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Abstract: Using spectral data to quantify nitrogen (N), phosphorus (P), and potassium (K) contents
in soybean plants can help breeding programs develop fertilizer-efficient genotypes. Employing
machine learning (ML) techniques to classify these genotypes according to their nutritional content
makes the analyses performed in the programs even faster and more reliable. Thus, the objective
of this study was to find the best ML algorithm(s) and input configurations in the classification of
soybean genotypes for higher N, P, and K leaf contents. A total of 103 F2 soybean populations were
evaluated in a randomized block design with two repetitions. At 60 days after emergence (DAE),
spectral images were collected using a Sensefly eBee RTK fixed-wing remotely piloted aircraft (RPA)
with autonomous take-off, flight plan, and landing control. The eBee was equipped with the Parrot
Sequoia multispectral sensor. Reflectance values were obtained in the following spectral bands (SBs):
red (660 nm), green (550 nm), NIR (735 nm), and red-edge (790 nm), which were used to calculate
the vegetation index (VIs): normalized difference vegetation index (NDVI), normalized difference
red edge (NDRE), green normalized difference vegetation index (GNDVI), soil-adjusted vegetation
index (SAVI), modified soil-adjusted vegetation index (MSAVI), modified chlorophyll absorption
in reflectance index (MCARI), enhanced vegetation index (EVI), and simplified canopy chlorophyll
content index (SCCCI). At the same time of the flight, leaves were collected in each experimental unit
to obtain the leaf contents of N, P, and K. The data were submitted to a Pearson correlation analysis.
Subsequently, a principal component analysis was performed together with the k-means algorithm
to define two clusters: one whose genotypes have high leaf contents and another whose genotypes
have low leaf contents. Boxplots were generated for each cluster according to the content of each
nutrient within the groups formed, seeking to identify which set of genotypes has higher nutrient
contents. Afterward, the data were submitted to machine learning analysis using the following
algorithms: decision tree algorithms J48 and REPTree, random forest (RF), artificial neural network
(ANN), support vector machine (SVM), and logistic regression (LR, used as control). The clusters
were used as output variables of the classification models used. The spectral data were used as input
variables for the models, and three different configurations were tested: using SB only, using VIs only,
and using SBs+VIs. The J48 and SVM algorithms had the best performance in classifying soybean
genotypes. The best input configuration for the algorithms was using the spectral bands as input.
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1. Introduction

Selecting soybean genotypes that are adapted to and have good yield performance in
poor fertility soils is essential in breeding programs. Such characteristics provide savings
for the farmer with fertilizer purchases, reduce the global demand for fertilizers, ensure
food security, and mitigate negative environmental impacts caused by the erroneous use of
fertilizers [1]. In this sense, performing phenotypic, physiological, and nutritional plant
assessments is a key step in soybean genetic breeding programs, and using remote sensing
techniques and powerful data analysis has enabled greater precision and speed in the
evaluation processes [2]

Satellite images are used in agriculture, providing important information; however,
this information has limiting resolutions in terms of time and space, especially in small
areas, such as experimental fields [3]. There is ongoing development in sensors coupled
to unmanned aerial vehicles (UAVs), making it possible to obtain high spatial resolution
images and thus provide accurate data for agricultural monitoring [4]. Furthermore,
UAVs are light and easy to handle and can be used in various agricultural scenarios,
from soil to plant evaluations [5], allowing a large amount of data to be obtained at a
relatively low cost [6]. High-throughput phenotyping (HTP) has played an essential role
in plant evaluations in soybean breeding programs and genetic research. Such advances
are attributed to remote sensing and more robust and accurate data analysis techniques [2].
Several plant traits can be related to the reflectance they emit by using sensors to obtain this
information [7], which have several applications, such as detection of crop water deficit,
chlorophyll variation, identification of stress in early stages of plant development, and crop
yield prediction [8].

Traditional methods of determining the nutrient status in plants and indicating the
best fertilizer management require large numbers of leaf samples and chemical analyses
that are costly and time-consuming [9]. It is recommended that the nutritional monitoring
of the crop be done throughout the crop cycle to obtain more assertive answers on when
and how much to apply [10,11]. Spectral characteristics of the plant are influenced by
several factors intrinsic to it, among them nutritional conditions, which directly affect the
plant’s photosynthetic rate. The authors of [7] found that the spectral region of 470–800 nm
is essential for detecting the photosynthetic and nutritional pigments of plants.

Among the nutrients that can be related to spectral characteristics is nitrogen (N),
the second most important constituent of chlorophyll, in addition to being part of amino
acids, proteins, and nucleic acids [12]. Phosphorus (P) plays an important role in nucleic
acids and in enzymes that are of great importance for the synthesis of chlorophyll [13].
Potassium (K) is also an important activator of enzymes that play an essential role as a
precursor to starch, proteins, and phytohormones [14]. These nutrients are closely linked to
photosynthetic processes and are present in the leaf tissue, influencing leaf reflectance, and
can be estimated using the HTP.

Obtaining information from the plant canopy through remote sensing requires efficient
statistical analysis in data processing, since the amount of data generated is large and has a
non-linear relationship with most of the agronomic, physiological, and nutritional traits
evaluated in the plants [7]. Machine learning (ML) can be used in several evaluations,
such as landslide susceptibility analysis [15], fire detection or flood prediction in urban
centers [16], recognizing patterns in biological images, and optimizing the identification
of soybean genotypes with higher assertiveness [17]. The algorithms are accurate in
classifying images, and in general, the classification techniques can consume time and
processing according to the size of the database, which can increase the accuracy of the
results [18]. ML techniques can solve several issues regarding the accurate classification of
plants; however, it is necessary that the experimental design is planned and the amount
of data collected is representative, enabling a sufficient dataset for training and validation
of ML algorithms [19]. Another aspect to be taken into account is the input data of the
algorithms, which can provide higher prediction and classification accuracies. Using
spectral information as model input data can improve algorithm performance in data
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processing. By using spectral bands, accurate results were obtained for the classification of
soybean genotypes [20]. Spectral band information as input dataset in ML algorithms can
also accurately distinguish the boron levels in eucalyptus [21].

Information on the classification of soybean genotypes regarding the nutritional con-
tent of primary macronutrients employing spectral information identified using machine
learning techniques is not easily found in the literature. This type of technology used
in breeding programs speeds up the data collection and increases the accuracy of data
processing. Information about the data that will be used as input in ML algorithms is
also crucial information to improve the data processing accuracy for soybean leaf nutrient
content. Thus, the objective of this work was to find the best algorithm(s) and the best
input configuration of ML algorithms in the classification of soybean genotypes based on
leaf contents of N, P, and K.

2. Materials and Methods
2.1. Conducting the Experiment

The field experiment was carried out in the 2019/20 crop season at the experimental
area of the Universidade Federal de Mato Grosso do Sul, municipality of Chapadão do
Sul–MS, Brazil, at the coordinates 18◦41′33”S and 52◦40′45”W, with 810 m of altitude. The
region’s soil is classified as Red Dystrophic Latossolo clayey, with the following chemical
attributes in the 0–0.20 m layer: pH (H2O) = 622; exchangeable Al (cmolc dm−3) = 0.0;
Ca + Mg (cmolc dm−3) = 4.31; P (mg dm−3) = 41.3; K (cmolc dm−3) = 0.2; organic matter
(g dm−3) = 19.74; V (%) = 45; m (%) = 0.0; sum of bases (cmolc dm−3) = 2.3; and CEC
(cmolc dm−3) = 5.1 (Teixeira et al., 2017). According to Koppen’s classification, the region’s
climate is Tropical Savanna (Aw). The climatic conditions during the experiment are shown
in Figure 1.
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Figure 1. Weather conditions over the 2019/2020 crop season.

A total of 103 F2 populations of soybean were evaluated in a randomized block design
with two repetitions, in which the plants in the central three-meter-long row of each
plot were evaluated. The spacing between rows was 0.45 m, and planting density was
15 plants−m. Sowing was performed in October 2019, adopting the soil preparation system
(plowing and harrowing). Seeds were treated with fungicide (Pyraclotrobin + Methyl
Thiophanate) and insecticide (Fipronil) at a dose of 200 mL of the commercial product for
every 100 kg of seeds to prevent pests and soil fungus. The seeds were also inoculated with
bacteria of the Bradyrhizobium genus at a dose of 200 mL of concentrated liquid inoculant for
each 100 kg of seeds. Crop treatments were performed according to the needs of the crop.
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2.2. Acquisition and Processing of Multispectral Images

When the crop was at 60 days after emergence (DAE), spectral images were collected
using a Sensefly eBee RTK fixed-wing remotely piloted aircraft (RPA) with autonomous
take-off, flight plan, and landing control. The eBee was equipped with the Parrot Sequoia
multispectral sensor. The images were taken at 09:00 am, with cloudless skies, a flight
height above ground level of 85 m, and an average field spatial resolution on each picture of
0.089 m, which was adopted for the described survey. The image overlapping was 80% and
65% along- and across-track, respectively. Eighteen ground control points (GCP) markers
were placed on the ground surrounding the studying area and surveyed with a pair of the
GNSS real-time kinematic (RTK) model Emlid Reach. The RPA average flight speed was
12.5 m/s−1.

Radiometric calibration was performed for the entire scene based on a calibrated
reflective target provided by the manufacturer. The Sequoia multispectral sensor also has
a light sensor, allowing the calibration of the acquired values for each captured image.
The field calibration procedure is performed immediately before the flight is performed.
The procedure for taking the reference photo for field calibration is performed by the
e-Motion software. The multispectral sensor used was acquired with a horizontal field of
view (HFOV) of 61.9◦, a vertical field of view (VFOV) of 48.5◦, and a diagonal field of view
(DFOV) of 73.7◦. The reflectance values were obtained in the following spectral bands (SBs):
red (640–680 nm), green (530–570 nm), NIR (770–810 nm), and red-edge (730–740 nm). The
image resolution is 1280 × 960 pixels, with a pixel size of 3.75 µm and a focal length equal
to 3.98 mm. The RMS geolocation errors for X, Y, and Z computed to orthorectify the image
were below 0.06 m, with a median of 10,000 keypoints per image. The information acquired
by the wavelengths enabled the calculations of the vegetation indices (Table 1). The images
were mosaicked and orthorectified by the computer program Pix4Dmapper.

Table 1. List of vegetation indices used in the study.

Abbreviation Vegetation Index Equation Ref.

NDVI Normalized difference vegetation index (RNIR–RRED)
(RNIR+RRED)

[22]

NDRE Normalized difference red-edge index (RNIR–REDGE)
(RNIR+REDGE)

[23]

GNDVI Green normalized difference vegetation index (RNIR–RGREEN)
(RNIR+RGREEN)

[23]

SAVI Soil-adjusted vegetation index (1 + 0.5) nir−red
nir+red+0.5 [24]

MSAVI Modified soil-adjusted vegetation index 2nir+1−
√
(2nir+1)2−(8nir−red)

2
[25]

MCARI Modified chlorophyll absorption in reflectance index R700 − R670 − 0.2(R700 − R550)
R700
R670

[26]
EVI Enhanced vegetation index 2.5 ∗ (RNIR–RRED)

((RNIR)+(C1∗RNIR)−(C2∗RBLUE)+L)
[27]

SCCCI Simplified canopy chlorophyll content index NDVI
NDRE [28]

RNIR: near infrared reflectance; RGREEN: green reflectance; RRED: red reflectance; REDGE: red-edge reflectance;
L: soil-effect correction factor.

2.3. Obtaining Nutritional Data

The leaves were washed with water, neutral detergent solution (0.1%), acid solution
(HCl 0.3%), and deionized water and then were packed in paper bags and dried in a hot air
oven at 65± 5 ◦C until they reached a constant mass. After drying the material, the samples
were milled in a Wiley-type mill. Macronutrient analyses (N, P, and K) were performed,
following the Bataglia [29] methodology.

2.4. Statistical Analysis

Once the spectral information and nutritional values of the genotypes for N, P, and
K were obtained, data were submitted to a Pearson correlation analysis expressed by a
correlation network generated with the Rbio software [30]. For splitting the groups of
populations (genotypes), data were submitted to a principal component analysis (PCA)
associated with the k-means algorithm. Thus, two clusters were generated: one containing
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genotypes with higher NPK nutritional values and the other containing genotypes with
lower NPK nutritional values. A biplot was generated with the first two components
in order to facilitate the interpretation of the results. In this biplot, two clusters (C1 and
C2) were defined based on the performance of the genotypes for nutrient contents for
further analysis using the k-means algorithm, which clusters treatments whose centroids
are closer until there is no significant variation in the minimum distance of each observation
to each centroid. These analyses were performed using the “ggfortify” package from the
R software [31]. Boxplots were constructed for each cluster according to the content of each
nutrient within the groups formed, seeking to observe which set of genotypes had superior
nutrient content.

2.5. Machine Learning Models

Afterward, the data were submitted to machine learning analysis (Table 2). A graphic
summary of the analyses and the machine learning techniques used is shown in Figure 2.
The clusters formed were used as output variables of the classification models used. Spec-
tral data were used as input variables for the models, and three different configurations
were tested: using only spectral bands (SB), using only vegetation indices (VI), and us-
ing Vis + SBs. Cluster classification was performed using stratified cross-validation with
k-fold = 10 and ten repetitions (100 runs for each model). All model parameters were set
according to the default setting of the Weka 3.8.5 software.

Table 2. List of machine learning models used in classification.

Abbreviation Classification Model Reference

J48 J48 decision tree algorithm [32]
LR Logistic regression [33]
DT REPTree decision tree algorithm [34]
RF Random forest [35]

ANN Multilayer perceptron artificial neural network (ANN) [36]
SVM Support vector machine [37]
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Figure 2. Summary of processes carried out in data analysis.

Model performance was evaluated using the accuracy metrics of percent correct classi-
fications (CC), F-score, and Kappa coefficient. The models’ performances were submitted
to an analysis of variance for evaluating the existence of differences between inputs and
ML models and the interaction among them. When significant, boxplots were generated
with the means grouped by the Scott–Knott test [38] at 5% significance level. The grouping
of means and boxplots were generated using the ggplot2 and ExpDes.pt packages of the
R software.
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3. Results

Pearson’s correlation (Figure 3) shows the positive (green lines) and negative (red
lines) relationships between spectral variables and the nutrients evaluated. The thickness
of the lines indicates the magnitude of these relationships, with thicker lines representing
correlations above 0.6. High-magnitude relationships were among the spectral variables,
an expected outcome due to the use of the same spectral bands in the calculations of
the vegetation indices. There were positive and low-magnitude correlations among the
nutritional variables. There was also a low correlation between spectral variables and
nutritional variables.
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Figure 3. Pearson’s correlation network between the nutritional (potassium–K, phosphorus–P, and
nitrogen–N content) and spectral variables (spectral bands and vegetation index). Variables con-
nected by green lines are positively correlated, while variables connected by red lines are negatively
correlated. The thickness of the line is proportional to the magnitude of the correlation.

Soybean genotypes were divided into two groups, cluster 1 and cluster 2, using the
k-means algorithm, represented by PCA (Figure 4). Genotypes within the same group have
similarities in N, P, and K contents.

The genotypes included in cluster 2 were superior since they presented higher levels
for the nutrients studied (Figure 5). The genotypes in cluster 2 can be considered more effi-
cient in the use of nutrients, since with the same fertilization management, these genotypes
showed higher values of N (Figure 5a), P (Figure 5b), and K (Figure 5c).

Three accuracy parameters were used to evaluate the performance of the machine
learning algorithms: correct classification, F-score, and kappa coefficient. From the analysis
of variance (Table 3), a significant interaction between the inputs and ML algorithms tested
for F-score and a significant difference for ML techniques regarding CC and Kappa can
be seen.
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Table 3. Summary of the analysis of variance for the variables percent correct classification (CC),
F-score, and Kappa coefficient.

SV DF CC F-score Kappa

Inputs 2 0.295 0.0000205 0.00127
ML 5 117.276 * 0.0354062 * 0.013478 *
Inputs *ML 10 5.766 0.0008566 * 0.001641
Residual 162 4.98488 0.0003958 0.00168691

* Significant at 5% probability by F-test; SV: sources of variation; DF: degrees of freedom; ML: machine learning.

In the classification of soybean genotypes, the algorithms that had the best performance
for correct classification were J48 and SVM (Figure 6a), averaging over 60% accuracy. RF
had the worst performance among the algorithms, averaging around 55% accuracy. J48,
DT, RF, and SVM algorithms had the best Kappa performances (Figure 6b).
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Figure 6. Boxplot of the clustering of means for percent correct classification–CC (a) and Kappa
coefficient (b), regarding the machine learning models tested (J48 decision tree algorithm–J48, logistic
regression–LR, REPTree decision tree algorithm–DT, random forest–RF, multilayer perceptron artifi-
cial neural network–ANN, and support vector machine–SVM). Means followed by the same letters
do not differ by the Scott–Knott test at 5% probability.

The tested inputs showed no significant difference for the J48, DT, ANN, and SVM
algorithms (Figure 7). Regarding the LR algorithm, the input containing only spectral bands
showed better performance. The input containing both spectral bands and vegetation
indices performed best using the RF algorithm. By evaluating the MLs within each input,
the J48 decision tree and SVM algorithms performed well regardless of the input used. RF
was the algorithm that achieved the worst performance regardless of the input tested.

The use of SB showed no difference compared with that of the other inputs tested
(Figure 7). Therefore, a confusion matrix was developed (Figure 8) for each algorithm,
using SB as input for the models. Values with dark blue shades show the number of correct
classifications obtained for each cluster, while lighter blue shades show the error rate for
the best configuration of each algorithm.
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shows the number of correct classifications in each cluster.
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It is possible to observe that the algorithms J48, LR, DT, RF, and ANN were similar
regarding the correct classifications of the genotypes in clusters C1 and C2, being superior
to SVM. However, it is important to highlight that ANN had a lower error rate (12 incorrect
classifications) than the other algorithms.

4. Discussion

The spectral and nutritional data showed a low correlation with each other due to
the complex interaction between the data (Figure 3). Unlike traditional statistical methods,
such as the Pearson correlation, machine learning (ML) algorithms perform well when
processing non-linear and non-parametric data, such as plant nutritional analysis and
spectral data [39]. Given this, the genotypes were separated into two clusters (Figure 4).

Fertilization management for all genotypes was the same. However, after separating
the genotypes into clusters, it was observed that the genotypes belonging to cluster 2 had a
higher content of the nutrients evaluated. The current soybean cultivars differ in several
characteristics, including the ability to uptake and metabolize nutrients [40]. Using remote
sensing technologies coupled with computational advances in data analysis is a crucial
way to implement fertilization management in agriculture, allowing the spatiotemporal
evaluation of several plant characteristics in an economical and fast way [41].

The availability of N, P, and K in Brazilian soils is limited. Thus, monitoring these
elements in a fast, accurate, and non-destructive way allows information to be obtained
at different phenological stages of the crop, providing efficient fertilization management
[42]. The evaluation and mapping of these nutrients are essential for monitoring crop
production in the field, making it crucial to develop methods for monitoring, evaluating,
and measuring these nutrient contents in a fast, accurate, low-cost, and non-destructive
way [41]. Promoting the development of crops that are more efficient in using these
resources [43] is a path to be followed in soybean breeding programs seeking genotypes
efficient in nutrient uptake, enabling more sustainable agriculture without affecting the
grain yield [44].

Classifying the genotypes according to nutritional contents may contribute signifi-
cantly to breeding programs, facilitating the selection of genotypes. However, this eval-
uation requires many leaf samples, which can be reduced if this information is obtained
through spectral data [11]. The use of ML techniques in processing this information is
essential to deal efficiently with the number of genotypes evaluated and the number of
spectral data generated. ML techniques can also deal accurately with the lack of linearity
between nutritional and spectral data [39]. Using ML techniques associated with spectral
data makes it possible to obtain important information from the leaves associated with
the health and nutritional content of the plants [39]. Thus, it is possible to have a reliable
diagnosis of the nutritional state of soybean, allowing greater accuracy in the fertilization
management on farms, contributing to the improve the crop yield [19].

In our study, the J48 and SVM algorithms performed best in all accuracy metrics
evaluated (Figures 6a,b and 7). The J48 algorithm provides classification results efficiently
and quickly from a processing point of view [45]. In addition to the lower time demand
for data processing, there is a lower need for human interference in constructing the
algorithm [46]. SVM has shown good performance and robustness in classification using
spectral data [47,48] and good generalization ability and accuracy [49].

All three inputs tested provided better performance for the J48 and SVM algorithms.
Since there was no difference between the inputs tested, it is more practical to use SB from
a processing point of view. According to [20], using spectral bands as input for ML models
is more feasible because there is no need to perform vegetation index calculations. Spectral
bands are efficiently used to determine several plant characteristics, such as the water
status in soybean plants [50] and the nutritional status with regards to boron deficiency,
appropriate range, and toxicity in eucalyptus plants [21]. Thus, the use of spectral data
makes it possible to detect changes in the leaf at nutritional level, and with the support of
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appropriate technologies, other important information can be provided. ML techniques,
when properly used, have been shown to overcome several classification problems [19].

Thus, the spectral bands provide essential information about the nutritional state of
soybean plants. Through this data, combined with the use of ML techniques, it is possible
to classify soybean genotypes according to their nitrogen, phosphorus, and potassium
status. In this way, it is possible to assist improvement programs in a cost-effective manner
to develop soybean cultivars that are efficient in uptaking and metabolizing these nutri-
ents, reducing the use of mineral fertilizers. Thus, this practice can generate savings for
farmers and mitigate environmental impacts caused by excess contamination from using
such fertilizers.

ML techniques and multispectral data can accurately provide several pieces of in-
formation about the crops, giving guidelines for crop management still in the field [51].
For future works, it is necessary that further genotypes be assessed, observing the behav-
ior of ML algorithms with information from different crops, fertilization managements,
and nutrients. Although the results reported here are promising for classifying soybean
genotypes for primary macronutrients, we suggest that future research use hyperspectral
sensors for such evaluations, as these provide higher quantities of SB, which may improve
prediction accuracy.

5. Conclusions

The classification of soybean genotypes according to the nutritional contents of primary
macronutrients (N, P, and K) from spectral data is a complex task due to the lack of linear
relationship between such variables, which is easily overcome by ML algorithms. The input
information of these algorithms is also important for their better accuracy. Algorithms
J48 and SVM showed the best performance in classifying soybean genotypes. In addition
to the algorithms, three different inputs (spectral bands, vegetation index, and spectral
bands + vegetation indices) were tested to verify which spectral data provide the best
classification accuracy. The best input configuration for the ML algorithms was to use
spectral bands as input for the algorithms, achieving better performance in identifying
groups of genotypes in terms of their nutritional content. Thus, the use of spectral bands in
the J48 and SVM algorithms allows a fast, accurate, and non-destructive classification of
soybean genotypes for N, P, and K contents.

Author Contributions: Conceptualization, D.C.S. and P.E.T.; methodology, M.C.M.T.F., M.R.d.S.,
P.H.M.d.C., F.H.R.B. and P.E.T.; software, D.C.S. and L.P.R.T.; validation, J.L.G.d.O., C.N.S.C., L.P.R.T.,
C.A.d.S.J. and L.S.S.; formal analysis, D.C.S.; investigation, P.E.T.; resources, M.C.M.T.F.; P.E.T.
and L.S.S.; data curation, P.E.T.; writing—original draft preparation, D.C.S.; writing—review and
editing, P.E.T. and L.P.R.T.; visualization, L.S.S.; supervision, P.E.T.; project administration, P.E.T.;
funding acquisition, P.E.T. and L.S.S. All authors have read and agreed to the published version of
the manuscript.

Funding: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), grant numbers
303767/2020-0, 309250/2021-8 and 306022/2021-4; and Fundação de Apoio ao Desenvolvimento do
Ensino, Ciência, e Tecnologia do Estado de Mato Grosso do Sul (FUNDECT), TO numbers 88/2021
and 07/2022 and SIAFEM numbers 30478 and 31333.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the Universidade Federal de Mato Grosso
do Sul (UFMS); Universidade do Estado do Mato Grosso (UNEMAT); Conselho Nacional de De-
senvolvimento Científico e Tecnológico (CNPq), grant numbers 303767/2020-0, 309250/2021-8 and
306022/2021-4; and Fundação de Apoio ao Desenvolvimento do Ensino, Ciência, e Tecnologia do
Estado de Mato Grosso do Sul (FUNDECT), TO numbers 88/2021 and 07/2022 and SIAFEM numbers
30478 and 31333. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal
de Nível Superior–Brazil (CAPES)–Financial Code 001.

Conflicts of Interest: The authors declare no conflict of interest.



Remote Sens. 2023, 15, 1457 12 of 13

References
1. Lynch, J.P. Root Phenes That Reduce the Metabolic Costs of Soil Exploration: Opportunities for 21st Century Agriculture. Plant

Cell Environ. 2015, 38, 1775–1784. [CrossRef] [PubMed]
2. Zhou, S.; Mou, H.; Zhou, J.; Zhou, J.; Ye, H.; Nguyen, H.T. Development of an Automated Plant Phenotyping System for

Evaluation of Salt Tolerance in Soybean. Comput. Electron. Agric. 2021, 182, 106001. [CrossRef]
3. Der Yang, M.; Tseng, H.H.; Hsu, Y.C.; Yang, C.Y.; Lai, M.H.; Wu, D.H. A UAV Open Dataset of Rice Paddies for Deep Learning

Practice. Remote Sens. 2021, 13, 1358. [CrossRef]
4. Panday, U.S.; Pratihast, A.K.; Aryal, J.; Kayastha, R.B. A Review on Drone-Based Data Solutions for Cereal Crops. Drones 2020,

4, 41. [CrossRef]
5. Guo, Y.; Chen, S.; Li, X.; Cunha, M.; Jayavelu, S.; Cammarano, D.; Fu, Y. Machine Learning-Based Approaches for Predicting

SPAD Values of Maize Using Multi-Spectral Images. Remote Sens 2022, 14, 1337. [CrossRef]
6. Everaerts, J. The Use of Unmanned Aerial Vehicles (UAVs) for Remote Sensing and Mapping. Int. Arch. Photogramm. Remote Sens.

Spat. Inf. Sci. 2008, 37, 1187–1192.
7. Ling, B.; Goodin, D.G.; Raynor, E.J.; Joern, A. Hyperspectral Analysis of Leaf Pigments and Nutritional Elements in Tallgrass

Prairie Vegetation. Front Plant. Sci. 2019, 10, 142. [CrossRef]
8. Moreno, R.; Corona, F.; Lendasse, A.; Graña, M.; Galvão, L.S. Extreme Learning Machines for Soybean Classification in Remote

Sensing Hyperspectral Images. Neurocomputing 2014, 128, 207–216. [CrossRef]
9. Mahajan, G.R.; Das, B.; Murgaokar, D.; Herrmann, I.; Berger, K.; Sahoo, R.N.; Patel, K.; Desai, A.; Morajkar, S.; Kulkarni, R.M.

Monitoring the Foliar Nutrients Status of Mango Using Spectroscopy-Based Spectral Indices and PLSR-Combined Machine
Learning Models. Remote Sens. 2021, 13, 641. [CrossRef]

10. O’Connell, J.L.; Byrd, K.B.; Kelly, M. Remotely-Sensed Indicators of N-Related Biomass Allocation in Schoenoplectus Acutus.
PLoS ONE 2014, 9, e90870. [CrossRef]

11. Osco, L.P.; Marques Ramos, A.P.; Saito Moriya, É.A.; de Souza, M.; Marcato Junior, J.; Matsubara, E.T.; Imai, N.N.; Creste, J.E.
Improvement of Leaf Nitrogen Content Inference in Valencia-Orange Trees Applying Spectral Analysis Algorithms in UAV
Mounted-Sensor Images. Int. J. Appl. Earth Obs. Geoinf. 2019, 83, 101907. [CrossRef]

12. Hawkesford, M.; Horst, W.; Kichey, T.; Lambers, H.; Schjoerring, J.; Møller, I.S.; White, P. Chapter 6—Functions of Macronutrients.
In Marschner’s Mineral Nutrition of Higher Plants (Third Edition); Marschner, P., Ed.; Academic Press: San Diego, CA, USA, 2012;
pp. 135–189. ISBN 978-0-12-384905-2.

13. Mukherjee, S.; Laskar, S. Vis–NIR-Based Optical Sensor System for Estimation of Primary Nutrients in Soil. J. Opt. 2019, 48,
87–103. [CrossRef]

14. Amirruddin, A.D.; Muharam, F.M.; Ismail, M.H.; Tan, N.P.; Ismail, M.F. Hyperspectral Spectroscopy and Imbalance Data
Approaches for Classification of Oil Palm’s Macronutrients Observed from Frond 9 and 17. Comput. Electron. Agric. 2020,
178, 105768. [CrossRef]

15. Pham, B.T.; Tien Bui, D.; Prakash, I.; Dholakia, M.B. Hybrid Integration of Multilayer Perceptron Neural Networks and Machine
Learning Ensembles for Landslide Susceptibility Assessment at Himalayan Area (India) Using GIS. Catena 2017, 149, 52–63.
[CrossRef]

16. Camps-Valls, G. Machine Learning in Remote Sensing Data Processing. In Proceedings of the 2009 IEEE International Workshop
on Machine Learning for Signal Processing, Grenoble, France, 1–4 September 2009; pp. 1–6.

17. de Medeiros, A.D.; Capobiango, N.P.; da Silva, J.M.; da Silva, L.J.; da Silva, C.B.; dos Santos Dias, D.C.F. Interactive Machine
Learning for Soybean Seed and Seedling Quality Classification. Sci. Rep. 2020, 10, 11267. [CrossRef] [PubMed]

18. Orusa, T.; Cammareri, D.; Borgogno Mondino, E. A Scalable Earth Observation Service to Map Land Cover in Geomorphological
Complex Areas beyond the Dynamic World: An Application in Aosta Valley (NW Italy). Appl. Sci. 2023, 13, 390. [CrossRef]

19. Barbedo, J.G.A. Detection of Nutrition Deficiencies in Plants Using Proximal Images and Machine Learning: A Review. Comput.
Electron. Agric. 2019, 162, 482–492. [CrossRef]

20. Gava, R.; Santana, D.C.; Cotrim, M.F.; Rossi, F.S.; Teodoro, L.P.R.; da Silva Junior, C.A.; Teodoro, P.E. Soybean Cultivars
Identification Using Remotely Sensed Image and Machine Learning Models. Sustainability 2022, 14, 7125. [CrossRef]

21. Da Silva Junior, C.A.; Teodoro, P.E.; Teodoro, L.P.R.; Della-Silva, J.L.; Shiratsuchi, L.S.; Baio, F.H.R.; Boechat, C.L.;
Capristo-Silva, G.F. Is It Possible to Detect Boron Deficiency in Eucalyptus Using Hyper and Multispectral Sensors? In-
frared Phys. Technol. 2021, 116, 103810. [CrossRef]

22. Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. NASA Spec.
Publ. 1974, 351, 309.

23. Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a Green Channel in Remote Sensing of Global Vegetation from EOS-MODIS.
Remote Sens. Environ. 1996, 58, 289–298. [CrossRef]

24. Huete, A.R. A Soil-Adjusted Vegetation Index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [CrossRef]
25. Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A Modified Soil Adjusted Vegetation Index. Remote Sens. Environ.

1994, 48, 119–126. [CrossRef]
26. Daughtry, C.S.T.; Walthall, C.L.; Kim, M.S.; de Colstoun, E.B.; McMurtrey Iii, J.E. Estimating Corn Leaf Chlorophyll Concentration

from Leaf and Canopy Reflectance. Remote Sens. Environ. 2000, 74, 229–239. [CrossRef]

http://doi.org/10.1111/pce.12451
http://www.ncbi.nlm.nih.gov/pubmed/25255708
http://doi.org/10.1016/j.compag.2021.106001
http://doi.org/10.3390/rs13071358
http://doi.org/10.3390/drones4030041
http://doi.org/10.3390/rs14061337
http://doi.org/10.3389/fpls.2019.00142
http://doi.org/10.1016/j.neucom.2013.03.057
http://doi.org/10.3390/rs13040641
http://doi.org/10.1371/journal.pone.0090870
http://doi.org/10.1016/j.jag.2019.101907
http://doi.org/10.1007/s12596-019-00517-1
http://doi.org/10.1016/j.compag.2020.105768
http://doi.org/10.1016/j.catena.2016.09.007
http://doi.org/10.1038/s41598-020-68273-y
http://www.ncbi.nlm.nih.gov/pubmed/32647230
http://doi.org/10.3390/app13010390
http://doi.org/10.1016/j.compag.2019.04.035
http://doi.org/10.3390/su14127125
http://doi.org/10.1016/j.infrared.2021.103810
http://doi.org/10.1016/S0034-4257(96)00072-7
http://doi.org/10.1016/0034-4257(88)90106-X
http://doi.org/10.1016/0034-4257(94)90134-1
http://doi.org/10.1016/S0034-4257(00)00113-9


Remote Sens. 2023, 15, 1457 13 of 13

27. Huete, A.R.; Liu, H.Q.; Batchily, K.V.; van Leeuwen, W. A Comparison of Vegetation Indices over a Global Set of TM Images for
EOS-MODIS. Remote Sens. Environ. 1997, 59, 440–451. [CrossRef]

28. Raper, T.B.; Varco, J.J. Canopy-Scale Wavelength and Vegetative Index Sensitivities to Cotton Growth Parameters and Nitrogen
Status. Precis. Agric. 2015, 16, 62–76. [CrossRef]

29. Bataglia, O.C.; Teixeira, J.P.F.; Furlani, P.R.; Furlani, A.M.C.; Gallo, J.R. Métodos de Análise Química de Plantas; IAC: Campinas,
Brasil, 1978; Volume 87.

30. Bhering, L.L. Rbio: A Tool for Biometric and Statistical Analysis Using the R Platform. Crop. Breed. Appl. Biotechnol. 2017, 17,
187–190. [CrossRef]

31. Team, R.C. R: A Language and Environment for Statistical Computing. Comput. Sci. Rev. 2013, 201, 1–12.
32. Quinlan, J.R. C4. 5: Programming for Machine Learning. Morgan Kauffmann 1993, 38, 49.
33. Štepanovský, M.; Ibrová, A.; Buk, Z.; Velemínská, J. Novel Age Estimation Model Based on Development of Permanent Teeth

Compared with Classical Approach and Other Modern Data Mining Methods. Forensic. Sci. Int. 2017, 279, 72–82. [CrossRef]
34. Al Snousy, M.B.; El-Deeb, H.M.; Badran, K.; Al Khlil, I.A. Suite of Decision Tree-Based Classification Algorithms on Cancer Gene

Expression Data. Egypt. Inform. J. 2011, 12, 73–82. [CrossRef]
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