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Abstract: The recognition of fine-grained objects is crucial for future remote sensing applications,
but this task is faced with the few-shot problem due to limited labeled data. In addition, the
existing few-shot learning methods do not consider the unique characteristics of remote sensing
objects, i.e., the complex backgrounds and the difficulty of extracting fine-grained features, leading
to suboptimal performance. In this study, we developed an improved task sampling strategy for
few-shot learning that optimizes the target distribution. The proposed approach incorporates broad
category information, where each sample is assigned both a broad and fine category label and
converts the target task distribution into a fine-grained distribution. This ensures that the model
focuses on extracting fine-grained features for the corresponding broad category. We also introduce a
category generation method that ensures the same number of fine-grained categories in each task
to improve the model accuracy. The experimental results demonstrate that the proposed strategy
outperforms the existing object recognition methods. We believe that this strategy has the potential
to be applied to fine-grained few-shot object recognition, thus contributing to the development of
high-precision remote sensing applications.

Keywords: fine-grained; few-shot; object recognition; sampling strategy

1. Introduction

The field of remote sensing has seen rapid development in the last few decades,
with applications in areas, such as environmental resources, hydrology, and geology. Object
recognition, which involves mapping visual features to object classes, is a crucial problem
in remote sensing image analysis and has diverse civil applications, such as geographic
information system (GIS) mapping, transportation planning, and navigation [1–7]. With the
release of more remote sensing datasets and the increasing spatial and spectral resolutions,
identifying fine-grained object classes, such as the detailed models of airplanes has now
become possible. Fine-grained object recognition in computer vision requires the identi-
fication of the subtle differences in the local regions of an object. The current methods of
fine-grained object recognition include deep convolutional neural network (DCNN)-based
methods, localization/recognition-based methods, network integration based methods,
and higher-order feature-coding-based methods. The part-based R-CNNs [8] are a represen-
tative approach that use a region-based convolutional neural network (R-CNN) to detect
objects and their discriminative parts. Meanwhile, attention mechanisms have been applied
to learn models without bounding box labels [9–11]. The network-integration-based meth-
ods learn multiple models and then integrate the predictions [12–14]. High-level feature
encoding combines feature maps using outer products [15–17], with the bilinear model
being the most representative. It is, however, unclear how these methods perform with
remote sensing objects, but some studies have attempted to apply them. For example, Sum-
bul et al. [18] introduced multiple sources of data to address the low inter-class variance,
small training set size for rare classes, and large class imbalance, while Aygünes et al. [19,20]
used weakly supervised location-based recognition for fine-grained tree recognition.
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The fine-grained object recognition task, which involves identifying the types of objects
among a large number of closely related subcategories, differs from the traditional object
identification tasks commonly studied in the remote sensing literature in at least two ways:

• The difficulty of accumulating a large number of similar subcategory samples can
greatly limit the size of the training set for certain subcategories;

• The class imbalance can lead the traditional supervised formulations to prefer fitting
to classes that occur frequently, while ignoring classes with a limited sample size.

In the data-driven models, these differences can create recognition difficulties, espe-
cially when there are limited labeled data, which is known as the few-shot learning (FSL)
problem. This is a significant issue in the fine-grained object recognition task. The current
FSL methods adapt models learned from auxiliary datasets with large amounts of data to
new data with limited labeled data. During training, the concept of a “task” is introduced,
where a small set of class-balanced samples are iteratively sampled from the auxiliary
dataset, and the model learns the task distribution. New data with limited annotation can
be considered a few-shot task and adapted using the task distribution learned from the
auxiliary dataset.

Most of the current FSL methods can be divided into three main categories:
(1) generation-based methods; (2) initialization-based methods; and (3) metric-based learn-
ing methods. The generation-based methods aim to learn a generator that can augment
the data for new classes [21–23], while the initialization-based approaches [24] focus on
learning a good initialization for the model parameters. The metric-based methods involve
measuring the distance between a query set and a support set in the embedding space to
determine the predicted categories [25,26]. For the FSL problem of remote sensing object
recognition, there is not much current research. However, Fu et al. [27] did introduce an
initialization-based few-shot approach to synthetic aperture radar (SAR) object recognition,
while noting that the few-shot classification of remote sensing objects is more difficult
than that of natural images. Some works have improved the effect of FSL on SAR data by
modifying the network and metric functions [28,29]. There have also been some studies
that have focused on addressing the few-shot transfer learning problem in SAR data [30,31].

However, the above FSL methods are not able to deal with remote sensing objects
very effectively. The diverse sources of remote sensing data make the learned distribution
inaccurate, and the complex background of remote sensing objects, the high image noise,
and the small size of the objects make the features more difficult to detect with the model,
which leads to a reduction of the FSL effect.

The current few-shot methods rely on a meta-learning training paradigm, i.e., learning
the task distributions by learning them on sampled tasks. Factors, such as the source of the
data and the way the samples are composed in the task, affect the task distribution, while
the latter can be considered to be determined by the sampling strategy. Naturally, in order
to make the learned task distribution closer to the real task distribution, we start from the
perspective of improving the effectiveness of the sampling strategy. We therefore propose
an improved sampling strategy for FSL tasks:

• We improve the sampling strategy for the fine-grained object recognition task. The task
sampling strategy is improved so that each sampled task contains only subcategory
samples belonging to the same broad category, e.g., fine-grained airplane samples
belonging to the airplane category. This sampling strategy is used to keep each task-
specific model focused on mining fine-grained features and solving the problem of
the difficult extraction of remote sensing object features.

• The category synthesis method keeps the sampling task length consistent. For each
task sampling operation, for the case where the number of fine-grained categories is
less than the number of sampling operations, a category synthesis method is proposed
to fill the gaps, to maintain the same task length for each sampling operation, and to
ensure that an accurate task distribution is learned instead of a mixed distribution.
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2. Background
2.1. Task Sampler

Meta-learning is a popular paradigm for few-shot learning methods. It involves
sampling tasks T on auxiliary datasets Daux, adapting models on the tasks, and learning
task distributions p(T ). The learned task knowledge p(T ) is then transferred to new tasks
on few-shot datasets Dnew. To ensure that it is task knowledge that is transferred, the new
data categories and the categories in the auxiliary dataset do not overlap. Tasks are sampled
through category-balanced sampling of samples, where each task contains N categories,
and each category has Ksupport + Kquery samples. Since Ksupport and Kquery are usually small
values, each task Ti is a small-size set. The optimization objective for few-shot learning is
shown in the following equation:

arg min
θ

ET ∼p(T )L(θ, T )→ arg min
θ

n

∑
i

1
n
L(θ, Ti)

where θ is model parameters, L is the loss function, and p(T ) is a task distribution.
To solve the few-shot problem using the meta-learning paradigm, the new task should

have an identical distribution to the task distribution on the auxiliary data, i.e., Tnew ∼ p(T ).
In remote sensing, a task distribution is related to the data source regionR, the number of
sampling categories N, and the number of samples per category Ksupport, Kquery. Therefore,
to ensure the effectiveness of the new task, at least the number of categories and the number
of samples per category should be consistent with the auxiliary tasks.

2.2. Few-Shot Learning on Tasks

In FSL, the model learns by storing information about the task distribution among the
meta-parameters. This stored information is called meta-information, and it can include the
entire model parameters, a portion of the model parameters, or a specific hyperparameter.
The optimization direction of the model is guided by the query set in the task during the
training process. The overall FSL process is shown in Figure 1.

Figure 1. The main process of FSL involves adjusting the meta-parameters based on the loss on the
query set using the task-specific parameters, which are fine-tuned from the meta-parameters through
update operations on the support set generated by the task sampler. The update operations and loss
calculation can vary depending on the specific FSL method being used.
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3. Methodology

The overall system for fine-grained object recognition in remote sensing applications
is illustrated in Figure 2, showing the input and output schematic. In the meta-learning
step, the initialized model is transformed into a meta-model by learning on the auxiliary
dataset through the tasks generated by the task sampler. The specific learning process is
described in Figure 1. In the inference phase, we sample the few-shot task, fine-tune the
meta-model on the support set, and finally output the prediction results for the query set.

Figure 2. Schematic diagram of the input and output of the whole system. The generation of the
meta-model and the subsequent output on the new data are inseparable from the task sampler.

3.1. Problem Formulation
3.1.1. Fine-Grained Problem

In Section 2.1, we discussed the task sampling paradigm for FSL training. However,
this sampling strategy does not have a way to solve the problem of the difficult extraction
of fine-grained remote sensing object features because the sampled tasks are not focused on
mining fine-grained features, and in each task sampling operation, the sampled categories
are:

CN = {CN
i |1 ≤ i ≤ N, CN

i ∈ Caux}

We explicitly define each category CN
i to belong to some broad category SN

i and have
CN

i ∈ SN
i . It is seen that SN

i = SN
j does not always hold, and under extreme conditions

there are even SN
i ∩ SN

j = ∅ for any i, j, which means that the task is concerned with

distinguishing differences between SN
i , SN

j rather than fine-grained CN
i and CN

j .

Further, such a sampling approach has a bias for some SN
i , since

p(CN
i ∈ SN

i |T ) =
∥∥{Ci|Ci ∈ SN

i }
∥∥

‖Caux‖

for each sampled category CN
i from Caux, and the bias on SN

i depends on the molecular∥∥{Ci|Ci ∈ SN
i }
∥∥.

Although the original intention of using this sampling paradigm is for the categories
to be balanced in each task, each task will still have a bias toward certain broad categories,
which is detrimental to the model learning of a generic large few-shot model.
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3.1.2. Validity Issues of Task Distribution Learning

In Sections 2.1 and 2.2, we showed that the purpose of the model optimization is to
eventually learn a task distribution. For the remote sensing recognition task, due to the
diverse sample sources, the number of certain categories may not reach the required number
of samples during the task sampling process, resulting in such a task being considered
as coming from a different task distribution, and thus the learned distribution is a mixed
distribution, which brings inaccuracy to the model learning.

3.2. Improved Task Sampler

In order to solve the problem of the difficult extraction of fine-grained features in
the few samples of remote sensing imagery, we improve the task sampling strategy to
make each task change from a few-shot task to a fine-grained few-shot task and let the
model learn fine-grained few-shot features. Specifically, the sample categories in the
unimproved task are from different broad categories, and such a task is called a recognition
task. However, such a task cannot focus on fine-grained features because the two samples
are from different broad categories which differ significantly, such as aircraft and ships(as
discussed in Section 3.1.1).

We improve the sampling strategy by including in each task only samples sampled
from a particular large class so that the model will focus on the intra-class differences
within the classes in the task, i.e., the fine-grained features. Such improved tasks, which
we call fine-grained tasks, end up with a fine-grained task distribution that the model
learns. It is worth noting that introducing additional broad category information does
not require additional annotation of the original dataset. In fact, for remote sensing data,
although there are many fine-grained categories, the broad categories these fine-grained
categories belong to are indeed very limited. We do not need additional annotation on the
data. We only need to add appropriate judgments in the programming.

At the same time, a category generation technique is designed for the situation of this
sampling strategy having an insufficient number of categories to be sampled. We use the
idea of mix-up for category generation by sampling the beta distribution to obtain a factor
λ, where, for any two category samples i, j considered to generate a new category, this
new category sample is obtained by pixel-level fusion as λi + (1− λ)j. Specifically, lambda
belongs to the distribution:

f (λ) =
λ−0.5(1− λ)−0.5∫ 1

0 u−0.5(1− u)−0.5du
= Beta(λ; 0.5, 0.5)

We set the λ to a random variable instead of a static parameter value in order to avoid
duplication of the resulting new category. For example, if there are only two categories
and five categories are sampled, if lambda is a constant parameter, then the new categories
generated are bound to be duplicated, so there is no guarantee that the length of the picked
task is five. We chose the beta distribution because the distribution is symmetric about
0.5 when the two parameters of the beta distribution agree, and the range of the random
variables is 0 to 1. Such a distribution is suitable for fusing pairs of samples.

3.3. Framework

The improvement methods discussed previously are integrated into a unified process.
The overall flow is shown in Algorithm 1.

Algorithm 1 Fine-Grained Task Sampling Process

Input:
The auxiliary dataset Daux;
Collection of categories in the auxiliary dataset Caux;
Collection of broad categories in the auxiliary dataset Saux;
Number of categories in a task N;
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Number of samples per category in a task Ksupport,Kquery.
Output:

Tasks sampled from auxiliary datasets T .
for iteration i = 1,2,3... do

Sample a broad category from Saux, denoted as Si
Calculate Ri = N mod ‖{Ci|Ci ∈ Si}‖, Ni = N | ‖{Ci|Ci ∈ Si}‖
for j=1,2,3,..Ni do

Sample two category C1
j , C2

j where C1
j , C2

j ∈ Si and C1
j , C2

j ∈ Caux

Sample Ksupport samples belonging to C1
j , C2

j from Daux, denoted as S1
j , S2

j

Sample Kquery samples belonging to C1
j , C2

j from Daux, denoted as Q1
j , Q2

j
Sample λj from Beta Distribution β(.2, .2)
For each image i, j in S1

j , S2
j fused as λji + (1− λj)j, denoted as Sj

For each image i, j in Q1
j , Q2

j fused as λji + (1− λj)j, denoted as Qj

Define Tij = (Sj, Qj)
end for
for Cj ∈ Si do

Sample Ksupport samples belonging to Cj from Daux, denoted as Sj
Sample Kquery samples belonging to Cj from Daux, denoted as Qj
Define T r

ij = (Sj, Qj)

end for
Define Ti = {Tij|j ≤ N}, T r

i = {T r
ij |Cj ∈ Si}

end for
return T = {Ti, T r

i }

We consider the fusion sample λji + (1− λj)j a brand new category sample. Since λ is
a random variable, each fusion sample category is considered as different. As can be seen
from the algorithm flow, the category sampled by each task belongs to the broad category
Si. Therefore, each task focuses on the small differences in the fine-grained categories of
broad category Si, forcing the model to mine fine-grained features. This sampling strategy,
which further specifies the tasks as fine-grained few-shot tasks, provides an artificial prior
to improve the mining ability for fine-grained features. Figure 3 briefly illustrates the
difference between a task sampled by the proposed approach and a task sampled by the
general policy.

Figure 3. Difference between the task sampled by the proposed approach and the task sampled by
the general policy. It can be seen that the tasks sampled by the proposed approach are all samples
under the broad airplane category.
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4. Datasets
4.1. FAIR1M Fine-Grained Dataset

The different models were trained and evaluated on the FAIR1M [32] dataset.There
are three reasons for adopting this dataset:

• In terms of quantity, it is much larger than the other existing object datasets, and it can
be divided into auxiliary datasets;

• It provides more rich fine-grained category information;
• It provides better image quality due to careful data cleaning procedures.

The FAIR1M dataset is unique in its focus on fine-grained object recognition in high-
resolution remote sensing imagery. The dataset contains more than 15,000 images from
over 100 locations worldwide, covering 37 fine-grained categories for object detection.
The categories include ten types of airplanes, eight types of ships, nine types of vehicles,
four types of courts, and three types of roads. The airplane categories consist of the most
common types in civil aviation, such as Boeing737 and Airbus A320. The ship categories
are defined by their functions, such as Passenger Ships and Engineering Ships. The vehicle
categories are also defined by their functions, such as Small Cars and Excavators. There
are also categories for courts and roads. The dataset also includes categories for objects
that do not belong to the specific types, labeled as Other-Airplane, Other-Ship, and Other-
Vehicle. The distribution of instances per category reflects the authenticity and challenge of
the dataset.

4.2. MTARSI Datasets

We also evaluated the models on the muti-type aircraft of remote sensing images
(MTARSI) dataset [33]. There are two reasons for adopting this dataset:

• The dataset is an aircraft dataset containing 20 fine-grained aircraft categories, which
is convenient for evaluating the effect of a model trained on FAIR1M;

• The objects are carefully selected from many airports around the world and are
calibrated with correct and high-quality category labeling.

The MTARSI dataset is a valuable resource for researchers working on aircraft recog-
nition in remote sensing images, as it offers a wide range of images with diverse air-
craft types and environmental conditions. With careful labeling and data augmentation,
the dataset provides an excellent opportunity for developing and evaluating algorithms for
fine-grained object recognition in high-resolution remote sensing imagery.

4.3. Object Cropping and Subcategory Division
4.3.1. FAIR1M

Although the dataset is intended for object detection, we carefully cropped the objects
according to the annotations, and some examples can be seen in Figure 4. The modified
dataset has 5 categories—Ship , Vehicle, Airplane, Court, and Road—and 38 subcategories,
which are shown in Figure 5 and Table 1 The samples of each subcategory show a long-
tail distribution in Figure 5. and the cropped objects are suitable for forming a few-shot
and fine-grained dataset. We formed the subcategories with a high number of samples
into an auxiliary dataset for the meta-training phase, and the remaining samples were
incorporated into a few-shot dataset for the testing phase. The detailed division is shown
in Tables 2 and 3.
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Figure 4. Cropped instances from the FAIR1M dataset.

Figure 5. The distribution of the number of cropped subcategories per category.

Table 1. The 5 categories (Ship, Vehicle, Airplane, Court, and Road) and 38 subcategories in the
FAIR1M dataset.

Category Subcatogory

Motorboat, Fishing Boat, Liquid Cargo Ship, Other-Ship, Dry Cargo ShipShip Passenger Ship, Tugboat, Warship, Engineering Ship

Small Car,VanVehicle Bus, Cargo Truck, Dump Truck, other-vehicle, Trailer, Tractor, Excavator, Truck Tractor

Boeing737, A220, Other-AirplaneAirplane Boeing747, Boeing777, Boeing787, ARJ21, C919, A321, A330, A350

Baseball Field, Basketball Court, Tennis Court, Basketball CourtCourt Football Field

IntersectionRoad Roundabout, Bridge
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Table 2. The subcategories in this table form the auxiliary dataset for training.

Category Base Subcatogory

Ship Motorboat, Fishing Boat, Liquid Cargo Ship, other-ship, Dry Cargo Ship

Vehicle Small Car,Van

Airplane Boeing737, A220, Other-Airplane

Court Baseball Field, Basketball Court, Tennis Court, Basketball Court

Road Intersection

Table 3. The subcategories in this table form the few-shot dataset for testing.

Category Noval Subcatogory

Ship Passenger Ship, Tugboat, Warship, Engineering Ship

Vehicle Bus, Cargo Truck, Dump Truck, other-vehicle, Trailer, Tractor, Excavator, Truck Tractor

Airplane Boeing747, Boeing777, Boeing787, ARJ21, C919, A321, A330, A350

Court Football Field

Road Roundabout, Bridge

4.3.2. MTARSI

Since the MTARSI dataset is released for object recognition, each sample is an image
containing an object and a background, and no additional processing of the data is required.
We apply this dataset directly in the experiments without any modification.

5. Experiments
5.1. General Overview of the Process

Broadly speaking, the experimental procedure was as follows:

• Determine base subcategories and novel subcategories (not overlapping);
• Use the FSL methods to learn from the base subcategories (#epoch: early stopping);
• Fine-tune the obtained model to the novel subcategories with the limited labeled data

(only one task).

5.1.1. Input Data

The original images were of various sizes, so they were resized to a fixed size of 224 ×
224 pixels for training.

5.1.2. Training

All the models were trained with the Adam optimizer in the inner gradient update and
stochastic gradient descent (SGD) in the outer gradient update on a single GPU. The learn-
ing rate was set to 10−3 for the Adam optimizer and 1 for SGD. We used a meta-learning
paradigm for the training, i.e., learning on a sampling task. Overall, the experiments were
set to simulate the few sample case by setting the number of samples per class k in a task to
1, 5, and 10. The FSL methods were then applied to learn from the tasks.

5.1.3. Fine-Tuning

Only one task was sampled from the few-shot dataset, and it had the same parameters
(N and Ksupport) as the task sampled from the auxiliary dataset. The model parameters
were fine-tuned on the support set for that task, and the query set was used to evaluate the
performance. We sampled 20 times and evaluated the average performance of the model
on the 20 tasks. Note that to reduce the variance, we increased the number of Kquery to 50.
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5.1.4. Evaluation Metrics

In this paper, to evaluate the performance of the fine-grained visual classification
(FGVC) algorithms, we use the classification accuracy as the metric for this task. Ncorrect
and Nall denote the number of correctly predicted instances and total instances, respectively.
The definition of the classification accuracy is as follows:

Acc =
Ncorrect

Nall

5.2. Network Structure

We used the most common network structure for the FSL methods, where the network
consisted of four blocks in series. Each block contained a 3 × 3 convolutional layer with
32 channels, a batch normalization layer, a maximum pooling layer of width 2, and a
rectified linear unit (ReLU) activation layer.

5.3. Comparing Methods

We used first-order model-agnostic meta-learning(FOML) [24], Reptile [34], and Proto-
typical network(Proto.) [25] as comparison methods. The first two of these methods are
initialization-based methods, and the last one is a metric-learning-based method. The pro-
posed method is based on the Prototypical network with the replacement of the proposed
task sampling strategy. All the methods used the same network structure described in the
previous section.

5.4. Experiments Results
5.4.1. Experiments on FAIR1M

We performed FSL on the base category divisions in Table 2 and tested on the novel
categories in Table 3 to obtain the following results, which are listed in Table 4.

Table 4. Only one task was sampled from the new classes. The model was then tuned on the support
set and the precision was tested on the query set. The sampling was conducted 50 times, and the
average performance accuracy on these tasks is reported.

ALL 5 Way 1 Shot 5 Way 5 Shot 5 Way 10 Shot

FOML 34.11% ± 9.32% 51.96% ± 10.11% 62.74% ± 10.08%

Reptile 37.24% ± 7.78% 54.32% ± 8.66% 63.36% ± 10.07%

Proto. 37.81% ± 7.67% 59.33% ± 9.45% 65.34% ± 9.13%

Ours 38.30% ± 8.05% 61.41% ± 8.32% 66.73% ± 8.98%

It can be seen from Table 4 that even if the base and novel categories do not overlap,
a model trained on the base categories and fine-tuned on a small amount of labeled data
from the novel categories can accurately predict the remaining data, demonstrating the
effectiveness of the few-shot methods. Consistent with the academic research findings,
the current FSL methods based on metric learning have a higher accuracy. Furthermore,
the accuracy of each method improves as the number of shots increases. It is quite clear that
as the number of samples increases, the distribution learned by the model becomes more ac-
curate. The proposed method, which uses an improved fine-grained task sampling strategy,
achieves a higher accuracy and larger performance improvement. Notably, the proposed
task sampling strategy was consistent with the other methods during testing, suggesting
that learning on the base categories with this strategy can lead to better few-shot results.

Furthermore, in the novel categories, we singled out broad categories for the model
tuning and testing, and we picked out the Aircraft, Ship, and Vehicle categories. The results
of these experiments are listed in Tables 5–7. As can be seen, compared to the experi-
mental results in Table 4 obtained on all the categories, the proposed approach shows an
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improvement, but not by much. Our analysis suggests that when a single broad category
is picked for the testing, it is a simple case, such as the large category of aircraft, where
the FSL model has a strong generalization ability due to the absence of interference from
samples belonging to other broad categories, and the model is fine-tuned to have a higher
accuracy, narrowing the gap with the proposed method. However, in most cases, the pro-
posed method still obtains a higher accuracy, which is due to the better fine-grained task
distribution learned on the auxiliary dataset. It can therefore be concluded that the key to
the effectiveness of FSL lies in the efficiency of learning on the auxiliary dataset.

Table 5. The broad category of ship was picked from the base categories for the experiment, and the
broad category of ship from the novel categories was used for the testing.

Ship 5 Way 1 Shot 5 Way 5 Shot 5 Way 10 Shot

FOML 40.34% ± 8.70% 52.26% ± 5.61% 58.49% ± 4.68%

Reptile 41.49% ± 5.98% 55.18% ± 4.96% 58.62% ± 3.45%

Proto. 43.64% ± 5.63% 56.63% ± 4.43% 60.28% ± 3.72%

Ours 43.98% ± 6.54% 56.82% ± 4.18% 61.12% ± 3.70%

Table 6. The broad category of vehicle was picked from the base categories for the experiment,
and the broad category of vehicle from the novel categories was used for the testing.

Vehicle 5 Way 1 Shot 5 Way 5 Shot 5 Way 10 Shot

FOML 27.34% ± 5.52% 36.87% ± 5.44% 41.25% ± 5.07%

Reptile 26.45% ± 4.80% 35.54% ± 4.92% 42.38% ± 5.19%

Proto. 29.78% ± 6.06% 42.55% ± 5.62% 47.22% ± 4.99%

Ours 30.02% ± 6.48% 41.34% ± 5.57% 46.38% ± 5.29%

Table 7. The broad category of airplane was picked from the base category for the experiment, and the
broad category of airplane from the novel categories was used for the testing.

Airplane 5 Way 1 Shot 5 Way 5 Shot 5 Way 10 Shot

FOML 22.33% ± 2.30% 35.68% ± 6.20% 45.39% ± 8.38%

Reptile 27.29% ± 3.83% 37.90% ± 5.21% 46.36% ± 8.23%

Proto. 27.75% ± 5.07% 40.68% ± 6.79% 47.02% ± 8.17%

Ours 28.16% ± 5.23% 41.64% ± 6.53% 47.67% ± 7.55%

5.4.2. Experiments on MTARSI

FSL focuses on learning the task distribution instead of the sample distribution, so
it does not require the same classification system for the auxiliary and new datasets.
To analyze FSL on a remote sensing dataset, we applied the model trained on the FAIR1M
dataset to the MTARSI dataset. All the categories of the MTARSI dataset were used for the
testing, with one task sampled for the model tuning and 50 tasks sampled for testing on
the remaining data. The results are listed in Table 8.

As can be seen from the results, the effect of the aircraft recognition performance
on the FAIR1M dataset (Table 7) is similar to the performance on the MTARSI dataset.
Furthermore, the accuracy is about the same, implying that the final performance effect
difference does not come from the sample difference between the sampled MTARSI and
FAIR1M datasets but depends on the learned task distribution on the auxiliary dataset.
The good news is that this implies that the model trained on the auxiliary dataset is highly
generalizable, giving the application a high migration adaptation capability.
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Table 8. Only one task was sampled from the new classes. The model was then tuned on the support
set, and the precision was tested on the query set. The sampling was conducted 50 times, and the
average performance accuracy on these tasks is reported.

ALL(Airplane) 5 Way 1 Shot 5 Way 5 Shot 5 Way 10 Shot

FOML 25.30% ± 4.88% 37.22% ± 5.63% 46.06% ± 5.90%

Reptile 27.54% ± 4.25% 40.86% ± 6.35% 48.23% ± 6.36%

Proto. 28.97% ± 5.10% 42.34% ± 6.16% 46.56% ± 6.70%

Ours 29.06% ± 5.27% 44.95% ± 6.77% 48.69% ± 6.70%

6. Conclusions

The remote sensing fine-grained object recognition task has a few-shot problem that is
difficult to get around, i.e., the lack of fine-grained object data. Although some few-shot
methods have been proposed to address learning from a small number of data samples,
these methods have not been adapted to remote sensing objects, where the object context is
complex and fine-grained features are difficult to extract. In this study, we first investigated
the FSL methods and found that only a small amount of work has been conducted in
the field of remote sensing. This inspired us to design a few-shot approach for remote
sensing tasks. In this paper, we reviewed the general paradigm of training FSL methods
on sampled tasks. We then affirmed the paradigm’s usefulness for FSL, but pointed out
its shortcomings for remote sensing data. The problem is that the task has a preference
for certain broad categories, the task may not be fine-grained, and the model has difficulty
extracting the already hard-to-extract fine-grained features of remote sensing imagery,
which can adversely affect the model learning. To solve this problem, we proposed an
improved task sampling strategy: the fine-grained task sampling strategy. The fine-grained
task sampling strategy ensures that the samples in each sampled task come from a certain
broad category, which ensures that the model focuses on the small differences in the fine-
grained features on that task. This reinforces the model to learn fine-grained features. We
tested the effectiveness of this sampling strategy on the FAIR1M and MTARSI datasets. We
found that the FSL method can achieve a large accuracy improvement using the improved
sampling strategy. In addition, from the performance effect on the two datasets, we pointed
out that the performance of FSL depends on the learning effect on the auxiliary datasets.
In our future work, we will attempt to further improve the existing network structure to
make it more suitable for remote sensing tasks. We will also bring the few-shot approach to
other tasks in remote sensing, such as remote sensing object detection.
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