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Abstract: Electromagnetic radiation at 1550 nm is highly absorbed by water and offers a novel way
to collect fuel moisture data, along with 3D structures of wildland fuels/vegetation, using lidar.
Two terrestrial laser scanning (TLS) units (FARO s350 (phase shift, PS) and RIEGL vz-2000 (time of
flight, TOF)) were assessed in a series of laboratory experiments to determine if lidar can be used
to estimate the moisture content of dead forest litter. Samples consisted of two control materials,
the angle and position of which could be manipulated (pine boards and cheesecloth), and four
single-species forest litter types (Douglas-fir needles, ponderosa pine needles, longleaf pine needles,
and southern red oak leaves). Sixteen sample trays of each material were soaked overnight, then
allowed to air dry with scanning taking place at 1 h, 2 h, 4 h, 8 h, 12 h, and then in 12 h increments
until the samples reached equilibrium moisture content with the ambient relative humidity. The
samples were then oven-dried for a final scanning and weighing. The spectral reflectance values of
each material were also recorded over the same drying intervals using a field spectrometer. There was
a strong correlation between the intensity and standard deviation of intensity per sample tray and
the moisture content of the dead leaf litter. A multiple linear regression model with a break at 100%
gravimetric moisture content produced the best model with R2 values as high as 0.97. This strong
relationship was observed with both the TOF and PS lidar units. At fuel moisture contents greater
than 100% gravimetric water content, the correlation between the pulse intensity values recorded by
both scanners and the fuel moisture content was the strongest. The relationship deteriorated with
distance, with the TOF scanner maintaining a stronger relationship at distance than the PS scanner.
Our results demonstrate that lidar can be used to detect and quantify fuel moisture across a range of
forest litter types. Based on our findings, lidar may be used to quantify fuel moisture levels in near
real-time and could be used to create spatial maps of wildland fuel moisture content.

Keywords: terrestrial lidar; TLS; fire; wildland fuel; fuel moisture; spectrometer; water content

1. Introduction

Water content within live and dead plant material, termed fuel moisture, is one of
the most critical contributors to wildland fire behavior. Moisture content determines the
availability and likelihood of wildland fuels to ignite and is a driver for many elements of
fire behavior including the rate of spread, fireline intensity, and flame length [1,2]. Prior to
ignition, moisture must first effectively be boiled off from fuels for fuel temperatures to rise
above 200 ◦C and attain heat for ignition for pyrolysis [3,4]. Live and dead fuel moisture
is highly dynamic over space and time and is difficult to measure in diverse fuel types,
and at differing spatial and temporal scales. Small changes in solar radiation and weather
impact fuel moisture [5] with fuel moisture levels in fine fuels varying throughout the day
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depending on the time and temperature [6,7]. Live and coarse dead fuels are minimally
affected by daily variations. They respond to longer-term, monthly to seasonal fluctuations
in weather and climate [8–10]. Identifying techniques to increase the speed and spatial
resolution of fuel moisture measurements has gained importance because fire behavior
models increasingly rely on complex data that include the fine-scale characterization of the
location and moisture content of potential fuels [11]. With longer and more severe wildfire
seasons associated with climate change, real-time assessments of fuel moisture and when
fuels are cured for burning are increasingly needed [6,12,13]. Accurate estimates of live
and dead fuel moisture are a critical input for fire behavior models, with small variations
in fuel moisture levels having a greater effect on model outputs as models become more
advanced [7,14].

Fuel moisture estimates can be made at local scales using field sampling techniques
or across landscapes with remote sensing techniques. Direct measurement methods can
be labor-intensive and time-consuming for a robust quantification. Samples must be
collected of either live or dead vegetation and placed in a sealed container to avoid fluctu-
ations caused by changes in ambient relative humidity. Field-collected samples are then
oven-dried to ensure that all water is removed from a sample prior to measuring the
dry biomass [15]. To calculate gravimetric fuel moisture, the dry weight of the sample
is subtracted from the original weight of the sample, and this value is then divided by
the dry weight of the sample, following 24–72 h of drying (depending on the size of the
fuel element). Due to the need for laboratory processing, such measures of fuel mois-
ture do not produce results until long after the field collection is complete. Another field
method used to measure fuel moisture involves the placement of wooden dowels of a
known dry weight in the field until the dowels have reached equilibrium with ambient
humidity (typically after 12 h). The dowels can then be weighed on-site to determine
the moisture content [16]. Electronic fuel moisture probes are also often used to collect
moisture estimates digitally [5,15]. However, both methods are limited to a single-point
assessment of moisture, and can miss important fuel moisture gradients across space and
time. Aggregation of multiple single-point moisture measurements is possible and can be
conducted to estimate moisture content across an area, but is cumbersome to implement.
A better solution is to employ remote sensing techniques, such that large areas can be
accurately sampled in a continuous manner.

1.1. Remote Sensing of Moisture

Remote sensing techniques for quantifying fuel moisture generally rely on the re-
flectance of the vegetation in sections of the electromagnetic spectrum that are more
sensitive to changes in moisture content. The near-infrared (NIR) wavelength 1450 nm and
shortwave infrared (SWIR) wavelength 1900 nm are highly absorbed by water. Previous
studies have demonstrated that, in these wavelengths, the reflectance of an object will
increase as moisture content decreases [17–21]. As a material dries, the relative increase in
reflectance will fluctuate with the EM wavelength, but for many plant species the relative
change in reflectance is greatest between 1400 nm to 1600 nm (Figure 1). Spectral indices
such as the global vegetation moisture index (GVMI) take advantage of this relationship
and can be employed using data from numerous remote sensing satellites such as Landsat,
MODIS, and Sentinel [17]. Analysis of spectral signatures to quantify fuel moisture content
is not limited to landscape-level satellite imagery. Fine-scale spectroscopy has also been
used to quantify moisture content in various applications. Examples include determin-
ing the influence of moisture content on the combustion and consumption of Douglas-fir
(Pseudotsuga menziesii) wood samples [22], seasonal variation of moisture content in lodge-
pole pine (Pinus contorta) and big sagebrush (Artemisia tridentata Nutt) litter [23], and in
lumber mills to sort wood products based on dryness [24]. When viewed with an infrared
(IR) camera, dead vegetation that is fully saturated with water appears darker and more
heterogeneous than dry vegetation, which appears lighter and more homogenous (Figure 2).
Infrared imagery acquired via drone has been shown to have moderate predictive power to
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characterize fuel moisture gradients as the radiance of ground cover picked up by a passive
IR sensor increases as the material dries [25].
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Figure 2. Using a 1550 nm wavelength scanner, scans were taken of a single section of cut pine
board fully saturated with water, at approximately 30% moisture content, and oven-dried. When
fully saturated, the board not only reflects less light, but reflectance is also more heterogenous across
the surface.

1.2. Passive vs. Active Sensors

Passive sensors rely on reflected energy from a controlled external light source or
the Sun and have been frequently used to quantify moisture content. This includes the
use of satellite imagery for surface and soil water detection [26,27], landscape-scale fuel
moisture content quantification [28,29], and spectroscopy for single-sample vegetation
moisture content [23,30]. The capacity of active sensors such as light detection and ranging
(lidar) sensors to evaluate the moisture content of dead wildland fuels has not been fully
evaluated. This evaluation is worthwhile because active sensors offer distinct advantages
over passive sensors. Passive sensors are only able to capture the reflectance of the surface
of vegetation, while active sensor energy pulses can penetrate through small gaps in the
vegetation coverage to sample surfaces that would be occluded to a passive sensor. Further,
with active sensors, a three-dimensional (3D) location is also included with each pulse,
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while most applications for passive sensors only supply a two-dimensional location. This
allows for a 3D model to be made to quantify vegetation structure, as well as a conditional
element (moisture content).

A lidar unit sends out a pulse of energy and calculates the distance traveled by each
pulse along with the amount (i.e., intensity) of energy returned. A common wavelength
for lidar to use is 1550 nm, which is within the NIR section that has a relatively large
change in reflectance as a material loses moisture (Figure 1). A large portion of lidar data
is collected from aircraft (i.e., airborne laser scanning (ALS)) data and is used to create
fine-scale terrain models from the 3D location information from each lidar return. Moisture
content estimates across an area have been derived using topographic models derived from
lidar [31], but lidar applications extend far beyond ground topography. ALS data have been
used extensively to model 3D forest structure elements such as tree height, diameter, and
the vertical composition of forest stands, and to identify canopy gaps [32–35]. Vertical point
distributions of lidar returns have also been used to model fuel connectively to characterize
fire behavior [36].

The three dimensional point clouds of ALS returns have been used successfully to
quantify a multitude of forest structural parameters, and the recorded intensity values
have also been used to detect inundated areas (i.e., wetlands), identify tree species from
crown architecture, and detect snags [37–39]. ALS has received attention for its potential to
quantify surface moisture, but variations in the vegetation cover have contributed more to
changes in intensity than the presence of water has [40]. There are inherent issues with using
lidar intensity values to quantify ground cover conditions. The amount of energy returned
to a scanner depends on the distance traveled, the angle of incidence when contacting
a surface, the material of the surface, and the texture of the surface [41]. There is an
important distinction between intensity and reflectance. Intensity is the amount of energy
returned to the scanner, while reflectance is an objective measurement of what proportion
of incoming energy is being reflected from a surface. Reflectance can be modeled from
intensity if adjustments are made for the distance traveled, angle of incidence, and surface
characteristics. However, calibrating intensity values to derive reflectance is often done by
simply adjusting for the distance traveled but not accounting for the angle of incidence or
surface texture [42,43]. Further, intensity values are difficult to normalize across the full
extent of an acquisition and are typically not calibrated between acquisitions. Intensity
maximum thresholds are variable to preclude signal saturation by using automatic gain
control. However, if lidar intensity values are normalized, and either a single scanner is
used or values are calibrated between scanners, useful spectral information can be derived
from intensity values. This would allow for the benefits of active sensors to be combined
with spectral reflectance indices to quantify condition information about the vegetation
being sampled (i.e., to determine moisture content). Landscape-level ALS is invaluable for
forest applications, but are not useful for fuel moisture mapping because ALS flights are
costly and generally occur every 1–5 years, whereas fuel moisture can meaningfully change
on an hourly to monthly basis depending on the fuel category. Terrestrial laser scanning
(TLS) offers an option for fine scale models of fuel moisture to be produced on demand.

1.3. Terrestrial Laser Scanning (TLS)

TLS has been used extensively for the fine-scale modeling of forest structural elements.
Using TLS to quantify the location and amount of potential wildfire fuels is a topic that has
been extensively researched [44–46]. However, using TLS intensity returns to characterize
the condition of wildland fuels has not been fully explored. For a TLS unit using 1550 nm
laser light, the amount of energy from a TLS pulse that is reflected off a surface should
decrease due to the absorption of energy as surface moisture increases. Just as IR radiation
at 1550 nm from the Sun is absorbed, and not reflected, by water vapor and thin layers
of water, the same principle holds true for IR radiation generated by a laser [47,48]. For
example, TLS has been used to detect moisture in building materials and mapping moisture
movement in buildings by comparing relative changes in intensity values of returns [49,50].
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Similarly, phase-based TLS units have been successfully used to quantify surface moisture
levels on a sandy beach [51].

Intensity values of TLS sensors have been used to quantify many different variables of
interest in live vegetation. Much the same as how vegetation spectral indices from images
(such as NDVI) can be used to quantify vegetation health, leveraging relationships between
different laser wavelengths of TLS units can also provide information on live leaf health
and location. Lidar sensors of differing laser wavelengths can be used in conjunction with
each other to provide an index based on intensity values to more easily separate leaves from
stems [52–54]. TLS intensity values have also been used to quantify the moisture content of
live leaves, using a dual wavelength approach to provide an index value [55–58]. Such an
approach has been effective at allowing the robust measurement of leaf water content and
has been related to overall plant health. Such an approach has also been used to measure
fluctuations in leaf water potential on an hourly basis [59], and to model whole-tree fuel
moisture content and equivalent water thickness in a three dimensional manner [60,61].
TLS intensity values and specifically the TLS intensity values of two differing wavelengths
are proven tools for quantifying moisture content within live vegetation. Many of the
studies that use TLS intensity to quantify moisture content provide a calibrated intensity
value that accounts for the distance traveled by the laser pulse to attempt to report the
reflectance of the surface and not just the amount of energy returned to the scanner (i.e.,
intensity). TLS intensity value degradation with distance often does not follow a simple
linear relationship and some scanners may create a dampening effect to close returns to
avoid signal saturation [62,63]. While TLS intensity values have been shown to be related to
moisture content on many different levels, leveraging this relationship to quantify moisture
gradients in dead forest litter from a single vantage point has yet to be fully explored.

There are a wide range of lidar units that are commonly used for terrain and vegetation
mapping. Two significant differences among TLS units are the wavelengths used and how
distances are calculated. For this study, we used 1550 nm wavelength terrestrial lidar
scanners because of the sensitivity of that wavelength to moisture, and we also evaluated
two types of TLS units: time of flight (TOF) and phase-shift (PS). A TOF lidar unit sends
out a discrete pulse of energy and records the time it takes for the pulse to be reflected
off a surface. Using the known speed of light, the object distance is calculated [64]. The
advantage of TOF units is that multiple returns can be recorded for each pulse sent as a
partial reflection of the energy is still recorded. The disadvantages are that surfaces in
proximity to the scanner are often distorted and that each pulse must be returned before the
next can be sent out. A PS lidar unit emits a continuous laser, and distance is calculated by
using the phase shift of the incoming reflected energy relative to the phase of the outgoing
energy. There are no discrete pulses of energy that are able to record multiple returns. PS
tends to be faster with less distortion at close distances [65]. However, PS scanners tend to
have a more limited range, mainly due to energy requirements. The different technologies
exhibit slight differences in how intensity values are calculated [65–67].

1.4. Study Objectives

Lidar is becoming increasingly common with rapid advancements in field applications.
In this study, we explored the ability of TLS to quantify fuel moisture in a controlled
laboratory environment. The main objective was to demonstrate that a single TLS unit
can provide a reliable measurement of fuel moisture in fuel beds comprising senesced
leaf material, and to test whether TOF or PS lidar technology performed better. The
intermediary objectives were to measure the relative change in fuel bed reflectance in
relation to the water content with a passive sensor spectrometer to validate that the change
in TLS intensity values correlated with a change in reflectance measured by the spectrometer.
Another objective was to derive a host of potential metrics from the multiple intensity
returns across a sample to determine which metric (or combination of metrics) had the
strongest relationship to fuel moisture. The final objective was to determine if changing the
angle of the fuel bed relative to the ground affected the relationship between the intensity
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metrics and fuel moisture content of the samples. Additionally, a table of coefficients was
developed for the relationships between the intensity metrics and moisture content for
the different sample types and distances. A workflow diagram is presented in Figure 3
that outlines the study objectives and illustrates the structure of the study. If TLS scanning
becomes an operational method for rapidly quantifying fuel moisture in potential fire fuels,
it will be a valuable tool to aid in prescribed burning and fire behavior prediction. Intensity
values were not calibrated to distance in this study to allow for a more direct comparison
between the two scanners at set distances.
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2. Materials and Methods
2.1. Materials

Six unique materials were used to evaluate the relationship between lidar reflectance
and fuel moisture, including four common forest litter types and two controls (Table 1).
Litter beds were constructed from senesced needle and broad leaf material collected from
forest locations in Washington and northern Florida. The litter types included Douglas-fir
(Pseudotsuga menziesii) needles, longleaf pine (Pinus palustris) needles, southern red oak
(Quercus falcata) leaves, and ponderosa pine (Pinus ponderosa) needles. The litter samples
were air-dried and sorted to remove any foreign particles. When assembling the leaf litter
trays, care was taken to ensure that the litter completely occluded the tray to ensure all
point returns were of the plant material and not the underlying tray. The sample trays were
constructed of a non-porous white plastic material measuring 30 cm × 30 cm × 5 cm with
a fine mesh screen as the base to allow for the draining of water. Sixteen samples (trays) of
each litter type and control material were assembled.
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Table 1. Sample types and weights used in this study. “Uncompacted” indicates the samples that
naturally had a lot of open area with no readily defined depth. Litter fuels were allowed to extend
upwards out of the sample trays to mimic natural conditions.

Sample Type Weight Range (Grams) Weight Mean (Grams) Depth of Sample

Douglas-fir (DF) 119–156 135 ~3 cm
Ponderosa pine (PP) 104–158 129 Uncompacted
Longleaf pine (LLP) 70–123 101 Uncompacted

Southern red oak (SRO) 27–35 31 Uncompacted
Fabric mesh (FM) 66–74 67 ~0.5 cm
Pine board (PB) 514–596 569 ~1.5 cm

The two controls, milled pine wood and fabric mesh, were used to assess the influence
of the scan angle on the intensity of the returns. The fabric mesh consisted of uniform layers
of cotton cheese cloth (a gauze-like material) to mimic the porosity of forest litter. The other
control material was milled, untreated pine board approximately 30 cm × 30 cm × 5 cm in
size. Three of the sixteen Douglas-fir samples were removed from the analysis due to fine
soil contamination that impacted the reflectance values.

2.2. Experimental Design
2.2.1. TLS Data Collection

The fuel moisture experiment was conducted at the Pacific Wildland Fire Sciences
Laboratory in Seattle, WA. All the samples were fully saturated by soaking them in water
for a minimum of 24 h in polyethylene bags. For scanning, the samples were arranged in
sets of four and placed at a 3 m, 6 m, 9 m, and 12 m distance from the scanners (Figure 4).
The samples were scanned simultaneously with PS and TOS units at 0 degrees (parallel to
the ground) at each distance. The control surfaces were additionally scanned at 45 degrees
and 90 degrees (perpendicular to the ground) (Table 2). The weight of each sample was
recorded, and then the samples were rotated to the next defined distance and the process
was repeated three times, so that each sample was scanned at all four scan locations.
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Table 2. Scanning intervals, starting with the time samples were removed from water bath (0). OD
refers to oven-dry. N is the total number of sample trays clipped from all lidar point clouds and the
number of weights recorded. Only the controls were scanned at angles other than 0.

Sample Type Scan Intervals (Hours from First Scan) Angle N *

Pine board (PB) 0, 2, 4, 8, 12, 24, 48, 72, 120, OD 0, 45, 90 3840–lidar
1280–weight

Fabric mesh (FM) 0, 2, 4, 8, 12, 24, 36, 48, OD 0, 45, 90 3456–lidar
1152–weight

Douglas-fir (DF) 0, 1, 2, 4, 8, 12, 24, 36, 48, OD 0 1280

Ponderosa pine (PP) 0, 1, 2, 4, 8, 12, 24, 36, 48,120, OD 0 1408

Longleaf pine (LLP) 0, 1, 2, 4, 8, 12, 24, 36, 48, OD 0 1280

Southern red oak (SRO) 0, 1, 2, 4, 8, 12, 24, 36, OD 0 1152

* Number of samples = number of scans (4 distances) × number of trays (16) × scan intervals × 2 scanners (FARO
& RIEGL) × 3 angles (PB & FM only).

After the initial scan (h 0), the process was repeated at the hourly time intervals of
1, 2, 4, 8, and 12 h since removal from the water bath, and then repeated every 12 h until
the samples reached equilibrium moisture content with the ambient relative humidity (i.e.,
their weight stabilized and was no longer decreasing due to water evaporation). Scanning
at four locations, weighing the samples, and rotating samples took approximately 50 min to
one hour. Between scan times, the samples were placed in a climate-controlled room with
~25% relative humidity to allow for gradual drying. Drying times varied by material type
(Table 2). Once the samples reached a stable weight, they were placed in a drying oven
set at 70 ◦C until the samples reached a constant weight (48 h). A final set of scans was
conducted immediately following the removal of the samples from the oven, and then the
oven-dry weights were collected. Sample gravimetric moisture content was calculated by
subtracting the final dry weight of the sample from the weight recorded during the drying
process, then dividing it by the final oven-dried weight.

2.2.2. Spectrometer Data Collection

An ASD FieldSpec 4 Wide-Res field spectroradiometer [68] with a spectral resolution
of 30 nm at 1400 to 2100 nm was used to collect the spectral information of each sample
to compare this with the lidar-based reflectance values. The spectrometer lens was placed
33 cm above the tray at a perpendicular angle and an 8-degree lens was used to sample
the approximate central 9 cm of each tray. The spectrometer was used when the samples
were rotated through the 6 m distance location. The sample trays were individually taken
into a dark room dedicated for the spectrometer using a tungsten bulb as a light source
(approximate wavelength range of 320 nm to 2400 nm). A spectralon disk was used to
calibrate the spectrometer before every measurement. The samples were checked to ensure
that there were no gaps exposing the tray bottom. The white material of the tray sides likely
reflected non-sample light back into the spectrometer sensor; this reflective phenomenon
was the same for all trays, and thus it was constant. Moreover, for this study, we were only
interested in the relative change in each sample as it dried, and not in gaining a true and
precise measurement of the spectral signature of each sample material or equating an exact
reflectance value as measured by the spectrometer to an exact intensity value from the
TLS. Maintaining a consistent sampling environment and procedure, the relative change in
spectral reflectance between the samples was measured.

2.3. Terrestrial Laser Scanners

Two 1550 nm wavelength TLS scanners including a time-of-flight RIEGL vz-2000 unit
and phase-shift FARO s350 unit were used. A summary of the properties of each scanner is
presented in Table 3. The scanning resolution settings of the FARO and RIEGL units were
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chosen to provide a scanning time of approximately 3.5 min. The FARO unit scanned at a
lower resolution than the RIEGL unit. A short scan time was prioritized over matching
scanning resolutions to minimize the evaporation of water from the samples as they were
rotated through the 4 scanning locations of each time interval. The number of points
per sample decreased as the distance from the scanner increased in relation to the scan
angle increment of each scanner (Table 3). The minimum number of points per sample
tray was sampled 12 m from the FARO unit (~900 points), and the maximum number of
points per sample tray was sampled 3 m from the RIEGL scanner (~103,000 points). The
total area effectively sampled with each laser pulse also increased with distance as the
laser footprint increased due to both the distance from the scanner as well as the angle of
incidence. The TLS units were placed as closely as possible to each other (~20 cm) and
were run simultaneously when scanning. This design was developed to balance the need
to gather data rapidly (as the samples were actively losing moisture while TLS scanning
was taking place) with the need to have sufficient replicants for statistical inference.

Table 3. Summaries of the two TLS units used for this study. Scan time was ~3.5 min with both
scanners running simultaneously using 1550 nm wavelength laser light for each unit. Laser pulses
intercepted the samples at differing angles for each distance. The footprint ellipsoid was significantly
elongated at the further distances.

Unit Specs Approximate number of pulses per sample

TLS Min Range Max Range Scan Angle
Increment 3 m 6 m 9 m

FARO 0.6 m ~350 m 0.018◦ ~34,000 ~6000 ~2000

RIEGL 2.5 m ~2000 m 0.010◦ ~103,000 ~18,500 ~6000

Footprint Size

TLS Beam Divergence Diameter at Exit Ellipsoid at 3 m
(mm)

Ellipsoid at 6 m
(mm)

Ellipsoid at 9 m
(mm)

Ellipsoid at 12 m
(mm)

FARO 0.3 mrad * 2.2 mm 3.3 × 5.9 4.1 × 13 5 × 23.1 5.9 × 35.7

RIEGL 0.3 mrad 18 mm 19.1 × 34.4 19.9 × 63 20.8 × 96.1 21.7 × 131.5

* 0.3 mrad corresponds to an increase of 30 mm in beam diameter per 100 m of range.

2.4. Data Processing

The FARO software “Scene” [69] and the RIEGL software “Riscan Pro” [70] were used
for the initial processing and conversion of the proprietary file formats into. LAS formats.
To ensure that all valid returns from the sample trays were preserved, point cloud filtering
was not conducted. This inclusive processing method included some amount of noise from
edge effects and errant reflected laser light. However, it was deemed better to use all point
returns to ensure all valid returns were included rather than try to filter out noise and
subsequently remove valid point returns.

The RIEGL intensity values for the points ranged from 0 to 50 and the FARO intensity
values ranged from 0 to 32,767 (scaled to a 15-bit radiometric resolution). After initial
processing, the program CloudCompare [71] was used to manually crop out all points that
were returns inside each sample tray. Care was taken to ensure that no points that were
returns from the sample trays or tray bottoms were included in the clip based upon the
intensity values of the points and their proximity to the edge or bottom. The RIEGL scanner
has the ability to register multiple returns from each pulse emitted, but across all samples,
only the first returns were within our clipping boundaries. Using only the first returns
was not intentional but rather coincidental to how the data was processed. The intensity
values were normalized between the FARO scans and the RIEGL scans by dividing each
intensity value by the maximum value present in each scan. The normalization process
scaled the intensity values between 0 to 1 for easier comparison between the two scanners.
The intensity metrics derived per sample were the mean, median, 95th percentile, standard
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deviation (SD), variance, and skew. Due to the confounding factors of the angle of incidence
and surface texture, normalized intensity values were used in place of the intensity values
and calibrated to represent surface reflectance.

2.5. Analysis
2.5.1. Spectrometer

An averaged spectral signature from the spectrometer sampling was created for each
sample type at each sampling interval (i.e., the average value of each wavelength for all 16
ponderosa pine needle litter samples at the 2 h scan time interval). The reflectance values for
each sample at 1550 nm were determined and compared with the moisture content recorded
for all the samples at the 6 m distance. A simple ordinary least-squares (OLS) regression
analysis was performed to determine if the reflectance measured by the spectrometer
(response) had a significant relationship to moisture content (predictor). The reflectance
values recorded by the spectrometer were also compared with the TLS intensity metrics
recorded for all samples at the 6 m distance. A simple regression analysis was performed
to determine if there was a significant relationship between the spectrometer-measured
reflectance values and the recorded mean TLS intensity.

2.5.2. TLS Intensity

The regression models compared the intensity mean, median, 95th percentile, SD,
variance, and skew of all the points within each sample. Three regression forms were
evaluated, including a linear model, a first-order polynomial transformation, and a linear
broken stick model, to determine what combination of the derived lidar intensity metrics
performed best as predictor variables for the measured fuel moisture. Log and squared
transformations were evaluated for the predictor variables, and a reduction in AIC (Akaike
information criterion) values were used for the final selection of predictor variables. The
AIC values were only calculated for model selection between the TLS variables and moisture
content. There was a change in slope for the metrics at 100% moisture (an exception being
pine board, for which a change in slope occurred at 40%); therefore, a broken stick regression
approach was used. To conduct this, consider a breakpoint at X = xb, and define:

I =

{
0 X < xb

1 X ≥ xb

Then, the broken stick regression model can be written as:

Y = β0 + β1X + β2 I + β3X ∗ I,

where β0 and β1 are the intercept and slope for X < xb, and β2 and β3 are the change in
intercept and slope moving from X < xb to X ≥ xb. Here, we applied the setting xb = 100.

Finally, an analysis of covariance was performed to determine if the scan angle on
the control samples significantly changed the coefficients between the lidar intensity and
moisture content, treating the scan angle as a simple factor.

3. Results
3.1. Moisture & Spectral Signature

Sample moisture content ranged from 0% (oven dried weight) to 300% (fully saturated).
The red oak leaves and the fabric mesh had the highest saturated moisture content and
weighed three times the dried sample weight. The maximum moisture content for conifer
needle litter ranged between 160% to 200%. The fully saturated pine boards reached
approximately 65% moisture content.

The sample reflectance values at 1550 nm ranged from 0.1 when fully saturated to
0.6 when oven-dried (Figure 5). The highest variance between sample moisture content was
generally observed at ~1450 nm, but a large spread of moisture values was also observed
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around 1550 nm. The regression analysis showed that the sample reflectance at 1550 nm
had a significant negative relationship (p < 0.05 for all sample materials) with the measured
fuel moisture. The rate of the decrease, variance of the points, and shape of the relationship
changed depending on the sample material. The coefficients of determination for the
sample materials in regard to the reflectance measured at 1550 nm and the fuel moisture
were as follows: Douglas-fir, 0.93; ponderosa pine, 0.9; longleaf pine, 0.84; southern red
oak, 0.8; fabric mesh, 0.77; pine board, 0.84.
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this experiment.

3.2. Spectrometer & TLS Intensity

The spectral reflectance at 1550 nm measured by the ASD spectrometer had a signifi-
cant positive relationship (p < 0.05) with the normalized mean intensity values from the
TLS units (Figure 6).
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Figure 6. Linear relationship between reflectance values as measured by the spectrometer at 1550 nm
and the mean intensity values of all lidar points from a sample. Intensity values were normalized
on a scale between 0 and 1 for a direct comparison between the FARO and RIEGL units. The lower
intensity values from the RIEGL unit are a product of this normalization and do not indicate that,
overall, less energy was returned by each RIEGL pulse.

3.3. TLS Metrics & Moisture

Of the six lidar metrics (mean, median, 95th percentile, standard deviation (SD), vari-
ance, and skew), the mean, median, and 95th percentile were correlated (>0.8 R2, p < 0.05).
The standard deviation and variance were also correlated (>0.8 R2, p < 0.05). However, there
was no meaningful correlation between the mean and the standard deviation (<0.25 R2,
p < 0.05). The best-performing models with the highest coefficient of determination and
lowest AIC value were the linear broken stick models using the mean intensity values with
the break at 100% moisture content for all sample materials except the pine board. The pine
board moisture content percentage never increased above 100% but the distinct change in
slope occurred at 40% moisture content. The locations of the breaks were determined by
where the slope of the linear relationship visually changed, with the exact subjective value
of 100% being chosen as it was a value with an easily understood meaning (the weight of
the sample was equal parts water and vegetation) and was uniformly a location across all
material types (except the pine boards) where the slope of the relationship changed. The
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mean of the lidar intensity values had the strongest correlation with the fuel moisture for the
RIEGL data and performed well for the FARO data (Figure 7 and Supplemental Figure S1).
However, the standard deviation of the intensity returns was also strongly correlated with
the fuel moisture and was a better predictor for some FARO samples than mean intensity
was (Figure 8). Images were produced using the point clouds from the FARO scanner to
illustrate the change in the reflectance of the samples at 1550 nm (Supplemental Figure S2).
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FARO and RIEGL scanners. Regression lines from a broken stick linear regression model are added.
The break location was 100% for all sample materials except pine board for which the break was
located at 40%.

3.4. Angle and Distance & TLS Metrics

Correlations between reflectance and fuel moisture were comparable between the
FARO and RIEGL units. However, beyond a distance of 3 m, the time-of-flight RIEGL
unit performed much better than the FARO did at modeling fuel moisture. While the
relationship deteriorated with distance for the RIEGL unit, the rate of deterioration was
much lower than that of the FARO unit. Deterioration was related to the distance, the angle
of incidence (Figure 4), and the footprint size (Table 2).

An ANCOVA test was performed to determine if the coefficients of the mean intensity
values vs. the moisture content of the 45◦ and 90◦ control samples differed significantly from
those of the 0◦ control samples. The normalized linear broken stick model coefficients are
presented in the Supplemental Table S1, noting the coefficient values that were significantly
different from the coefficient values of 0◦ samples. With the notable exception of the FARO
data at 3 m, there was no significant difference between the coefficients for the 0◦ and 45◦

intensity values. In general, the coefficients did not significantly change until the samples
were at an angle greater than 45◦.
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3.5. Model Coefficients

The coefficient of determination for the final broken stick models ranged from 0.98 for
the southern red oak and fabric mesh samples at the 3 m distance to 0.07 for the long leaf
pine at 12 m. With few exceptions, the regression models of the reflectance values from
the TOF RIEGL unit had stronger model fits than those of the PS FARO unit, especially
at the further distances (Table 4). A comprehensive table of the coefficients and R2 values
for the non-normalized data is included in Supplementary Table S2. Each sample type at
each distance with moisture levels before and after the break in the regression line, using a
multiple linear regression model for mean and SD reflectance, is shown below.

Table 4. Coefficient of determination values for multiple linear regression models across sample
types. Mean intensity values of each sample and the standard deviation of each sample revealed the
best fitting model. The figures 0, 45, and 90 indicate the sample angle relative to the ground. A more
comprehensive table is presented in Supplementary Table S2.

Mean & SD DF R2 PP R2 LLP R2 SRO R2 FM 0 R2 FM 45 R2 FM 90 R2 PB 0 R2 PB 45 R2 PB 90 R2

FARO ALL 0.65 0.40 0.28 0.83 0.66 0.84 0.88 0.25 0.44 0.49

RIEGL ALL 0.86 0.56 0.69 0.95 0.92 0.94 0.92 0.32 0.54 0.50

FARO 3 M 0.94 0.78 0.86 0.95 0.91 0.96 0.96 0.43 0.59 0.52

RIEGL 3 M 0.95 0.76 0.90 0.98 0.96 0.98 0.98 0.46 0.65 0.61

FARO 6 M 0.81 0.55 0.68 0.94 0.87 0.94 0.95 0.34 0.58 0.60

RIEGL 6 M 0.92 0.60 0.79 0.97 0.94 0.97 0.98 0.38 0.58 0.63

FARO 9 M 0.62 0.45 0.19 0.91 0.66 0.86 0.84 0.25 0.47 0.45

RIEGL 9 M 0.83 0.51 0.72 0.96 0.93 0.97 0.97 0.30 0.55 0.67

FARO 12 M 0.54 0.37 0.07 0.85 0.66 0.89 0.86 0.17 0.44 0.44

RIEGL 12 M 0.88 0.49 0.68 0.93 0.92 0.97 0.97 0.26 0.50 0.67

4. Discussion

In this laboratory-based study, we quantified changes in fuel moisture using active
sensor laser pulses at set distances from two 1550 nm lidar units. Beyond determining that
lidar intensity returns can be used to estimate fuel moisture levels, we also determined that
time-of-flight and phase-shift lidar units can both effectively measure changes in moisture
in litter fuel beds. These findings corroborate those of studies that have used lidar to
determine material characteristics using the intensity of return values [72,73]. They are also
in line with those of numerous studies that have utilized dual-band TLS point clouds to
determine live leaf moisture content [55,56,58]. However, this study provides an important
new perspective on using a single wavelength TLS unit to determine the moisture content
of wildland fuels. While we limited our study to common forest litter types, this study is
an important step in utilizing active sensors to relate the spectral qualities of wildland fuels
to fuel moisture while also capturing three-dimensional positional information.

4.1. Moisture & Spectral Signature

For this study, we first used standard spectrometry to confirm that there was a quan-
tifiable difference in the spectral reflectance of leaf litter fuel beds as they air dried. The
reflectance of all the samples increased as they dried. Increased reflectance with decreasing
moisture content is well established [23,74,75], but quantifying the change in reflectance
with a precise spectroradiometer allowed us to employ an established method to measure
spectral reflectance changes instead of fully relying on a novel use of TLS to gauge change.
We used the simple sampling technique of using a singular nadir view to measure the
reflectance of the materials as they dried. The sampling angle, spectrometer footprint size,
tray materials, and light source would all affect the values recorded by the spectrometer.
The fact that reflectance changes as materials dry is well established. An exhaustive analysis
of how spectrometer setup affects the reflectance values recorded was not the purpose of
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this study. The use of the spectrometer was only for establishing if changes in moisture
content detected by a well-established methodology using a spectrometer correlated with
the changes in intensity recorded by a TLS unit.

4.2. Spectrometer & TLS Intensity

Reflectance at 1550 nm as recorded by the spectrometer was strongly correlated with
the intensity values from the TLS units. Model fit differed among the sample types, with
the lowest coefficient of determination being found for the pine boards. This was likely
due to the heterogenous reflectance that was present, an artifact of the wood grain and
knots. Aside from the pine boards, there was also a clear tendency for the more compact
samples to have a higher coefficient of determination (e.g., Douglas-fir needles and the
fabric mesh; Figure 6). The ponderosa pine, longleaf pine, and southern red oak were
relatively uncompacted, with there being large amounts of air space within the samples.
The uncompacted nature of these samples resulted in greater variability in their drying
rates than in the drying rates of more compact samples. This structure also provided a more
varied surface for the reflected lidar pulses compared to the more homogenous surface
of a compact sample. Variances in the relationship between the spectrometer readings
and the intensity returns from the TLS units were similar between the FARO and RIEGL
units. It is important to note that we were only interested in the relative change in spectral
reflectance as measured by the spectrometer and the intensity values of the TLS. Because
the conditions in the spectrometer sampling and the lidar scanning were consistent, the
relative difference with the change in the moisture content was successfully measured. The
discernment of this relative difference is not to be confused with an attempt to determine
the absolute conversion values between the spectrometer readings and TLS intensity values.
For absolute values to be compared, such as when the x value from the spectrometer is
equal to the x value from the TLS unit, a more rigorous sampling regimen would have been
required, and potentially, confounding issues such as the angle of sampling would have
needed to be accounted for. The view angle of the spectrometer was consistent at the nadir
while the angle from the TLS scanner at 6 m was 18.4◦ (Figure 4). The spectrometer and
the TLS scanner functionally saw different parts of the sample trays, but because we were
only interested in if the relative change in reflectance measured by the spectrometer and
the relative change in intensity measured by the TLS units were correlated, this difference
in angle was not of concern.

4.3. TLS Metrics & Moisture

We evaluated a range of metrics that could be derived from the lidar pulse intensity.
Of the seven metrics evaluated, the mean intensity per sample and the standard deviation
of the intensity values per sample produced the most robust models. The broken stick
linear regression models had high coefficients of determination, but relationships were
strongest when the samples had a moisture content greater than 100%. At these moisture
content levels, the strong relationship was likely only caused by surface water evaporation.
This result suggests that lidar-based fuel moisture sensing will not be reliable in informing
decisions based on fuel moisture content of less than 30%, which is typically required for
prescribed burn planning [15,76]. However, lidar-based measurements could be helpful in
remote stations that detect when live and dead fuel moistures are curing and potentially
available for wildfires.

That intensity was related to dead fuel moisture levels in our study is consistent with
other studies that have shown a relationship between lidar intensity and live leaf moisture
content or building material moisture content. That we also found a relationship between
the standard deviation of pulses per sample tray and fuel moisture is a more novel finding.
It is observable that the surface of a sample becomes more homogeneous in its reflectance
as it dries (Figure 2). With leaf litter, this is likely due to the fact that the litter will have
varying levels of moisture content between the upper leaves that will dry faster relative to
the lower leaves that will dry more slowly. This is more pronounced in the samples that
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were less compacted, such as the long leaf pine. Additionally, the samples tended to be
more compact when fully saturated, creating a more uniform surface with less variation in
angles for the lidar pulses to reflect off.

4.4. Angle and Distance & TLS Metrics

We also evaluated if the angle of samples relative to the ground and distance of
samples from scanner influenced the lidar intensity returns and how results differed
between the PS and TOF sensors. While a strong relationship was found between laser
pulse return intensity and fuel moisture, the relationship deteriorated with the distance
from the scanner. This result was consistent between the PS and TOF scanners. The
coefficients of the relationship between intensity and moisture also changed as the distance
increased (Table 4, Figure S1). The TOF scanner maintained a stronger relationship as the
distance increased while the PS scanner only had a strong relationship at close ranges.
These findings are limited to a single study and are not sufficient for inferring that TOF
units will always perform better than PS units for fuel moisture characterization. However,
it is a significant finding that the type of lidar technology, the power of the laser, and
potentially the size of the pulse footprint can affect the relationship. The footprint of
the TOF RIEGL scanner is significantly larger than the footprint of the PS FARO scanner
(Table 3). Subsequently, each lidar return from the RIEGL unit effectively samples a larger
area. Because of the larger footprint size of the RIEGL unit, it is more likely for (especially
at further distances) the returned intensity value to be a mixture of the reflectance from
the materials inside the tray, the tray edge, and potentially the area outside the tray. This
is likely minimized by the fact the RIEGL unit registers multiple returns per pulse, so the
energy reflected from outside the tray should return to the RIEGL unit as a separate pulse
return. It is unclear how much of an affect this had on the deteriorating strength of the
relationship between the intensity and moisture as the distance increased.

For this study, we were interested in whether or not TLS can be used in the field,
in which variability is inherent in the ground surface. As such, we were interested in
the relative position of the samples to the ground and did not conduct an exhaustive
analysis of the loss of the return intensity based on the true angle of incidence. The angle
of incidence of each lidar pulse is determined not only by the orientation of the sample
relative to the ground, but also by the distance of each sample from the scanner (Figure 4).
When determining the regression lines for the samples at the the tested angles, the Y
intercept for all the 45◦ and 90◦ samples was greater than the intercept for the 0◦ samples
(Figure S3), indicating that the former returned more energy than the 0◦ samples did.
With a single exception being the fully saturated pine boards located 3 m from the FARO
scanner, there was no significant difference between the regression coefficient for samples
at 45◦ compared to samples at 0◦ relative to the ground. While numerous samples did
demonstrate a significant difference between regression coefficients with samples at 90◦

compared to samples at 0◦, these findings still present strong evidence that TLS intensity
values maintain a consistent relationship to moisture content at least until the ground
surface is at an angle of incidence greater than 45◦. Further, it is important to consider
that a significant difference in regression coefficients is determined not only by the linear
trend of the data but also the spread of the data. Data clustered more tightly around the
regression line will be more likely to show a significant difference between coefficients with
a smaller change. Therefore, the RIEGL data, which tended to have a larger coefficient of
determination than the FARO data, were more likely to show a significant difference in
regression coefficients with a smaller change in the coefficient values. Past studies that
have looked at the effect of the angle on intensity returns as they relate to moisture content
have had mixed results [54,58,77]. That the angle influences the amount of energy returned
is objectively true, but at what point that change degrades relationships between moisture
content and intensity of return involves numerous additional variables, such as the specular
nature of the reflecting surface. We speculate that the angle will have less of an effect on
reflectance relationships with moisture content when the surface observed is a fuel bed on
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the ground rather than individual leaves on a tree simply due to the spatial arrangement of
surfaces being more uniform and less complex.

Intensity Calibration

Calibrating intensity values can have several different meanings. Interscan calibration
can be conducted to ensure that the returned values are comparable between scans taken at
different times in different conditions or that two different types of scanners are returning
comparable values. We normalized the intensity values on a scale of 0 to 1 to facilitate the
comparison between the scanners but this was not a true calibration for determining a trans-
formation value by which the x value from the FARO scanner = x value from the RIEGL.
The purpose of this study was not to derive coefficients to allow for the conversion of inten-
sity values between two manufacturers of TLS units. Rather, we were interested in if the
two scanners detected the relative change and one type of lidar technology outperformed
the other in regard to its ability to quantify moisture content.

A calibration of intensity values can also be conducted to try and determine reflectance.
This has been done in numerous studies utilizing TLS intensity values [43,55,63,78]. For
our results to be applied in the field, a calibration of distance to model actual reflectance
would need to be conducted to determine fuel moisture content at locations different from
the distances sampled in this study.

4.5. Model Coefficients

The purpose of this study was to explore the relationships between different metrics
derivable from TLS scans and the known fuel moisture levels of samples in a laboratory
setting. Our initial results indicate that this methodology shows promise for future field
applications in estimating the fuel moisture of forest litter from TLS intensity returns. Our
results, with high levels of significance and high coefficients of determination, show that
model development for field applications is possible. A variable model with the distance
from the scanner incorporated will be necessary to provide reliable results. Further, most
lidar datasets do not have calibrated intensity values, and the intensity values are generally
relativized to a range of minimum and maximum intensity values returned within a
scan. This inherently makes comparison between scans difficult. There are also numerous
environmental factors that can influence lidar return values such as temperature and
humidity [79,80]. We performed our experiment in a controlled laboratory environment in
which we could be reasonably certain that no external factors would impact the intensity
return values between the scans on different days.

4.6. Future Research

Given the limitations of using TLS intensity values listed above, the next step for
the application of TLS and fuel moisture measurements is to take the scanners into the
field for real-world data collection. This study provides the background and regression
analysis parameters for applications in field-collected data. The goal is to operationalize
lidar scanning to quantify fuel moisture levels beyond the use of TLS for fine scale moisture
mapping from a stationary location. More research needs to be conducted to potentially
calibrate intensity values to distance. Beyond simple distance calibration, it should also
be investigated if the relationship between standard deviation and moisture is affected
by distance. Further, we used “pure” fuel samples of leaves from a single species. More
work is needed to determine if a generalized model can be produced that can be applied
to mixed fuel beds found in field settings. If a reliable calibration to convert intensity to
reflectance can be conducted, then this process has potential for mapping larger areas using
drones and mobile lidar units. A drone-based lidar unit sampling at a 1550 nm wavelength
could cover a much larger area with a more consistent distance from the ground than a
stationary tripod mounted TLS could.

Applications beyond fuel moisture mapping are numerous. A drone-based lidar unit
could also be used for the detection and verification of wetland below the canopy by
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isolating only the ground returns and determining the locations of inundated soils and
vegetation. While ALS has been used to detect inundated areas under the canopy [39], a
drone-based approach would allow for the intentional selection of a lidar sensor using a
1550 nm wavelength as well as greater temporal resolution of resampling. Any investigation
in which the detection of ground moisture is important could take advantage of the benefits
of using an active sensor over a passive sensor spectroradiometer.

5. Conclusions

Fuel moisture is a critical variable for wildland fire management but is costly and
inefficient to sample with traditional methods. Drone-based techniques using spectral
reflectance values are being developed [25,81] to estimate moisture levels at a fine spatial
scale, but the use of active sensors such as lidar sensors can present advantages over the
use of passive sensors. Specifically, lidar sensors can penetrate through small gaps in
forest cover to derive measurements for fine-scale terrain mapping. This characteristic
makes it possible to derive information about ground moisture content via the intensity
values of surfaces that are not detectable by passive sensors. As further studies evaluate
the application of lidar sensors in moisture sampling, this developing research field will
be of great interest to designated fire managers and scientists working on fire behavior
prediction and fire ecology.

Because of the weaker relationships that exist with lower fuel moisture values, there
may be limitations to the use of TLS to inform decisions about wildland fire behavior, but
it can be useful to determine moisture gradients and seasonal shifts in fuel availability
for combustion, and to detect areas with high moisture and water content such as seeps
and small wetlands. These are preliminary findings that indicate that active sensors such
as lidar sensors provide the potential ability to quantify moisture content based on the
intensity and variation of intensity values. To further evaluate this method, field studies
need to be conducted to measure TLS measurements coupled with field measurements of
litter moisture to verify the ability of TLS to quantify fuel moisture outside of a laboratory
environment. This study sets the groundwork for the future use of lidar as a moisture
detection tool that will allow for the rapid, onsite, and continuous quantification of forest
litter moisture content.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs15061482/s1, Figure S1: Mean intensity values of all samples across
all distances; Figure S2: Images produced from the FARO laser scanner of a representitive of each sample
type fully saturated; Figure S3: Scatter plot of all control samples at the three different angles; Table S1:
Coefficient values; Table S2: Comprehensive table of the coefficients and R2 values.
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