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Abstract: The difficulty of calculating the daily water budget of irrigated fields is often due to the
uncertainty surrounding irrigation amounts and timing. The automated detection of irrigation
events has the potential to greatly simplify this process, and the combination of high-resolution SAR
(Sentinel-1) and optical satellite observations (Sentinel-2) makes the detection of irrigation events
feasible through the use of a surface soil moisture (SSM) product. The motivation behind this study
is to utilize a large irrigation dataset (collected during the ESA Irrigation + project over five sites in
three countries over three years) to analyze the performance of an established algorithm and to test
potential improvements. The study’s main findings are (1) the scores decrease with SSM observation
frequency; (2) scores decrease as irrigation frequency increases, which was supported by better scores
in France (more sprinkler irrigation) than in Germany (more localized irrigation); (3) replacing the
original SSM model with the force-restore model resulted in an improvement of about 6% in the
F-score and narrowed the error on cumulative seasonal irrigation; (4) the Sentinel-1 configuration
(incidence angle, trajectory) did not show a significant impact on the retrieval of irrigation, which
supposes that the SSM is not affected by these changes. Other aspects did not allow a definitive
conclusion on the irrigation retrieval algorithm: (1) the lower scores obtained with small NDVI
compared to large NDVI were counter-intuitive but may have been due to the larger number of
irrigation events during high vegetation periods; (2) merging different runs and interpolating all SSM
data for one run produced comparable F-scores, but the estimated cumulative sum of irrigation was
around −20% lower compared to the reference dataset in the best cases.

Keywords: Europe; irrigation timing; FAO-56; force-restore; surface soil moisture

1. Introduction

Irrigation water use is a critical factor in managing and optimizing agricultural water
resources amid the increasing global demand for irrigation water [1]. The rise in demand is
particularly noticeable in response to the production of bioenergy [2], while the decrease in
groundwater availability amplifies competition with other sectors, including urban water
demand [3]. An irrigation, like a precipitation event, has a specific start and end time,
during which a given amount of water is applied to the field, usually referred to as the
amount or dose of irrigation. This quantity is expressed either as a volume (m3) or a water
depth (mm) at the field (plot) level. Quantifying irrigation has been mainly carried out at
large scales using a method based on coarse-scale surface soil moisture products derived
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from either passive or active remote sensing sensors [4–7]. These techniques operate in
the microwave domain where the dielectric properties of soil are primarily governed
by its water content, which directly affects the emissivity and backscattering of the soil
surface [8]. However, such methods operate at much lower resolutions than the field scale,
and detecting irrigation events at the field scale is an emerging scientific area.

Land surface temperature provides an attractive proxy of root-zone soil moisture
conditions as hydrologically stressed vegetation heats up in response to stomatal closure [9].
Olivera-Guerra et al. [10] derived crop water stress from Landsat land surface temperature
data to feed a simple crop balance model for estimating irrigation water timing and amount.
However, this method faces limitations, mainly attributed to the low revisit time of available
thermal sensors into orbit. Nevertheless, this method is promising in the short term with
the launch of new thermal sensors such as TRISHNA (Thermal InfraRed Imaging Satellite
for High-resolution Natural resource Assessment, https://www.eoportal.org/satellite-
missions/trishna, accessed the 2 February 2023) expected for 2024 or LSTM (Land Surface
Temperature Monitoring, https://www.eoportal.org/satellite-missions/lstm accessed the
2 February 2023), expected for 2028.

In addition to the work mentioned above, most of the approaches developed recently
rely on surface soil moisture (SSM) estimates derived from Sentinel-1. The dielectric prop-
erties of the soil phases (i.e., water, air, and solids) affect the emissivity and backscattering
of microwaves from the soil surface [8], making it possible to retrieve soil moisture from
microwave observations. The Sentinel-1 C-band satellites have penetration ranges from
1.87 to 3.75 cm and 0.75 to 1.5 cm for bare soil and cultivated soil, respectively, making
it theoretically possible to estimate SSM at the nominal resolution of Sentinel-1 of 10 m.
However, to decrease the well-known noise of radar observations due to interference from
the coherent sum of scattered signals, also called “speckle noise,” the results are generally
provided at a lower resolution.

Bazzi et al. [11] took advantage of the difference in footprint between rainfall that
waters a large area (>1 km) and an irrigation event whose impact is limited to the field by
comparing the dynamic of the radar signal at both scales. This work has been updated [12]
with a new study over summer crops, where the main findings indicated that the density of
available Sentinel-1 affects the irrigation detection accuracy, especially for temperate areas.
Le Page et al. [13] compared the relative change of surface soil moisture predicted by a simple
soil water budget model, with no representation of irrigation and derived from Sentinel-1 [14],
on maize plots to determine the timing of irrigation events. Ouaadi et al. [15] proposed an
approach based on the assimilation of high-resolution soil moisture products [16] into a simple
soil water budget model and demonstrated that both irrigation timing and water amounts
could be retrieved with reasonable accuracy if the irrigation techniques (flooding or drip
irrigation) were known. A recent study of Zappa et al. [4] analyzed the accuracy of irrigation
retrieval from space as a function of the characteristics of soil moisture products, and
indirectly the irrigation techniques demonstrated that (1) improved metrics are obtained
with high spatial and temporal resolution products; (2) better results are obtained on fields
where large amounts of water are applied such as for a traditional flooding irrigation
method. Brombacher et al. [17] have proposed an alternative approach based on the
comparison of evapotranspiration of natural areas to the evapotranspiration of irrigated
fields. The difference of evapotranspiration is attributed to irrigation water amounts.

The detection of irrigation events in [13] relied on a relative comparison between
two assessments of SSM. The first assessment was obtained from satellite observations,
while the second assessment was obtained from a water budget model based on the FAO-
56 model [18]. The comparison between the two assessments was conducted at each
satellite observation. The method of irrigation timing retrieval was developed and tested
on a small dataset of six maize plots over one season in southwest France. Consequently,
the examination of the model’s performance did not permit a detailed analysis of its
effectiveness. The ESA Irrigation+ project dataset, which provides a wide variety of crops,
soils, and irrigation methods in different European countries, is much larger and thus used
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to evaluate the method with respect to crop type and irrigation method. This study aims at
evaluating this method according to the kind of crop, and the type of irrigation. We also
have organized the study in order to analyze impact of the configuration of the Sentinel-1
acquisitions (incidence angle, and orbit), and two classes of vegetation development by
separating between small NDVI and high NDVI.

In addition to these evaluations, the force-restore approach [19] is tested as an alterna-
tive to the original bucket model in order to estimate SSM. Finally, two different strategies
for using the observations of SSM are also tested.

The article is organized into four parts. The first part describes the study area and
analyzes the forcing and validation datasets. The ESA Irrigation+ dataset is examined to
demonstrate the diversity of crops, soils, irrigation methods, and schedules. The weather
data, Sentinel-2 NDVI, and Sentinel-1 SSM datasets are then described. The second part
outlines the methodology, briefly describing the model and providing the model equations
in different annexes (Appendix A). Additionally, the statistics used are described. The third
part presents the results, and the final part discusses conclusions and future works.

2. Dataset and Irrigation Detection Approach

The irrigation detection method relies on a simple water budget based on the FAO-56
model [20] that is forced by precipitation, the reference evapotranspiration ET0, the basal
crop coefficient Kcb, the fractional cover derived from Sentinel-2 NDVI at a daily time
step [21], and satellite-derived products of surface soil moisture. The performance of the
approach is assessed over different plots in Europe described in the following section. A
short description of the methodology is provided afterward, and the system of equations is
fully described in Appendices A.2 and A.3.

2.1. Study Sites and Irrigation Data

The large dataset consists of a time series of irrigation events characterized by their
timing and water amount for different plots in Europe (Figure 1) The data were gathered
in five different regions: Niedersachsen and Brandenburg in Germany, Lot and Tarn in
France, and Budrio in Italy, within the frame of the ESA Irrigation+ project [5]. According
to the Koppen–Geiger climate classification, Niedersachsen, Lot and Tarn are located in a
temperate oceanic climate (Cfb); Brandenburg is located in a humid continental climate
(Dfb); and Budrio in a humid subtropical climate (Cfa). There are 85 different plots with data
acquired over three seasons from September 2017 to September 2019 depending on the plot
for a total of 105 complete growing seasons (see Appendix A.5 for details). The size of the
plots ranges from 0.3 to 10 ha. The soil texture has been retrieved from the OpenLandMap
dataset using Google Earth Engine (GEE), a dataset based on machine learning predictions
from a global compilation of soil profiles and samples. It is an enhancement of SoilGrids
from Hengl et al. [22]. Tarn and Lot have clay loam soils (~30% clay and ~30% sand); Budrio
has silty clay loam soils. The two German regions have more sandy textures: sandy loam
for Brandenburg and loam for Niedersachsen [23] (Figure 1). Table 1 describes the number
of available plots/seasons by region and crop type. Most of the crops are cereals, consisting
of maize, rye, wheat, and barley. The second most important crops in the dataset are tubers
(potato and sugar beet). There are also some vegetables (mainly soybean), and crops used
for fodder (maize, rapeseed, grass). Plots seeded with walnut and tobacco complete the
dataset. However, as full descriptions (eg. Kcb, Fc, rooting depth) of some of those crops
were unknown, they were given the configuration of a similar crop (for example, wheat for
barley or maize for rye).
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Figure 1. Regions location and average soil texture from the dataset’s fields. 

Table 1. The number of seasons per crop and region in the dataset. 

    Germany France Italy     
Crop   Brand. Nied. Lot Tarn Budrio Total 

Vegetables 

Soybean       11   11 

16 
Asparragus     1     1 

Tomato         3 3 
Pea 1         1 

Cereals 

Triticale   4       4 

70 

Winter Rye 3         3 
Winter wheat 4 9       13 

Maize 2     29 2 33 
Maize (seed)     7     7 

Summer barley   10       10 

Fodder 
Maize (forrage)     7     7 

13 Rapeseed 1 3       4 
Grass 2         2 

Tubers 
Potato 2 12       14 

24 
Sugar beet   10       10 

Others 
Tobacco     8     8 

10 
Walnut     2     2 

The irrigation characteristics of the five study areas are shown in Figure 2 in terms of 
amount, number per year, and frequency. Note that the amount of water per event is not 
known for Brandenburg, and was set at 15 mm/event. The average number of irrigation 
events per season is between 7 and 9 for the regions of Brandenburg, Tarn, and Lot, 
where sprinkler irrigation dominates. Budrio, with an average of 18 events per season, 
has a mix of sprinkler and drip irrigation. On average, Niedersachsen has a high number 
of irrigation events (24 on average, 80 maximum) with an average amount of 18 mm, but 
with a big variation of the amount between fields. As such, this area is dominated with 
drip irrigation but also has sprinkler irrigated fields. 

Le Page et al. [13] showed that low amounts (less than 10 mm per event) make irri-
gation detection difficult. In this dataset, only a few events, located mainly in Nieder-

Figure 1. Regions location and average soil texture from the dataset’s fields.

Table 1. The number of seasons per crop and region in the dataset.

Germany France Italy

Crop Brand. Nied. Lot Tarn Budrio Total

Vegetables

Soybean 11 11

16
Asparragus 1 1

Tomato 3 3
Pea 1 1

Cereals

Triticale 4 4

70

Winter Rye 3 3
Winter wheat 4 9 13

Maize 2 29 2 33
Maize (seed) 7 7

Summer barley 10 10

Fodder

Maize (forrage) 7 7

13Rapeseed 1 3 4
Grass 2 2

Tubers
Potato 2 12 14

24Sugar beet 10 10

Others
Tobacco 8 8

10Walnut 2 2

The irrigation characteristics of the five study areas are shown in Figure 2 in terms of
amount, number per year, and frequency. Note that the amount of water per event is not
known for Brandenburg, and was set at 15 mm/event. The average number of irrigation
events per season is between 7 and 9 for the regions of Brandenburg, Tarn, and Lot, where
sprinkler irrigation dominates. Budrio, with an average of 18 events per season, has a mix
of sprinkler and drip irrigation. On average, Niedersachsen has a high number of irrigation
events (24 on average, 80 maximum) with an average amount of 18 mm, but with a big
variation of the amount between fields. As such, this area is dominated with drip irrigation
but also has sprinkler irrigated fields.
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Figure 2. Statistics of irrigation events. The bars show the minimum and maximum. The square and
number show the average value.

Le Page et al. [13] showed that low amounts (less than 10 mm per event) make irriga-
tion detection difficult. In this dataset, only a few events, located mainly in Niedersachsen
and Budrio, are below this threshold. Likewise, the detection was also shown to be difficult
if the frequency of irrigation is higher than the time of the satellite overpass (6 days for the
combination of Sentinel-1A and Sentinel-1B), such as in the Niedersachsen region where
the average irrigation frequency is 2.8 days.

Figure 3 shows the distribution over time of the irrigation season per region, while
Figure 4 presents the season of irrigation for the main crop types. The season duration can
extend for as long as 150 days in Brandenburg and be as short as one day at the French
locations (one irrigation event only). The irrigation season begins around mid-April and
ends around mid-September on average, except for in France where the irrigation season
is very short (from June to mid-September) because maize, irrigated during the summer
months, is the dominant crop in this region. Regarding the irrigation season of the main
crops investigated in this study, wheat is generally irrigated from May to June, potato from
May to August, and tomato from May to September.
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Figure 3. Start (gray color) and end (white color) of irrigation season per region. The box shows the
mean date plus or minus one standard deviation. The line indicates the extremes, i.e., the minimum
and maximum date of beginning and end of the irrigation season.
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Figure 4. Irrigation distribution of the four main crops of the dataset.

2.2. Weather Data

The weather data needed to compute the water budget are the daily precipitation
and reference evapotranspiration. When available, the rainfall measured by rain gauges
is located close to the plot (Germany and Italy). In France, those measurements were
not available outside of the irrigation season. For the latter or in the case of missing
data, the amounts were provided by the AgERA5 dataset [24], at a spatial resolution of
0.1◦ × 0.1◦. Likewise, while the FAO-56 water budget approach relies on the reference
evapotranspiration (ET0, Allen et al. [20]), the potential evapotranspiration (PET) relying
on MODIS (MODerate resolution Imaging Spectroradiometer) observations was used for
ease of implementation. PET rates from the 8-day aggregated MOD16A2 product at 500 m
spatial resolution were extracted through the GEE platform.

2.3. Vegetation INDEX, LAND COVER, and Crop Season

NDVI and Land cover are needed to estimate the basal crop coefficient Kcb for each
crop and plot. Time series of NDVI from the Sentinel-2A and 2B satellites were retrieved
and averaged over the plot using the COPERNICUS/S2_SR collection from GEE. This
dataset is atmospherically corrected with the Sen2cor algorithm [25]. Although other
algorithms can perform better [26], this processing provides a coherent time series of
surface reflectance. The time series were further cloud-masked using the COPERNI-
CUS/S2_CLOUD_PROBABILITY collection, which is a GEE precomputed dataset obtained
with the s2cloudless algorithm. An automated cloud-detection algorithm is based on a
gradient boosting algorithm which is fast and performs well [27]. As some clouds might
still persist in the time series, the well-known Savitsky–Golay filter [28] has been applied
in order to smooth the times series of NDVI. Figure 5 displays an example of NDVI time
series before and after smoothing. The seasonal land cover type used for the relations
between NDVI and fractional vegetation cover, and with NDVI and basal crop coefficient,
was retrieved directly from the different dataset providers. The duration of the crop season
was determined by an ad hoc peak and valley algorithm. The algorithm searches for local
minimums and maximums on the smoothed time series of NDVI, and it deletes consecutive
minimums or maximums. It then selects the local maximums above 0.6, and only keeps
them if there is a duration of at least 90 days between two local maximums. The beginning
and end of each season are found as the local minimums in the time series before and after
each selected local maximum. An example result is given in Figure 5.
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Figure 5. Example of identification of the start and end of the crop season from Sentinel-2 NDVI
time series. The dashed blue line is the original Sentinel-2 time series of NDVI. The orange line is the
filtered NDVI. The black boxes are the estimated crop seasons.

2.4. Surface Soil Moisture “S2SM” Dataset

The S2SM dataset (Sentinel-1 and Sentinel-2 Soil Moisture) used in this study is derived
from the approach proposed by El Hajj et al. [14]. It is based on the training of a neural
network on a synthetic noisy dataset obtained from the coupling of the Integral Equation
Model (IEM) and the Water Cloud Model (WCM, [29]) forced by Sentinel-2 NDVI used as
the vegetation descriptor for the WCM. IEM + WCM is run for a wide range of incidence
angles, soil roughness, soil moisture, and vegetation index (NDVI). This approach was
implemented to produce a dataset of SSM from 2017 to 2020 for the different study areas of
the project. It is shown that the best retrieval performance is obtained for NDVI lower than
0.7 and incidence angles close to 39◦.

Sentinel-1 A and B acquisition geometries are different between northern (German)
and southern (French and Italian) regions. Because of the overlap of different orbits on the
site, the plots have about 2.5 acquisitions every 6 days in Germany, while there is around
one acquisition per 6 days in France. Finally, the plots in France have an incidence angle
closer to the optimal 39◦ of the S2SM product, while in Germany and Italy, the incidence
angles range from 34◦ to 42◦ (Figure 6).
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A second interesting issue to consider is that the SSM retrievals from S2SM might
present a noticeable variability according to the different incidence and azimuth angles of



Remote Sens. 2023, 15, 1449 8 of 25

the ascending pass (6 PM) and the descending pass (6 AM). Figure 7 shows this variability
for a plot in Brandenburg where two orbits overlap (red down-triangles and yellow up-
triangles). The decrease in SSM at the end of the growing phase is probably related to the
lack of wetting events (days 75 to 110). When two wetting events occur around day 125,
there is no meaningful increase in SSM. In this case, the well-developed vegetation might
prevent the penetration of the radar signal down to the soil. Large fluctuations of SSM
occur, and this is encouraging for the detection of wetting events even with well-developed
vegetation. In addition, smaller fluctuations from one acquisition to another are noticeable.
The peaks are not necessarily related to irrigation or irrigation events but might be related
to the different orbits and the associated change in incidence or azimuth angles, and time
of view. For example, morning dew might be identified as a higher SSM. The detection
algorithm must deal with those small fluctuations.
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Figure 7. Lower panel: An example of the time series used for the timing of irrigation. The main
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The S2SM product is drawn with yellow arrows (ascending orbit) and red arrows (descending orbit);
Upper panel: the incidence angle of acquisition is shown.

3. Methodology
3.1. Model and Workflow

Three datasets are needed as inputs in order to obtain the estimation of irrigation
as an output. The workflow to do this is summarized in Figure 8. The input time series
(Sentinel-1 backscattering data, Sentinel-2 NDVI, and ERA5Land weather data) are shown
in light gray boxes. The daily input variables of the models (Kcb, Fc, sowing and harvest
date, rainfall, ET0, and S2SM) are shown in dark gray boxes. S2SM (1) has been previously
described in [14]; the way to estimate Kcb and Fc (2) is described in [30]; the estimation
of sowing and harvest dates (3) is described in Section 2.3. The computation of ET0 (4) is
performed according to [20], and the water budget (5) is calculated following [21]. The
equations of the water budget are detailed in Appendix A.2. The two alternative SSM
water budgets are then computed according to [13] and [15]. The equations of the modified
bucket approach are detailed in Appendix A.3. The equations of the force-restore model are
detailed in Appendix A.4. As described in Section 3.2, S2SM is either used with the actual
observations or is interpolated (7). Irrigation detection (8) and exact date choice (9) are
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performed according to [13]. Finally, if necessary, a merging (10) of the different runs is
performed.
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Figure 8. The workflow of this article is based on three datasets (in light gray boxes). The steps 1 to 4
allow to obtain intermediate variables, with, on one side, the Surface Soil Moisture product obtained
from satellite observations (S2SM), and, on the other side, the variables that will allow the computing
of a water budget for the estimation of the surface soil moisture (basal crop coefficient (Kcb), Fraction
cover (Fc), sowing and harvest date, precipitation and reference evapotranspiration (ET0)). Steps 5 to
9 are the irrigation detection steps. The two diamonds (6 and 7) indicate sub-methods for dealing
with soil moisture observation and soil moisture estimation, respectively. The final step (10) consists
of merging results.

The root layer has been partitioned into an upper soil layer and root zone layer
according to Raes [31]. If there is a significant increase in S2SM and a significant decrease in
the predicted SSM (SSMmodel), this might be due to an irrigation event during the two soil
moisture retrievals. The approach evaluates the variation in SSM of the model and satellite-
derived products separately. Indeed, there are many uncertainties on both sides. On the
model side, uncertainties can be explained by the input data, in particular the precipitation,
but also the hydraulic characteristics of the soil. On the side of the satellite product, changes
in soil roughness or vegetation density can significantly affect the accuracy of the product.
Stated differently, more weight is given to the relative variations than to the absolute values
of SSM. The model then searches for the best date of irrigation between the two S2SM
observations. The method is fully described in Le Page et al. (2020) [13]. The approach
was applied for six sprinkler-irrigated maize plots in south-west France, where Sentinel-1
provided an observation every six days. The results were very encouraging with an average
F-score of 0.69 (see below for the description of the F-score).

As an alternative to the soil bucket model of the FAO-56, a force-restore approach [32,33]
is tested within this study, as it has been shown to better describe surface and root-zone
coupling and, in particular, the capillary rise that is not considered in FAO-56. In addition,
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this approach resolves the daily cycle of soil moisture evolution allowing for a comparison
of predicted and retrieved soil moisture at the time of the satellite overpass in contrast to
the daily prediction of the FAO. An example of the trajectory of the two models is shown
in Figure 9. The daily SSM estimate dries faster than the hourly SSM which takes into
account capillary rise. Compared to the bucket model, which partitioned the root layer
into an upper soil layer and root zone layer according to [15], this model should reach the
following goals:

• Obtain SSM for a thinner (10 cm) and fixed depth of soil;
• Obtain an hourly estimate of SSM that can be used for the times of the ascending and

descending orbits;
• Take into account the capillary rise to the upper soil layer.
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restore model (dash and point line) after a wetting event.

For each plot, the start and the end of the season are estimated as previously stated.
An empirical linear relation between NDVI and Fc and NDVI and Kcb is used according to
each field land cover in the same way as [13]. Because of the lack of in situ information,
the maximum rooting depth is set to 60 cm independently of location or crop. For each
single plot, the irrigation amount is set to the average known irrigation of the season. This
is compliant with the original objective of this algorithm which was to retrieve irrigation
events automatically at the plot scale for a farmer within the framework of a decision
support system for irrigation planning. Wilting point and field capacity of the soil are
computed with the Saxton equations [34] (Appendix A) according to the clay and sand
content derived from the Openlandmap dataset (see Appendix A.1 for equations).

3.2. Implementation and Performance Assessment

In order to better exploit the wealth of Sentinel-1 observations, two strategies are deployed:

1. The first approach aims to retrieve irrigation timing separately for each Sentinel-
1 viewing configuration (i.e., with different azimuth and incidence angles). This
ensemble of irrigation timing retrievals are then merged by keeping one irrigation
event within a delay of ± n days only. Different values of n (1, 2, and 3 days) were
tested, which means that the time period containing only one irrigation event would
be 3, 5, or 7 days. Note that as n increases, the number of possible detection of
irrigation events mechanically lowers. Large n values thus degrade the detection of
high irrigation rate.

2. The second approach consists in interpolating the S2SM estimates before irrigation
detection. The time series of SSM are linearly interpolated to the daily time step
regardless of the acquisition configuration. The linearly interpolated time series is
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then smoothed with the Savitsky–Golay algorithm (window of seven days and second
degree polynomial) in order to remove small peaks of SSM. As the best time step was
previously identified to be three days for irrigation timing detection [13], 3-day SSM
are used for irrigation retrieval.

The results are analyzed as follows:

• The incidence angle and the acquisition geometry: in the case of separate runs
(approach 1), the impact of orbit and incidence angle can be analyzed. When two
orbits are available such as over the German plots, four runs will be considered
(AAC/34, DES/34, ASC/43, DES/42, see Figure 7; ASC and DES states for ascending
and descending orbits, while the number corresponds to the incidence angle) while
only two runs are carried out for the other sites. The intermediate scores are obtained
by averaging the scores of the different runs.

• The configuration of the fields: In both approaches, the impact of the region, the crop
type, and the irrigation frequency are analyzed. Two regions are analyzed: Germany
and France. Three main crop classes are selected: wheat, maize, and potato. The
irrigation frequency is separated into four classes: low (>1 irrigation per 15 days),
average (1 event each 10 to 14 days), frequent (1 event each 6 to 9 days), and very
frequent (1 event per 5 days or more).

• The soil water budget model: In both approaches, the force-restore model is com-
pared to the original bucket scheme.

• The merging of separate runs: The impact of the merging delay n, within which it is
assumed that an irrigation event can occur, is analyzed with values ranging from 1 to
3 days.

3.3. Calculation of Scores

The performance of the retrieval of irrigation timing can be considered as a classifica-
tion problem. If the simulated date of irrigation is equal to an observed date of irrigation,
the retrieval can be qualified as perfect. However, this definition is extremely restrictive,
so that in the calculation of the score, we have considered that an irrigation event is well-
detected (true positive) if it is located within three days of an actual irrigation (observed
event). This definition is still very strict because it is important to have good accuracy of
irrigation timing in order to eventually replace actual irrigation events with those that are
simulated irrigation events. The score itself is computed with the F-score (or F1-score, or F-
measure). F-score is computed as the harmonic mean of precision and recall (Equation (1)).
Precision expresses how many retrieved items are relevant. It is computed by the number
of true positive results divided by the number of all positive results. Recall expresses how
many relevant items have been retrieved. It is computed as the number of true positive
results divided by the number of all samples that should have been identified as positive.
An F-score of 1 means a perfect simulation, while an F-score of zero is obtained when either
precision or recall are zero.

Fscore = 2 ∗ recall ∗ precision
recall + precision

∗ 100 (1)

F-score does not necessarily give a good idea about seasonal performance. To do so,
we simply compared the seasonal sum of irrigation amounts of each event (Equation (2)).

Seasonal Bias = ∑n
1 amount

∑m
1 amount

∗ 100 (2)

where n is the number of irrigation events simulated, amount is the average observed
amount of water per event (mm) during the season, m is the actual number of observed
irrigation events, and amount is the observed amount of irrigation (mm) of each observed
irrigation event.



Remote Sens. 2023, 15, 1449 12 of 25

4. Results
4.1. Results with Separate Runs

This sub-section examines the results obtained with separate runs. The different
satellite and field configurations are analyzed, and the two soil moisture models are
compared. The final result is obtained by merging the different runs, which are analyzed in
terms of merging intervals.

4.1.1. Performance according to Different Configurations

In this section, the performance of the irrigation method is analyzed as a function
of the Sentinel-1 acquisition configurations (orbit and incidence angle), the irrigation
frequency, the crop types, and the region. The crop stage is also separated into two parts:
low NDVI and high NDVI. For the latter, a threshold of 0.75 [14] is applied to NDVI value
to separate irrigation retrieval between small NDVI (smallNDVI) and large NDVI values
(largeNDVI). In the smallNDVI analysis, irrigation events are retrieved when NDVI < 0.75,
and observed irrigation events are used when NDVI > 0.75. Inversely, in the largeNDVI
analysis, actual irrigation events are used in the model when NDVI < 0.75, while the
retrieval method is applied when NDVI > 0.75. In this way, the computed soil moisture is
not disturbed by previous time step estimates of irrigation. The statistics that are presented
in Table 2 are obtained by averaging the statistics of the different runs according to different
configurations. For example, if there are four different configurations of the Sentinel-1
acquisition, the general F-score is the average of the four F-scores obtained for each run,
and the “ascending” and “descending” F-scores concern two runs each. In Table 3, the
orbit is separated into ascending and descending modes, and the incidence angles in two
classes: a range (37–41◦) corresponding to the optimal angle of the S2SM (39◦) and all other
acquisitions (<37◦ or >41◦).

Table 2. Scores (F-score, bias) of the bucket approach according to different configurations (orbit,
incidence angle, crop, country, irrigation frequency), and the level of NDVI (all data, small NDVI
values, high NDVI values).

Fscore Bias

Configuration All NDVI Large NDVI Small NDVI All NDVI Large NDVI Small NDVI

Orbit
ASC (6PM) 32 28 24 −221 −68 −69

DES (6AM) 35 30 28 −167 −64 −62

Incidence angle
37-41 35 29 26 −131 −59 −55

Other 34 29 27 −228 −69 −69

Crop

Maize 40 34 30 −42 −41 −7

Potato 32 25 27 −402 −82 −79

Wheat 31 27 24 −225 −70 −68

Country
France 40 33 32 −41 −41 −8

Germany 32 28 24 −277 −74 −73

Irrigation Frequency

Low 44 42 34 4 −12 58

Average 44 39 27 −49 −41 −21

Frequent 38 30 32 −177 −68 −61

Very Frequent 24 21 21 −435 −83 −80
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Table 3. Scores (F-score, bias) of the merging of irrigations runs according to 3 merging windows
(one day, two days, three days) and according to crops, country, and irrigation frequency.

Merging Fscore Bias

Configuration 1 Day 2 Days 3 Days 1 Day 2 Days 3 Days

Crop

Maize 45 45 45 −16 −19 −22

Potato 55 53 45 −57 −60 −68

Wheat 51 47 42 −16 −27 −40

Country
France 44 45 45 −18 −20 −22

Germany 53 49 44 −34 −42 −53

Irrigation Frequency

Low 43 44 44 36 30 25

Average 49 49 49 −17 −20 −24

Frequent 56 53 49 −24 −32 −41

Very
Frequent 43 40 33 −53 −58 −67

A slightly better performance (3 points of the F-score) is achieved using soil moisture
retrieved from the descending orbits (around 6 AM) versus those obtained with the ascend-
ing (6 PM) orbit. F-scores are similar whatever the incidence angle, except that negative
bias is higher for data outside of the range 37–41◦.

The scores decrease as the frequency of irrigation increases. It is particularly low
(F-score around 20) for very frequent irrigation events (around 1 event/3 days). This low
F-score is also associated with a significant negative bias. This is corroborated by the
comparison between France and Germany. Indeed, the plots from Germany (in particular,
Niedersachsen) are likely drip-irrigated with high irrigation frequency while the plots from
France, dominated by Maize (36 among 54 plots), are more commonly sprinkler irrigated.
Interestingly, the seasonal amounts of water for France for low and average irrigation
frequency are close to the observed seasonal amounts. As potatoes are located solely in
Germany and with frequent irrigation while the French plots are mainly cropped with
maize characterized by low irrigation frequencies, the F-score by crops must be treated
with caution. The better performance for maize compared to potato or wheat is probably
due to a lower irrigation frequency.

The biases are always negative apart from plots with low-frequency irrigation (and,
to a lesser extent, average) frequency (sprinkler). Interestingly enough, the best scores are
obtained with higher values of NDVI, as the penetration of the radar signal is decreased by
dense vegetation, and thus the accuracy of the SSM product is reduced [14]. Nevertheless,
the number of irrigation events when the crops are well developed (i.e., with high NDVI
values) largely outweighs the number of irrigation events outside this period.

4.1.2. Merge of Separate Runs

This is the final step using the separate runs. Table 3 presents the scores of merging
with 1-day, 2-day, and 3-day intervals. The merging was only performed with the original
bucket model. The results are presented according to the crop type, the country, and the
irrigation frequency.

The best scores are obtained with a 3-day interval (1 day before and 1 day after the
central day). The precision using different intervals hardly changed, but 1-day improved
the recall, in particular for the wheat crop and the very frequent irrigation frequencies.
The mean F-score varies between 43 for low and very frequent irrigation to 56 for average
frequency. Regarding seasonal amounts, the score is −16% for maize and wheat with
an interval of 1 day, while it reaches −57% for the potato crop. Plots with low irrigation
frequency exhibit an overestimation of 36%, which means there was some over-detection.
Average and frequent irrigation events range from −17 to −24%, while there is a significant
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underestimation obtained for the very high irrigation frequencies (53%). Better F-scores
were obtained in Germany, but with a higher negative bias. This is correlated with the
lowest scores obtained over maize which is the dominant crop in the French dataset.

4.1.3. Impact of the Force-Restore Model

As stated before, the force-restore approach has been implemented to represent the
daily cycle of soil moisture in order to improve the comparison of the model prediction
with the satellite retrieval of SSM. Following Section 4.1, the mean of n runs according to
acquisition configuration is considered. Table 4 summarizes the results as a function of
irrigation frequency. Compared to the bucket approach, the F-score increases by about six
points for low and average irrigation frequencies. There is also a small increase for frequent
and very frequent irrigation event frequency. The seasonal sums are a bit better for frequent
irrigation events. However, the scores are lower for the smaller NDVIs. Table 5 shows the
differences in precision, recall, and F-score for the different configurations observed before.
It must be noted that the improvement in F-score is obtained through a lower precision but
a better recall. As a conclusion, a force-restore soil water budget improved the irrigation
event retrieval with regards to the bucket model with a small loss of precision.

Table 4. Scores (F-score, bias) of the force-restore model according to irrigation frequency and NDVI.

Force-Restore Model Fscore Bias

Configuration All NDVI Large NDVI Small NDVI All NDVI Large NDVI Small NDVI

Irrigation Frequency Low 50 51 29 29 17 118

Average 50 48 29 −11 −18 7

Frequent 41 34 36 −119 −58 −48

Very Frequent 26 22 24 −337 −80 −74

Table 5. Comparison of scores between the initial bucket soil water budget and the force-restore—
FR—approach (score FR minus score Bucket), according to different configurations (Crop, Country,
Irrigation frequency, Acquisition, Angle).

Crop precision recall F-score Country precision recall F-score

Maize −2.9 13.3 6.6 France −3.1 13.2 6.3

Potato −2.6 2.1 2.6 Germany −7.1 3.3 2.4

Wheat −9.4 3.3 2.0

Acquisition precision recall F-score

Irrigation frequency precision recall F-score
ASC −3.5 7.3 5.0

DES −7.4 5.7 2.7

Low −1.9 15.3 6.1

Average −2.3 11.2 5.8 Angle precision recall F-score

Frequent −8.0 4.6 3.1 37–41 −3.0 10.3 6.0

Very −7.4 2.9 2.3 Other −7.8 3.8 2.0

4.2. Results with Interpolated S2SM

In this section, SSM data were interpolated and smoothed regardless of acquisition
configuration. Then, only one out of each three days of this time series was kept in order to
be congruent with the finding of [13].

4.2.1. Results with Interpolated SSM with the Original Model

Table 6 presents the F-score and bias for different crop types, countries, and irrigation
frequencies. The F-scores are very similar to the results of the merging approach but
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seem more stable from one region to another, and from one crop to another. The F-score
values obtained in Germany are consistent with those found in [23], where the authors
used a different Sentinel-1 soil moisture product over the same fields. A higher range of
biases according to irrigation frequency is also observed with a large overestimation for
low-frequency irrigation and an underestimation for high-frequency irrigation. This is
corroborated by the positive biases on maize which is sprinkler irrigated. This approach
seems to be rather sensitive to irrigation frequency. The counter-intuitive results already
described regarding the NDVI values are also observed, as better scores are obtained with
largeNDVI than with smallNDVI.

Table 6. Scores (F-score, bias) of the interpolated approach according to different configurations orbit,
incidence angle, crop, country, irrigation frequency), and the level of NDVI (all data, small NDVI
values, high NDVI values).

Fscore Bias

Configuration All NDVI Large NDVI Small NDVI All NDVI Large NDVI Small NDVI

Crop Maize 49 42 35 45 28 72

Potato 49 43 48 −60 −70 −51

Wheat 45 40 36 −43 −43 −40

Country France 48 41 33 39 28 57

Germany 47 42 40 −50 −54 −45

Irrigation Frequency Low 45 47 31 102 74 168

Average 52 44 35 35 24 51

Frequent 58 48 44 −24 −25 −21

Very Frequent 34 28 33 −61 −70 −53

4.2.2. Results with Interpolated SSM with the Force-Restore Model

The force-restore model improves the performance in the same way shown above with
a small decrease in precision and a good increase in recall which gives an improvement of
the F-score of about 5 points. In all cases, the bias is reduced compared to the bucket model.

4.3. Comparison of the Methods

Figure 10 shows a comparison of the three methods: interpolated SSM with the original
model (interp-Original), interpolated SSM with force restore model (interp-FR), and merged
results of different runs (Merge-FR). The merged approach gives better results for very
frequent irrigation, while the results are generally better with the interpolated-FR approach
for low and average irrigation frequency. This is true both for F-scores and seasonal sums of
irrigation. As such, in France, the interp-FR supersedes the merge-FR method by 9.7 points
on the F-score, while in Germany, the merge-FR supersedes the interp-FR by 5.6 points.
Regarding seasonal sums of irrigation, interp-FR overestimated them by 43.3% in France,
while Merge-FR underestimated them by −18%. However, the better performance for very
frequent irrigation in Germany might also be due to a side-effect of the four Sentinel-1
acquisitions in this region.

4.4. Some Examples of Irrigation Timing Retrieval

In this last section, some examples of good and bad retrievals have been selected.
Figure 11 shows an example of low irrigation frequency on winter rye in Brandenburg in
2017. Apart from the first irrigation, the four last events are correctly detected. Figure 12
shows an example of frequent irrigation on a potato crop in Brandenburg in 2018. About
half of the irrigation events are correctly detected; a quarter of irrigation events are detected
more than three days from the actual events; and about a quarter of the events are not
detected. Figure 13 illustrates the case of a drip-irrigated potato plot in Niedersachsen,
in 2018, where irrigation events are very frequent with small amounts. In this difficult
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case, the algorithm underestimates the number of irrigation events. The high permanent
level of SSM during the full development stages of vegetation could be an indicator of the
irrigation method (localized versus sprinkler or flood).
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rye in Brandenburg in 2017. Irrigation observations are indicated by blue arrows (Irri_obs); irrigation
simulations are indicated by red arrows (Irri_simu). Actual rainfall events are shown with black bars.
The interpolated S2SM product (selected every three days) is shown by stars. Vegetation (Kcb) is
shown with blue dashed lines and the model predictions of soil moisture are also shown (SM_FAO,
and SM_top).
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5. Conclusions

A new dataset of irrigation events was used to analyze the retrieval of irrigation timing
at the plot level using satellite observations. The Irrigation+ dataset was challenging due
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to the variety of crops, locations, soils, and irrigation methods, with most plots using
localized irrigation, which is not well suited for the retrieval method designed for low-
pace irrigation (flooding, sprinkler). Two strategies were tested: one that considered SSM
observations separately according to the Sentinel-1 acquisition configuration and then
merged the different runs, and another that merged and interpolated all observations
and ran the model once with a constant revisit time. The impact of using a force-restore
approach instead of the original bucket soil water budget model on both strategies was
also analyzed.

Performance was evaluated using the F-score and the seasonal sum of irrigation.
The first strategy allowed the analysis of the impact of the Sentinel-1 incidence angle
and orbit on irrigation retrieval. The scores were low, especially with only a six-day
frequency of observation, and there was no significant difference between the Sentinel-
1 configurations (ascending/descending, close to 39◦/far from 39◦). The lower scores
obtained with small NDVI compared to large NDVI were almost systematic, which is
counter-intuitive. However, as the score increased when taking all NDVI values, this might
have been due to the larger number of irrigation events during high vegetation periods.
Interestingly enough, it seems that this algorithm does not suffer a degradation of the score
due to the known degradation of the SSM assessment associated with the development of
vegetation. The scores decreased as irrigation frequency increased, which was substantiated
by the fact that the scores were better in France (more sprinkler irrigation) than in Germany.
Finally, the strategy of merging different runs versus the strategy of interpolating all SSM
data for one run has produced very comparable results. However, compared to each
separate run, the best scores were obtained for average and high frequencies of irrigation.
The cumulative sum of irrigation was around −20% in those cases. The replacement of the
bucket SSM model by the force-restore gave an improvement of about six points on the
F-score, and also narrowed the error on cumulative seasonal irrigation.

The present analysis has revealed some important insights. Firstly, the frequency of
irrigation has a significant impact on the detection of irrigation events. High-frequency
localized irrigation events are difficult to detect due to several reasons, such as partial
wetting of soil, wetting beneath the canopy, and small amounts leading to minimal varia-
tions of SSM that could fall within the error range of the SSM product. Moreover, for drip
irrigation, detecting irrigation events is not relevant for irrigation scheduling, and a weekly
assessment of root zone soil moisture using, for instance, an energy budget-based approach
would be more appropriate. Alternatively, adjusting the thresholding parameters based
on the type of irrigation method, as performed in [15], could be considered. Although
the seasonal pattern of SSM may offer some indication of the irrigation method (flood-
ing/sprinkler/local), it can only be analyzed retrospectively. Recently, Paolini et al. [35]
employed a supervised machine learning approach, utilizing different earth observation
products to classify the irrigation technique at the field scale. This could be a useful
preliminary step before attempting to identify irrigation events.

Secondly, it is necessary to take into account the field context more comprehensively.
In this work, the whole crop season is taken, when actually the irrigation season is generally
shorter. Examining the irrigation calendars by crop type, as shown in Figures 4 and 5,
would provide a probability estimation of irrigation, which would eliminate detection of
out-of-season irrigation. This probability map, which could include information on crop
type and region, would be used to qualify detected irrigation events. The MIRCA2000
dataset [36] could be used to derive this probability map. The approach proposed by Bazzi
et al. [11,12] can also be considered a contextual approach. An irrigation event is declared
when the high-resolution variation of SSM (the field) is not observed on the low-resolution
variation (5 km).

Thirdly, it was observed that excessive saturation or attenuation of the radar signal
adversely affects SSM estimation. Although the current algorithm accounts for this uncer-
tainty, it would be beneficial to consider the confidence of irrigation detection based on
vegetation development, such as using NDVI. Furthermore, it would be worthwhile to



Remote Sens. 2023, 15, 1449 19 of 25

evaluate retrieval performance using other high-resolution soil moisture datasets that will
likely be available in the future. Additionally, combining SAR-estimated SSM with optical-
based indices of surface water content, such as an NDWI based on medium-infrared and
near-infrared [37], could be of interest. For future research, it is recommended to not only
consider SSM but also the status of root zone soil moisture, particularly for low-frequency
irrigation as it is likely that irrigation events will occur when the readily available root zone
soil moisture is between 50 and 70%.
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Appendix A

Appendix A.1. The Saxton Pedotransfer Equation

Saxton et al. [34] developed the following equations to estimate the Brooks–Corey
parameters according to the percentage of sand (S) and clay (C):

a = e−4.396−0.0715∗C−0.000488∗S2∗C

b = −3.14− 0.00222 ∗ C2 − 0.00003484 ∗ S2 ∗ C

Field capacity (θ f c) and wilting point (θwp) can then be obtained at −33 Pa and
1500 Pa, respectively, with

θ f c = 15/a1/b

θwp = 0.33333/a1/b

Appendix A.2. The Water Budget Used for the Detection of Irrigation

(1) Initialization

θfc: Field capacity
θwp: Wilting point

TAW = (θfc − θwp).Zr0

TEW = θfc –
(
θwp

2

)
.Ze

TDW = (θfc − θwp).Zd

https://esairrigationplus.org/
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REW = f ixed value f ound in FAO− 56 table 19

RAW = p.TAW

De = TEW.Hi ; Dr = TAW.Hi ; Dd = TDW.Hi

where TAW: Total Available Water.

TEW: Total Evaporable Water.
TDW: Total Deep Water.
REW: Readily Evaporable Water.
RAW: Readily Available Water.
De, Dr, Dd: Depletion for upper, middle and lower bucket.
Zr0: Initial root depth set to 10 cm.
Ze: Evaporable depth depends of the soil. Ze is associated with the upper soil of the
soil map, and can be found in FAO-56 tables.
Zd: maximum depth as described in the soil map.

(2) Horizontal partition according to fraction cover and fraction wet

First, the horizontal partition of the upper layer is carried on, comparing the fraction wet
(fw) to the fraction cover derived from NDVI (Fcsat). The soil wetted by both irrigation and
precipitation (Fewi) and the soil wetted by precipitation (Fewp) are computed as follows:

Fewi = min(1− Fcsat, f w) with 1 ≥ f ewi ≥ 0.001

Fewp = 1− Fcsat − f ewi with 1 ≥ f ewp ≥ 0.001

(3) Rooting depth

Rooting depth is actualized when maximum root depth is different from minimum root
depth, in fact for annual crops. Rooting Depth is derived from a linear relation to Fraction
Cover which assumes that the crop will reach its full rooting at maximum fraction cover.

Zrj =
Fcsatj

Fcsatmax
.MaxZr(LC)

where Zrj = Root Depth at day j, with Zrj > Ze+0.01.
Fcsatj = Fraction Cover of the day j.
Fcsatmax = Maximum Fraction Cover of the time series.
MaxZr(LC) = parameter for Max Root Depth of this land cover (LC).
As roots may enter different soil horizons, average wilting point and field capacity are

taken from the pre-processed soil map mentioned earlier. Depletions are then actualized in
the deep (Dd) and root (Dr) bucket for each day j.

Drj = [Drj−1 + (θfc − θwp).
(
Zrj − Zrj−1

)
.(

Dd
TDW

)] ≥ 0

Ddj = [Ddj−1 + (θfc − θwp).
(
Zrj − Zrj−1

)
.
(

Dr
TAW

)
≥ 0

Readily Available Water at day j (RAWj) is actualized with the equation from FAO-56,
where EThb is described in part 5:

RAWj = RAWj−1 + (TAW ∗
(

p + 0.04 ∗
(
5− EThbj−1

))
(4) Water balance, part 1

The water balance proceeds to input water from Irrigation (I) which either comes from
actual or simulated irrigation and rainfall (R). The depletion of the evaporation bucket
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wetted with rain only (Dep), the bucket wetted with rain and irrigation (De), and the root
bucket (Dr) are actualized:

Depj = 0 ≤ Depj−1 – R ≤ TEW

Dej = 0 ≤
(

Dej−1 − R− I
f w

)
≤ TEW

Drj = Drj−1 − R− I
f w

if Drj < 0(Dp = −Dr)

0<=Drj<=TAW→Dd<=TDW

(5) Evapotranspiration

Stresses are calculated. They represent the stress after receiving water input, and after
root actualization induced from the EO of the day. As remote sensing images are generally
shot at mid-day, it appears to be a good compromise. Kr, the reduction coefficient for
evaporation, is expressed for the fewi and fewp fractions as

Kri =
TEW − De(j− 1)

TEW − REW
for De(j− 1) >= 0

Krp =
TEW − Dep(j− 1)

TEW − REW
for Dep(j− 1) >= 0

A weighting coefficient (W) for partitioning the energy available for evaporation in the
two wetted, exposed fractions of the surface layer, depending on water availability is calculated:

W = 1/

(
1 +

(
f ewp.

(
TEW − Dep

)
f ewi.(TEW − De)

))

with 0 ≤ De ≤ TEW ; 0 ≤ Dep ≤ TEW ; f ewi.
(
TEW − Dep

)
> 0.001

Evaporation coefficients are finally obtained with

Kei = [Kri.W.((Kcmax−Kcb) > 0.05 ) < (fewi.(Kcmax > kcb + 0.05))] ≥ 0

Kep =
[
Krp.(1−W).((Kcmax−Kcb) > 0.05 ) <

(
fewp.(Kcmax > kcb + 0.05)

)]
≥ 0

The calculation of Ks, the reduction coefficient for basal evapotranspiration (similar to
transpiration) does not change from FAO-56; it is computed with:

Ks = (TAW − (max(Dr, RAW)))/(TAW − RAW)

Evapotranspiration of the water budget is finally calculated:

EThb = ET0.
(
Ks.Kcbinterp +

(
Kei + Kep

))
where ET0 is the reference evapotranspiration computed according to the Penman–Monteith
equation [20].

(6) Water balance, part 2

We can now conclude with the calculation of the water budget.
Two coefficients (Kti, Ktp) are introduced for the purpose of separating the proportion

of basal ET = Kcb.ET0 extracted as transpiration into the two fractions of the upper layer.
Those coefficients vary from 0 to 1, and are calculated for 1 − Dr/TAW ≥ 0.001

Kti =


(

1− De
TEW

)
1− Dr

TAW

.
(

Ze
Zr

)0.6
≤ 1
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Ktp =


(

1− De
TEW

)
1− Dr

TAW

.
(

Ze
Zr

)0.6
≤ 1

Water balance is computed for the two fractions of the upper layer:

Depj = 0 ≤
[

Depj−1 +
Kep.ET0

f ewp
+
(
Ktp.Kcp.Ks.ET0

)]
≤ TEW

Dej = 0 ≤
[

Dej−1 +

(
Kei + Kep

)
.ET0

f ewi
+
(
Kti.Kcbinterp.Ks.ET0

)]
≤ TEW

The root layer is actualized taking into account evapotranspiration:

Dri = Dri−1 + EThb

Appendix A.3. Estimation of Surface Soil Moisture from the Buckets

According to Raes [31], 40% of the transpiration comes from the first upper quarter
of soil (Zr/4). The main bucket is divided into two layers, with the upper layer having a
depth equal to one-quarter of the root layer. Drtop is the depletion of water in the upper
layer. TAWtop and TAWdown correspond to the total available water content in the upper
and lower layers, and are computed in the same way as TAW in the FAO-56 model, but are
fractioned into the upper (25%) and lower (75%) percentages. The depletion of the bottom
layer Drdown is computed as the difference in depletion between the full root layer and the
top root layer.

Drtop = min (max
(

Drtop –precip , 0) , TAWtop
)

TAWtop =
(

θ f c − θwp

)
∗ Zr ∗ 0.25

TAWdown =
(

θ f c − θwp

)
∗ Zr ∗ 0.75

Drtop = min (max
(

Drtop –precip , 0) , TAWtop
)

TAWtop =
(

θ f c − θwp

)
∗ Zr ∗ 0.25

TAWdown =
(

θ f c − θwp

)
∗ Zr ∗ 0.75

In a second step, Drtop is updated in accordance with known wetting events, and
depletion is constrained between 0 and the maximum water content TAWtop:

Drtop = min (max
(

Drtop –precip , 0) , TAWtop
)

The stress coefficient of the top layer (Kstop) was computed in the exactly the same
way as Ks in the FAO-56 model, but with the water quantities of the top layer, where
padjust is the average fraction of TAW that can be depleted from the root zone before water
stress occurs. The transpiration of the top layer (Ttop) was then obtained with the basal
crop coefficients Kcb and previously computed Kstop. In accordance with the findings of
Raes [31], 40% of the transpiration is affected by the top layer. Ttop cannot be greater than
the total amount of transpiration T computed with the regular FAO-56 model:

Kstop = min((TAWtop − Drtop)/
(

TAWtop ∗
(

1− padjust

)
, 1
)

Ttop = min (T , ET0 ∗ Kcb ∗ Kstop ∗ 0.4)

Kstop = min((TAWtop − Drtop)/
(

TAWtop ∗
(

1− padjust

)
, 1
)

Ttop = min (T , ET0 ∗ Kcb ∗ Kstop ∗ 0.4)
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Drtop is updated by summing the evaporation (E) and the transpiration (Ttop):

Drtop = min
(
max

(
Drtop + E + Ttop , 0

)
, TAWtop

)
Appendix A.4. Estimation of Surface Soil Moisture with the Force-Restore Approach

The force-restore model receives the volumetric water content of the evaporation and
root compartment, and precipitation, evaporation, and evapotranspiration daily fluxes from
the FAO-56 model. The soil parameters and coefficients are computed according to [32]: θsat,
the saturated volumetric water content (m 3 m−3), θwp, the wilting point volumetric water
content (m 3 m−3), and θ f c the field capacity volumetric water content (m 3 m−3), the slope
of the retention Curve (b), and the coefficients c2re f and c1sat at saturation.

θsat = (−1.08 ∗ SAND + 494.305) ∗ 10−3

θ f c = 89.0467 ∗ 10−3 ∗ CLAY0.3496

θwp = 35.1342 ∗ 10−3 ∗ CLAY0.5

b = 0.137 ∗ CLAY + 3.501

c2re f = 13.815 ∗ CLAY−0.954

c1sat = (5.58 ∗ CLAY + 84.88) ∗ 10−2

The coefficients of the θgeq equation are

a = 732.42 ∗ 10−3 ∗ CLAY−0.539

p = 0.134 ∗ CLAY + 3.4

Then, as we are moving from a daily time step to a shorter time step, some unit conversions
are needed. Fluxes of precipitation and evaporation and evapotranspiration are converted from
mm.day−1 to mm.s−1. For each time step of one hour (tstep = τ

24 , with τ = 86400) in one
day, the force restore model is applied. The total soil depth (d2) is set to 0.60 m, and the
evaporation depth (d1 of 0.1 m) is implicitly included in the c1sat regression equation.

First, the hourly evapotranspiration (Etr) and evaporation (Eg) are obtained from the
daily values, based on the cosines of the zenith angle (coszenith). The coszenith function is
the same as the one described in [20] to compute the zenithal angle for a position (lat, lon)
and hour at some Julian day.

Etr = Etrdaily ∗ coszenith

Eg = Egdaily ∗ coszenith

The variation of soil moisture is updated according to the force-restore approach
from [33] derived from [19], where Pge is the hourly precipitation, which in this case
supposes that the precipitation is evenly distributed over the whole day (Pg = P/24):

δθ2

δt
=

(
1

ρ ∗ d2

)
∗ (Pg− Eg− Etr)

θ2 = θ2 + tstep ∗ δθ2

x = θ2/θsat

θeq = θsat ∗
(

x−
(

a ∗ xp ∗
(

1− x8p
)))

c2 = c2re f ∗ (w2/(θsat − w2 + 1e−10

c1 = c1sat ∗ (θsat/max
(
θg, θwp

)( b
2 )+1
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δθg
δt

=
c1
ρ
∗ (Pg− Eg)−

(
c2
τ

)
∗
(
θg − θgeq

)
θg = (θg + tstep ∗

(
c1
ρ
∗ (Pg− Eg) +

(
c2
τ

)
∗ θeq

)
)/
(

1 + tstep ∗
(

c2
τ

))

Appendix A.5

Table A1. The plot and seasons of the dataset.

Country Region Plots Completely Configured Seasons Beginning Year Ending Year

Germany Brandenburg 4 11 2016 2019

Niedersachsen 49 35 2018 2018

France Tarn 17 40 2016 2019

Lot 10 14 2016 2019

Italy Budrio 5 5 2016 2017

Total 85 105
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