-AMSR2 and BT-AMSR2 data can be requested from NSIDC (https:
//nsidc.org/data/AU_SI25/versions/1, accessed on 6 December 2022). The ASI-AMSR2 data can
be requested from the University of Bremen (https://seaice.uni-bremen.de/data/, accessed on 6
December 2022). The ship-based observation data can be requested from https://www.pangaea.de/,
https://icewatch.met.no/, accessed on 6 December 2022. The SIC data retrieved in this study are
available upon request from the corresponding author.
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