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Abstract: Against the background of the ongoing atmospheric warming, the glacial lakes that are
nourished and expanded in High Mountain Asia pose growing risks of glacial lake outburst floods
(GLOFs) hazards and increasing threats to the downstream areas. Effectively extracting the area
and consistently monitoring the dynamics of these lakes are of great significance in predicting and
preventing GLOF events. To automatically extract the lake areas, many deep learning (DL) methods
capable of capturing the multi-level features of lakes have been proposed in segmentation and
classification tasks. However, the portability of these supervised DL methods need to be improved
in order to be directly applied to different data sources, as they require laborious effort to collect
the labeled lake masks. In this work, we proposed a simple glacial lake extraction model (SimGL)
via weakly-supervised contrastive learning to extend and improve the extraction performances in
cases that lack the labeled lake masks. In SimGL, a Siamese network was employed to learn similar
objects by maximizing the similarity between the input image and its augmentations. Then, a simple
Normalized Difference Water Index (NDWI) map was provided as the location cue instead of the
labeled lake masks to constrain the model to capture the representations related to the glacial lakes
and the segmentations to coincide with the true lake areas. Finally, the experimental results of the
glacial lake extraction on the 1540 Landsat-8 image patches showed that our approach, SimGL, offers
a competitive effort with some supervised methods (such as Random Forest) and outperforms other
unsupervised image segmentation methods in cases that lack true image labels.

Keywords: glacial lake extraction; Landsat-8 OLI; weakly-supervised segmentation; contrastive learning

1. Introduction

Glacial lakes are of considerable interest due to their sensitivity to the ongoing climate
changes and threatening outburst risks to downstream communities in High Mountain
Asia [1–3]. As a typical component of water resources, glacial lakes are positioned in
glacierized regions and fed by melting glaciers. As they are adversely impacted by glacier
shrinkage and seasonal climate variation, glacial lakes have grown rapidly in terms of both
number and area [1–5], especially in recent decades, concomitant with the increases in
glacier-related hazards such as glacial lake outburst floods (GLOFs) [6,7]. To monitor the
dynamics of lakes and give forewarning of GLOFs, the automatic and accurate extraction
of glacial lakes from remotely sensed images is a prerequisite for the fast evaluation of
these outlying lakes.

Many approaches have been explored by coupling two or more types of optical
imagery, including the digital elevation model (DEM), synthetic aperture radar (SAR),
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thermal infrared image and satellite altimetry for glacial lake extraction. For example,
Li et al. [8] and Song et al. [9] employed the Normalized Difference Water Index (NDWI)
to highlight the lake information and extracted this information by leveraging a local
threshold derived from bimodal histograms in the buffer zone of each potential lake area.
Gardelle et al. [10] combined green, Near Infrared (NIR) and Short Wave Infrared (SWIR)
bands to map the frozen glacial lakes or lakes with floating ice. Wangchuk et al. [11]
collected a lot of pixels from the lake area and the non-lake area, and they gave a category
for each pixel according to the patterns of the glacial lakes in high-dimensional space
learning from the random forest. Shen et al. [12] and Li et al. [13] conducted an object-
oriented method to identify the potential lake areas and refine the final lake area by a
pre-defined water extraction decision ruleset. Zhao et al. [14] integrated the advantage of
threshold segmentation and a simplified active contour model to extract small glacial lakes.
Mitkari et al. [15] proposed an object-based image analysis (OBIA) method for mapping
small supraglacial lakes from high spatial resolution data of LISS-IV. Zhang et al. [16] used a
phase-congruency-based detector on the C-band of SAR images to extract the area of glacial
lakes according to their outline and texture. However, many influencing factors, including
the physical properties of lakes (glacial lakes of differing size, turbidity, depth and coloring)
and complicated environmental conditions (such as shadows from mountains and clouds
and melting glaciers) [2,3,8,9], still pose challenges to large-scale glacial lake extraction. In
particular, the different intrinsic physical properties cause the lake to show varying spectral
responses, and the extrinsic geomorphic factors always show similar spectral values to
glacial lakes; these cause difficulties in differentiating glacial lakes against diverse factors
in remotely sensed images. Although they possess good performance and high accuracy,
these traditional methods still require extensive pre- or post-processing to determine the
optimal segmentation parameters and to eliminate the effects from these factors.

Recently, with the advancements in the DL model, many tasks in terms of classification,
segmentation and object detection have achieved great signs of progress as the DL method
can capture the high-level features of objects and give final decisions based on these
feature patterns. Some DL models have also been successfully applied in glacial lake
extraction. For example, Kaushik et al. [17] used a Deep Convolutional Neural Network
(DCNN) to automatically map the glacial lakes from multisource remote sensing (RS) data;
Qayyum et al. [18] and Wu et al. [19] employed a U-net model to extract the contours of
glacial lakes; Thati et al. [20] utilized a V-net model to segment the water and non-water
bodies from satellite imagery; and Zhao et al. [21] proposed a GAN-based architecture
for glacial lake mapping. These five DL-based models utilized convolution operations to
capture the high-level spatial features and skip connections to integrate the features at
different scales, so that the model learns the patterns of glacial lakes and greatly improve
the accuracy of the glacial lake extraction. Although their performance far exceeds that
of the traditional methods, and without the use of any other ancillary data (such as the
Digital Elevation Model (DEM) [18–21]) and post-processing work, they require a lot of
effort to prepare the training labels. These supervised DL methods limit the applicability of
the glacial lake extraction method to different data modalities.

To avoid assembling such large annotated image labels and to extend the model
training for downstream tasks, some works explore the unsupervised (without labeled
data) or semi-supervised (with few labels) representation methods and obtain notable
progress [22–30]. As a conspicuous breakthrough in unsupervised learning, contrastive
representation learning is based on the intuition that the same object in various transfor-
mations of an image (multi-view, color change, rotation, blurring) should have similar
representations, whilst being dissimilar to the representations of other objects. Several
contrastive learning works, including SimCLR [26], MoCo [27], SwAV [28], BYOL [29] and
Simsiam [30], use a Siamese network to find the valuable representation by maximizing the
similarity between the input image and its augmentations. SimCLR [26] and MoCo [27]
provided a training strategy without a memory bank; SwAV [28] applied the online cluster-
ing mechanism to the Siamese network; BYOL [29] designed an asynchronous momentum
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encoder to solve the issues of constructing negative pairs; Simsiam [30] proved that a con-
trastive network learns the meaningful representations without inputs of negative sample
pairs, momentum encoders and large batches in the training stage. These encouraged us
to explore the unsupervised DL methods for glacial lake extraction. As seen in Figure 1,
the traditional DL methods require the input of an image and a true mask of the glacial
lake, which prevents the model from capturing the lake features and learning the lake
patterns. Contrastive learning is to find the lake areas by transforming the input image and
generalizing the features of the lakes.
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Figure 1. Different inputs and training strategies in contrastive learning and traditional deep learning
(DL) methods in glacial lake mapping. DL methods always need to input labeled lake masks to
construct the loss function, while contrastive learning calculates the loss function between the input
image only and its augmentations.

In this work, we proposed a simple glacial lake extraction network (SimGL) via weakly-
supervised contrastive learning. In our design, a remote sensing image is the only input.
Zhang et al. [31] evaluated the extraction performance of glacial lakes using 23 classical
spectral features and concluded that the NDWI has great potential in glacial lake mapping;
therefore, we employ a strict NDWI map segmenting with tight thresholds to provide
rough location cues of glacial lakes and as a pseudo label. Inspired by contrastive learning
works [26–30], a Siamese network cascading a prediction head is introduced to learn similar
representations and sort out the same objects. Our loss function consisted of two parts:
a contrastive loss in the Siamese network to constrain the segment processing to learn
similar representations; and a location loss between the segmentations and NDWI maps to
capture the precise boundaries of the glacial lakes. The impressive evaluating results of the
glacial lake mapping on the Landsat-8 imagery also demonstrate that our model can obtain
a competitive performance with some supervised methods and shows great potential in
learning the patterns of glacial lakes without labeling data.

We summarize the contributions of our work threefold:

• We proposed a simple yet effective glacial lake extraction model, SimGL, which effec-
tively learns lake representations from unlabeled RS images via contrastive learning
in the training stage.
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• We further introduced the NDWI map into our model to provide location cues of the
glacial lakes and proposed a location loss to encourage the segmentations to coincide
with the true glacial lake boundaries.

• We evaluated our model SimGL using four metrics and compared the segmentation
performance with other glacial lake mapping methods on the Landsat-8 imagery. The
results demonstrate that our model SimGL surpasses other unsupervised methods
and narrows the performance difference with supervised DL methods.

2. Methodology

In this section, we introduce the architecture of SimGL (as shown in Figure 2) and
explain the loss function, in which the components are detailed in the following subsection.
From Figure 2, our model consists of two parts: (1) an NDWI map, regarded as a pseudo
label, provides the lake location cues and penalizes the network for segmenting the lake
masks; (2) a Siamese network learns the meaningful representations of objects by maximiz-
ing the similarity between two inputs. Note that we only use some simple strategies to
provide the location cues of the lakes. Neither image label supervision nor a sophisticated
structure (such as salient object detection) is involved in the model training.
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Figure 2. The architecture of the proposed SimGL. It consists of two parts: one takes the RS image
and its augmentations as input pairs for a Siamese network, which generates a set of feature maps at
different scales. Then applying the prediction layer on projected features from one branch to predict
the transform features from another branch, and we use a contrastive loss to measure the similarity
between the two features. Another part only takes the RS image as input, then a location loss was
calculated between the output map (generated by decoding the multi-scale features) and location
cues (generated by thresholding the NDWI map) to constrain the segmentation results.
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2.1. Preliminaries

Given an RS image x ∈ Rh×w×c with height h, width w and channel c, we aim to
find the network designs f that detect the lake segmentation mask y ∈ Rh×w×1 from the
input image x using a weakly-supervised training strategy. If any location in image x is
denoted by u, this process can be modeled as p(yu|x) = f (xu; θ); where θ is the parameters
of the network, our model uses two loss terms to learn the segmentation parameters
θ − contrastive loss and location loss.

2.2. Weakly Location Cues from NDWI Map

Benefiting from its simple calculation and convenient application, the Water Index
(WI) is the most frequently used method for locating the lake area. Among the WIs, NDWI
has been widely applied in glacial lake mapping due to its great superiority in eliminating
the effects of confounding factors with glacial lakes, such as mountain shadows and melting
glaciers [8,9]. Here, the NDWI was defined by [32]:

NDWI =
ρgreen − ρNIR

ρgreen + ρNIR
(1)

where ρgreen and ρNIR represent the Top-of-Atmosphere (TOA) reflectance values in the
green and NIR bands measured by sensors, respectively.

The NDWI map contains the position cues of the glacial lakes. Most previous research
has set a threshold in the range of 0.0 to 0.4 to segment glacial lake areas in the NDWI map.
Although a low threshold can segment the glacial lake pixels as much as possible, some
other pixels that have similar spectral feature values with glacial lakes will also be retained.
We aim to find the accurate lake pixels as a pseudo label to provide the lake information to
the model; a high or tight threshold should segment the glacial lake pixels only and avoid
the effects from any other object pixels. Therefore, we set a tight threshold T on the NDWI
map to obtain the lake binary mask B, where we assign the value 0 for the background
and 1 for the glacial lake. This step is called weak localization and is illustrated in the
brown part in Figure 2. With a tight threshold, all non-lake pixels and some lake pixels
confused with the background are removed, leaving only the glacial lake areas in binary
masks. Although the lake areas may not be complete and precise enough in this mask, the
mask is helpful in guiding the network to seek objects that are similar to the glacial lakes.
To describe the similarity between the masks and segmentation results, we introduce a
location loss, which is defined as follows:

LLocation(x, B) =
1

h× w∑ ‖ fu(x)− Bu‖2 (2)

In the location loss, there are many existing ways to generate the binary mask B, such
as salient object detection (SOD) [33,34], whereas glacial lakes are too small to be identified
by SOD. Thus, we use a simple WI to localize the glacial lakes.

2.3. Contrastive Semantic Segmentation

In our Siamese network, we use a weight-shared encoder, which contains four down-
sampling blocks, to capture similar objects from two inputs at different scales. The multi-
scale feature maps are represented by q = [q1, q2, q3, q4]. To measure the similarity of
two sets of feature maps, the feature maps are input to a projector to output the embedding
vectors [29,31]. A vector of an image should be predictive of the vector of the transformed
image [29]; therefore, we employ a predictor p to transform one vector and match it to the
vector from another branch (as “predictor” in Figure 2) [29,31]. Here, we use the negative
cosine similarity to measure their matching score:

sim(q, q′) = −
4

∑
i=1

p(qi) · q′ i
‖p(qi)‖2‖q′ i‖2

(3)
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where q’ denotes the feature map encoded from the transformed images x’. Following
the work [31], we use a stop-gradient operation (see “stop-grad” in Figure 2) to avoid the
model subjecting to model collapse. Therefore, the Formula (3) can be modified as:

sim(q, stop− grad(q′)) (4)

This indicates that the q’ was regarded as a constant in Formula (4). Following [29,31],
two symmetrical components have consisted of our contrastive loss:

LContrastive(q, q′) =
1
2

sim(q, stop− grad(q′)) +
1
2

sim(q′, stop− grad(q)) (5)

Overall, our model was trained with a composition of two loss functions:

L = LLocation + λLContrastive (6)

Here, the λ is the hyper-parameter balancing two loss terms. The location loss acquired
from an input image and the NDWI map provides a piece of weakly supervised lake
information, while the contrastive loss, as in Formula (5), forces the network to contrast
the similarities between the inputs and their augmentations and penalizes the network for
seeking the feature maps of the same objects.

2.4. Image Augmentation

We defined seven ways to generate the augmentations of multi-band RS images.

(1) Color jitter. We use color jitter with {brightness, contrast, saturation, hue} strength of
{0.4, 0.4, 0.4, 0.2} for the RGB bands of the RS images as the hue is only well-defined
for the RGB data.

(2) Gray scaling. We use gray scaling to remove the color information and represent each
pixel only by its intensity.

(3) Flipping. We randomly flip an image along with a horizontal or vertical location.
(4) Rotating. We randomly rotate an image by an angle in the set of {90◦, 180◦, 270◦}.
(5) Blurring. The images are blurred with the Gaussian kernel; here, the kernel size is

3 × 3 and the other parameters maintain the default values.
(6) Random area erasing. We randomly masked some pixels (less than 1% image size)

with 0 to erase the spectral information.
(7) Noise addition. We add the Gaussian noise to the image.

An example of transforming a glacial lake image in different ways is shown in Figure 3.
These transformations perturbed the spectral features or spatial features, which is crucial
to enhance the robustness of the model training.
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2.5. Detailed Network Architecture

Overall, the components of our models included (see Figure 2):

• Encoder and decoder: The encoder and decoder are the same as the structures in the
U-net. We use the encoder to capture the feature maps at different scales from the
input image and the decoder to reconstruct the segmentation results of the lakes from
the feature maps. In our model, each selected feature map is from the results before
the down-sampling operation.

• Projector: The projector has three fully-connected (fc) layers and batch normalization
(BN) layers, and the first two layers are activated by ReLU. The output of the projector
is a 2048-d vector.

• Predictor: The predictor has two fc layers. The first is connected to a BN and a ReLU
layer, and the last is without any other operations. The output dimension is 2048-d,
while in hidden layers, it was set as 512-d.

3. Experiment Results

In this section, we give a detailed study on validating the SimGL and comparing our
model with the state-of-the-art models.

3.1. Dataset and Evaluation Metrics

Dataset: Landsat-8 OLI images have a suitable spatial resolution (30 m) and moderate
revisiting period (16 days), benefiting the glacial lake investigation over a large-scale region.
We collected 103 Landsat-8 images (all images were acquired in the autumn of 2016 as
the boundaries of the glacial lakes are clearer in this period), and then randomly cropped
256 × 256 × 7 image patches from these images. Only the patch containing lake pixels
greater than an 1% area of the patch is kept. To make the corresponding lake labels, we first
converted the High Mountain Asian Glacial Lake Invention dataset (Hi-MAG) [1] in 2016
into a raster file with 30 m spatial resolution. Secondly, we cropped the raster file according
to geographical coordinates of patches and made them consistent in range. Finally, our
dataset contains 1540 image patches and 1540 corresponding labels. In our experiments,
we split the dataset into 70% for training, 20% for validation and 10% for testing. More
details of our dataset are summarized in Table 1.

Table 1. Details of our dataset.

Item Description

Data source 103 Landsat-8 OLI images
Spatial resolution 30 m
Acquisition date Between 20 July 2016 and 4 November 2016
Cloud cover ≤3.40%
Number of image patches 1540 image patches
Each patch size 256 × 256 × 7
Bands information Coastal; blue; green; red; NIR; SWIR1 and SWIR2.

Covered areas Hengduan Shan; Pamir; Tianshan; Himalaya;
Nyainqentanglha; Gangdise Shan and Qilian.

Average number of glacial lake pixels in
each patch 1225.39 (>1% area of the patch)

Evaluation metric: in our study, we use four metrics to evaluate the segmentation
effects on glacial lakes: Precision (P), Recall (R), F1 Score (F1) and Intersection over Union
(IoU). They are defined following [21]:

P = correctly extracted water pixels/all extracted pixels;
R = correctly extracted water pixels/all water pixels;
F1 = 2 × P × R / (P + R);
IoU = (extracted water pixels ∩ true water pixels)/(extracted water pixels ∪ true

water pixels).
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3.2. Implementation Details

All of the experiments were implemented using Tensorflow 1.14 on the Python 3.7
platform with one GTX 1660 Ti GPU (6 GB GPU memory). For the hyper parameters, we
followed the conventions [31] to set the initial learning rate as 0.005. Then, it was scheduled
following a cosine decay policy, with a decay rate of 0.0001. For training, we set the loss
coefficient λ as 10. Our model SimGL was trained by Adam optimizer and the training
100 epochs with a batch size of 8.

3.3. Diagnostic Experiments

Coefficient λ in joint loss: The coefficient λ balances the influence of two types of losses,
and we give the segment performance for the values of λ changed from 10−4 to 104, as
shown in Figure 4. Obviously, the optimal segmentation performance of the F1 score and
IoU occurred as the λ reached 10. Therefore, we set the λ to 10 as it has good effects on
balancing two loss terms.
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Loss term ablation: To prove whether using the NDWI only or the contrastive module
only is enough for glacial lake mapping, we explored the model effects when part of the
model was ablated; namely, only one type of loss used or both two loss terms used. The loss
term ablation results are shown in Table 2. As our Landsat patches are similar in content,
including glacial lakes, glaciers, shadows, etc., these high-frequency objects will also be
extracted with the glacial lakes when using contrast learning only, which caused a low
F1 score (0.1356) and IoU (0.1083) in the loss ablation results. Although the model can
yield good results using location loss only, the location cues provided by the NDWI map
were not accurate enough to true lake boundaries. Thus, our model SimGL combined the
advantages of two loss terms and further improved the segmentation results.

Table 2. Ablation results of using different loss terms.

Contrastive Loss Location Loss Precision Recall F1 Score IoU

4 0.1184 0.8869 0.1356 0.1083
4 0.8412 0.5912 0.6360 0.5289

4 4 0.9406 0.6285 0.6661 0.5855
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Water Index and thresholds: Many WIs are designed to highlight the lake information;
some of them include NDWI [32], MNDWI [35] and MI [36]. They are always combined
with threshold segmentation to segment the WI maps to the lake binary masks. In our
model, the use of a rough lake location map as a pseudo label is required to directly guide
the segmentations to be more accurate and less contaminated by the background. In most
glacial lake mapping research, the thresholds of these three WIs range between 0.0 and
0.4 [1,8,9]. Therefore, we explore how the segment performance and their evaluation
metrics are affected when setting gradually tight thresholds in a broad range of [−0.1, 0.8],
as shown in Figure 5.
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Figure 5. The effects between thresholds and evaluation metrics on the NDWI, MNDWI and MI,
respectively. (a) Threshold ablation for NDWI. We set 0.6 of the NDWI threshold for further ex-
periments as it can balance the lake information and noise information. (b) Threshold ablation for
MNDWI. The best threshold of MNDWI should be 0.6 for providing pseudo lake masks. (c) Threshold
ablation for MI. The best threshold of MNDWI should be 0.7 for providing pseudo lake masks.

Specifically, from Figure 5, the F1 and IoU progressively increase when we set the
threshold more tightly to 0.6 in three WIs, but decrease when setting the threshold to a high
value (great than 0.7). For example, when we set the NDWI threshold as 0.6, our model
will achieve an astonishing performance as it has the highest Precision, F1 and IoU (see
Figure 5a). Similarly, they are 0.6 for MNDWI (see Figure 5b) and 0.7 for MI (see Figure 5c).
The glacial lake pixels always show high WI values, as well as some pixels from melting
glaciers and mountain shadows; thus, a tight threshold can filter out the more glacial lake
pixels, but the noise pixels are extracted if we use a loose threshold.

Moreover, we further visualized the results of SimGL when setting different thresholds
on NDWI, MNDWI and MI, as shown in Figure 6.

As shown in Figure 6, the experimental results were heavily contaminated by the
glaciers when using MDNWI and MI. This also proved that the NDWI is more accurate
in generating lake masks, especially in glacierized regions. In addition, almost all of the
extracted pixels belonged to glacial lakes when the threshold of NDWI was set to be
greater than 0.5, indicating that a tight threshold will facilitate the model to learn the lake’s
information more accurately.

Types of image augmentations: Seven methods are defined for transforming an image
in our experiments. We further divide them into two groups to explore the influence of
each type and group. One contains {color jitter, gray scaling, blurring, random area erasing
and noise addition}, which will change the spectral distribution of an image. The other
one uses a {flipping and rotating} operation to change the location of each pixel. Table 3
shows the evaluation metrics in the case of employing one type of group transformation
method. Each type in a group is processed with an applying probability of 0.6 in the
evolution experiments.
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Table 3. Evolution results of different types of image transformation.

Transformation Type Precision Recall F1 Score IoU

Color jitter 0.9213 0.6353 0.6688 0.5912
Gray scaling 0.9209 0.6170 0.6535 0.5749

Flipping 0.9510 0.6336 0.6821 0.5949
Rotating 0.9427 0.6252 0.6641 0.5856
Blurring 0.9389 0.6071 0.6497 0.5671

Random area erasing 0.9379 0.5912 0.6371 0.5629
Noise addition 0.9510 0.6021 0.6464 0.5653

Spectral transform 0.9411 0.6125 0.6537 0.5725
Location transform 0.9451 0.6072 0.6633 0.5803

From Table 3, we found that the flipping operation obtained the highest F1 and
IoU scores, and the lowest F1 and IoU were scored by random area erasing. Thus, we
considered giving a high probability to some important transformations; finally, we set
applying probabilities of {0.7, 0.6, 0.8, 0.7, 0.5, 0.5, 0.5} to the transformations of {color jitter,
gray scaling, flipping, rotating, blurring, random area erasing and noise addition}.

3.4. Comparison with the State-of-the-Arts

In this subsection, we compare our model with other widely used mapping methods,
including some supervised and unsupervised methods:

• NDWI: WI is the most simple and widely used method in glacial lake mapping,
including in NDWI [32] and MNDWI [35]. Among these indexes, the NDWI is the
most feasible way to highlight the lake information and suppress the background
information [31]. To test the segmentation performance of using NDWI only, we set
the segmentation threshold to 0.6, the same as we used in our model.
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• Global–local iterative segmentation algorithm (GLSeg) [8,9]: The GLSeg includes
two hierarchical image segmentation stages. First, segment the NDWI map to de-
lineate the potential lake areas using a global threshold. Second, calculate the local
threshold to determine the extent of each potential lake within a buffer zone of the lake.
Moreover, the auxiliary data (such as DEM) are introduced to filter the noise pixels
with similar NDWI values with the glacial lakes. For fairness, we only use the RS
imagery as the input, and the parameters are set following [8,9]. We set NDWI > 0.1,
NIR < 0.15 and SWIR < 0.05 in the global segmentation stage and the local threshold
was computed according to the mean and variance of the lake and background pixels.

• C-V model (C-V) [14,37]: as a region-based segmentation method, the C-V model
shows great anti-noise ability, which improves the segmentation accuracy in the
homogenous areas of glacial lakes and avoids the influences of individual noise pixels
from the surroundings. The C-V model employs an active curve to separate the image
into inner parts and outer parts and uses an energy function to evaluate the segment
results. When the energy function reaches an optimal state, the curve will converge to
the true lake boundaries. The parameters are set following [14,37].

• Random Forest classification (RF) [11]: RF has good robustness and generalization in
classification tasks because of its random sampling operations on the input data and
features in each decision tree. For the RF training, we set 1000 trees to vote whether
a pixel belongs to the glacial lake or not, and our training set includes 93,431 glacial
lake samples and 93,431 non-lake samples, each of which has seven band values and a
class label.

• U-net [18,20,38]: U-net is the first DL model for glacial lake segmentation. It learns
the pattern of glacial lakes in order to eliminate the dependence on the auxiliary data
(such as using DEM to remove the mountain shadows). U-net contains four pairs of
encoder and decoder units, and a skip connection is employed to concatenate feature
maps from different scales and capture more details of the lake boundaries. Finally,
the output mask is the segmentation results. We set the parameters to be the same
as [18].

• GAN-GL [21]: GAN-GL uses a zero-sum game between a generator and a discrim-
inator to find the stable state, and a water attention module is also introduced to
accelerate the convergence process. This GAN-based method can delineate the glacial
lake boundaries more easily, without any distribution assumptions.

We evaluated the glacial lake extraction effects of these segmentation methods on
the validation dataset, and the results are shown in Table 4. Evidently, the segmentation
effects of the unsupervised segmentation methods (NDWI, GLseg, C-V) are significantly
lower than that of the supervised methods (RF, U-net, GAN-GL) by comparing the F1
score and IoU. As for comparing these unsupervised methods, our model has yielded
the best performance and even shows competitive efforts to the supervised classification
method (RF).

Table 4. Evaluation results of segmentation methods weather it involves label or threshold.

Model Label Threshold Precision Recall F1 Score IoU

NDWI 4 0.8243 0.4143 0.5306 0.4392
GLSeg 4 0.4828 0.6593 0.5091 0.4092

C-V 4 0.5518 0.6756 0.5989 0.4347
RF 4 0.6796 0.7443 0.6649 0.5634

U-net 4 0.8669 0.8060 0.8353 0.7173
GAN-GL 4 0.9334 0.9201 0.9217 0.8634

ours 4 0.9406 0.6285 0.6661 0.5855

4. Discussion

In this section, we discuss the benefit and defects of our model SimGL, and its applica-
bility to other sensors.
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4.1. Visualization of Comparisons

Figure 7 shows the visualization results of the glacial lake extraction performances. By
comparing the results from other glacial lake extraction methods, our SimGL shows several
potential improvements. First, the results from the pixel-based methods (NDWI, GLseg,
and RF) demonstrated that they are prone to producing noises or individual pixels (see
Figure 7a,c), which may come from mountain shadows, melting glaciers and floating ice,
while our model SimGL utilized the convolution operation to capture the spatial features
of glacial lakes, showing that it had an excellent anti-noise ability. Second, compared to
the supervised method RF, our model SimGL shows good effects in extracting lakes with
floating ice or frozen surface (see Figure 7b,d,f). Considering the three unsupervised glacial
lake extraction methods (the NDWI, the C-V model and the GLseg model), some small
lakes were detected by the C-V model and the GLseg model, but not extracted by NDWI.
As a low global threshold of 0.1 was set in C-V and GLseg, some small lakes that are easily
confused with background (they always have a low NDWI value) are discriminated. This
means that the location cues provided by the NDWI map are not accurate enough for the
glacial lake areas, but our model SimGL extracted more lake pixels than when employing
NDWI only (see Figure 7f), which also illustrated that our model SimGL could learn the
patterns of glacial lakes from limited lake information.

Despite the supervised DL model (U-net and GAN-GL) designing an automatic scheme
to segment glacial lakes and obtaining an exceptional performance, these methods are still
inevitable to prepare a large number of training images and labels. Therefore, our method
SimGL provides a new scheme to segment the glacial lakes in cases of lacking true lake
labels in large-scale areas.

4.2. Applicability to Different Sensors

To determine the generalizability and robustness of the model, we conducted our
model on four types of data: the Landsat-5 Thematic Mapper (TM), Landsat-7 Enhanced
Thematic Mapper Plus (ETM+), Landsat-8 Operational Land Imager (OLI) and Sentinel-2
Multi-Spectral imager (MSI). Here, the Landsat-8 OLI has a higher radiometric resolution
(16 bits) than its predecessors (eight bits in Landsat-5 TM and Landsat-7 ETM+), represent-
ing an abundant color of information in the image. In terms of the Sentinel-2A MSI imagery,
although it has a high cloud cover of 66.07%, fortunately the region where the glacial lake is
nourished is cloud-free, and the lake boundary is clear enough to implement segmentation
experiments. Moreover, considering that the Sentinel-2A MSI imagery has 13 bands with
different spatial resolutions, we finally stacked the layers of band 2/3/4/8 (corresponding
to blue/green/red/NIR bands) to an image file as they all have 10 m spatial resolution.
The detailed information of the four images is listed in Table 5.

Table 5. Detailed information of images from four different sensors.

Sensors Acquired Date Cloud Cover (%) Path/Row

Landsat 5 TM 12 October 1988 3.00 141/040
Landsat 7 ETM+ 24 October 2001 0.69 141/040

Landsat 8 OLI 7 October 2015 1.44 141/040
Sentinel-2A MSI 28 November 2015 66.07 119 *

* Note: Sentinel-2A only provides a sensing orbit number in its head file.
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The model configurations remained as those described in Section 3.2. The training
dataset was the abovementioned 1540 Landsat-8 OLI image patches. However, the image
bands of the sensor TM, ETM+ and MSI do not correspond exactly to that of the sen-
sor OLI. Therefore, we selected the bands contained in both the testing image and the
Landsat-8 OLI image during the training stage. Specifically, we trained the model with
the blue/green/red/NIR/SWIR1 bands of the OLI image for testing the TM and ETM+
images, and then re-trained the model with the blue/green/red/NIR bands of the OLI
image for testing the MSI image. Despite these images being varied in their bit depth and
DN value ranges, the object reflectance should remain consistent, even in different data.
Thus, we automatically convert the DN value of the Landsat-8 OLI images to the TOA map
before the model training, and the conversion parameter values can be queried in the head
file. Only the training data and testing data are reflectivity products; the model can predict
the testing image according to the features learned from the training data.

Finally, the experimental results of the different sensors are shown in Figure 8. From
the first row and third row in Figure 8, the glacial lake areas extracted by our model
SimGL are very close to the true lake areas and without noise interference, even if different
RS images are used for the experiment, which also indicates that our model has good
applicability and can be easily applied to the other RS image.
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Figure 8. The visualization results of our model SimGL conducting on four different RS images. The
blue areas are extracted lakes. The first row shows the RS images from Landsat-5 TM, Landsat-7
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4.3. Possibility in Monitoring GLOF Events

All the glacial lake extraction methods are finally expected to conveniently monitor
and find potentially dangerous lakes on a large scale, then give early warning for some
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dangerous lakes under long-term observations by remote sensing. Recently, some works
have attempted to extract glacial lakes at different periods and analyze them to identify the
lakes with a high outburst risk. For example, Ahmed et al. [39] used a simple weighted
index on high-resolution satellite data for glacial lake mapping and change detection
analysis, and 21 glacial lakes were marked as potentially dangerous lakes in the upper
Jhelum basin, Kashmir Himalaya, India; Nie et al. [40] extracted the glacial lake extent in
1990, 2000, 2005 and 2010, employing an object-oriented segmentation method and manual
inspection, ultimately identifying 118 lakes as potential vulnerable lakes in Himalaya;
Shrestha et al. [41] delineated the glacial lake boundary using NDWI in the years 1977,
1990, 2000 and 2010 in the Koshi basin of Himalaya and found 42 rapidly growing glacial
lakes that should be paid more attention in terms of GLOF.

These works use simple segmentation methods (such as NDWI) to extract glacial lakes
at a regional scale and identify the dangerous ones through the comparative analysis of lake
areas in different periods. While our model SimGL has better applicability to RS sensors
and a better segmentation performance, which greatly reduces the pre- and post-processing
work in the glacial lake extraction. In the future, the temporal mapping of glacial lake areas
using our model, as well as investigating the lakes with high expansion rates, is imperative
for recognizing the dangerous lakes and giving early warning of GLOF events.

4.4. Impaction of Locaton Cues

Owing to the similar contents of the images in the dataset, they always contain objects
such as glaciers, glacial lakes, vegetation, etc.; thus, these objects are extracted with glacial
lakes only using contrast learning, resulting in a low F1 score (0.1356) and IoU (0.1083) in
loss term ablation. To extract glacial lakes in a case lacking true lake labels, we combined
the contrastive learning and rough location cues provided by a simple Water Index. In our
model, designed in Figure 2, the NDWI map provided rough location cues of glacial lakes,
guiding the extraction area to coincide more with the true lake boundaries. These weak
location cues are critical to the segmentation effects. Therefore, we explored how to obtain
effective location cues of glacial lakes, and whether our model learned something useful
with the help of this weakly-supervised information.

The model performance was first evaluated under the condition of using different
Water Indexes and setting threshold values. By analyzing the results from Figures 5 and 6,
we can conclude that the model achieved the optimal effect when setting a threshold of 0.6
to the NDWI.

As seen in Figures 7 and 8, we further visualized the results of our model SimGL
and the results of using NDWI only. Three merits of our model can be deduced from the
comparison of the results of the two methods: (1) The NDWI as a pixel-based method
that processes each pixel by masking the pixels with a pre-defined threshold, which may
contaminate the segmentations with a lot of isolated noise pixels if these isolated pixels
have similar NDWI values to the lake pixels (such as in Figure 7a, many mountain shadow
pixels as noise are separately extracted by NDWI). On the other hand, our model SimGL
can effectively avoid the interference of noise as the model can segment the lake areas by
identifying the high-level spatial features of lakes; (2) The glacial lake boundary extracted
by NDWI is relatively unsmooth as the setting of a high threshold would segment an
inaccurate boundary of the lakes (for example, in Figure 8, the boundary of the glacial lake
was ragged when we used NDWI to map the glacial lake from Landsat-7 ETM+ imagery),
but our model, as it captured and learned with the spatial features, can provide complete
glacial lake areas; (3) The NDWI will fail to identify the lake pixels if they are covered by
floating ice (such as the extraction results in Figure 7f and the result evaluated on Sentinel-
2A MSI imagery in Figure 8). However, the SimGL can eliminate the influence of floating
ice to some extent. Specifically, glacial lake areas can also be discriminated by SimGL even
though the surface is covered by thin floating ice. All of these three merits suggest that
our model SimGL, combining contrastive learning and rough location cues, can effectively
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learn the features and patterns of glacial lakes with the limited cues provided by NDWI,
and give a better mapping result of glacial lakes.

5. Conclusions

In this work, we proposed a simple glacial lake extraction network (SimGL) via a
weakly-supervised training strategy. This weakly-supervised DL method extends and
improves the extraction performances when lacking the true labeled lake masks in the
model training stage, and therefore shows good applicability to different RS data. In the
SimGL, a Siamese model was utilized to capture similar objects from the input image and its
augmentation via unsupervised contrastive learning. Then, a pseudo lake label provided
by masking the NDWI map with a tight threshold was used to give the lake location
cues and guide the segmentation. The evaluation results of the glacial lake segmentation
on the 1540 Landsat-8 image patches indicated that our model outperformed the other
unsupervised image segmentation methods and achieved a competitive performance with
some supervised methods (such as Random Forest).

Through the comparisons with the NDWI segmentation method and the explorations
of the applicability to other RS sensors data, our model shows good benefits in its anti-noise
ability and applicability. In addition, although we use the NDWI map to generate the
location cues to SimGL, our model can learn the features and patterns of glacial lakes with
limited weakly-supervised information and segment the glacial lakes more accurately. In
general, our work provides a new technology for segmenting glacial lakes from RS imagery,
even without lake labels in the training stage, which significantly improves the effects of
glacial lake mapping over a large-scale area.
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