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Abstract: Cryospheric and ecological studies become very complicated due to the absence of observed
data, particularly in the mountainous regions of Central Asia. Performance analysis of Satellite-Based
Precipitation Datasets (SBPD) is very critical before their direct hydro-climatic applications. This study
assessed the ground validation of four SBPDs (IMERG, TRMM, PERSIANN-CDR, and PERSIANN-
CSS). From January 2000 to December 2013, all SBPD data were analyzed on daily, monthly, seasonal
(winter, spring, summer, autumn), and annual scales at the entire spatial domain and point-to-pixel
scale. The performance of SBPD was analyzed by using evaluation indices (root mean square error
(RMSE), correlation coefficient (CC), bias, and relative bias (r-Bias)) along with categorical indices
(false alarm ratio (FAR), probability of detection (POD), success ratio (SR), and critical success index
(CSI). Results revealed that: (1) IMERG’s spatiotemporal tracking ability is better as compared to
other datasets with appropriate ranges (CC > 0.8 and r-BIAS (±10)). The performance of all SBPDs
is more capable on a monthly scale as compared to a daily scale. (2) In terms of POD, the IMERG
outperformed all other SBPD on daily and seasonal scales. All SBPD showed underestimations
in the summer season, and PERSIANN-CCS showed the most significant underestimation (−70).
Moreover, the IMERG signposted the most satisfactory performance in all seasons. (3) All SBPD
showed better performance in capturing the light precipitation events as indicated by the Probability
Density Function (PDF%). Moreover, the performance of PERSIANN-CDR and TRMM is acceptable
at low topography; the performance of PERSIANN-CCS is very poor in diverse topographical and
climatic conditions over Tajikistan. Therefore, we advocate the use of daily, monthly, and seasonal
estimations of IMERG precipitation product for hydro-climatic applications over the mountainous
domain of Central Asia.

Keywords: satellite-based precipitation datasets; performance analysis; IMERG; PERSIANN-CDR;
probability density function; mountains of central Asia

1. Introduction

Precipitation is a key component of the global water cycle [1]. Precipitation fills our
lakes and rivers, replenishes underground aquifers, and provides water for plants and
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animals. The most significant climate variable is precipitation, which can increase agri-
cultural productivity, provide drinking water, and stabilize our environmental system [2].
However, heavy precipitation could also trigger crop damage, soil erosion, severe drought
events, and an increased risk of flooding, which in turn can lead to injury, drowning,
and other disastrous flood-related impacts [3]. As a result, it is crucial to quantify and
track precipitation magnitude, regional distribution, and temporal variability [4,5]. As a
tradition, researchers and specialists in the field of hydrology and climatology believe that
precipitation data, which are based on measurements at ground-based recording points, are
the most reliable source of precipitation measurements [6]. However, it is very difficult to
maintain a uniform gauge network over rugged topography [7]. Moreover, multi-satellites
and reanalysis products were introduced to overcome the scarcity of precipitation data [8].
The accuracy of satellite-based data is affected by a variety of variables, including terrain, al-
titude, geographical characteristics, precipitation, geological causes, and most importantly,
the spatial resolution of SBPD [6]. Generally, higher spatial and temporal resolutions are
provided by satellites with more advanced sensors. However, very few studies have looked
at how the choice of data source (such as relatively high-resolution satellite imagery versus
relatively low-resolution satellite imaging) affects accuracy analyses [6,8]. Higher spatial
resolution data have typically resulted in more accurate estimates where accuracy has been
evaluated, even though those studies have frequently assumed that higher-resolution data
are superior, and that discrepancies in coarser-resolution data are errors [4–8].

However, due to complex topography and the uneven placement of weather sta-
tions [9,10], it becomes very difficult to acquire reliable data [11]. In the Pamir-Allay
Mountains in Tajikistan, there are also similar limitations to acquiring precipitation data
due to the infrequent or uneven installation of weather stations. Therefore, additional
reliable and consistent sources of precipitation information need to be explored. In the fu-
ture, it is expected that the SBPD will overcome the sparseness of precipitation data [11,12].
Although the SBPD provides continuous information related to precipitation, it is very
important to assess its performance before direct application [12]. Many SBPDs have been
introduced, which are freely available on their official websites [10,13]. SBPD now uses
an improved precipitation estimation method. The rugged surface and in situ climatic
conditions forces us to evaluate the performance of the latest SBPD (IMERG, TRMM,
PERSIANN-CDR, and PERSIANN-CSS) over the dense gauge network to overcome the
limitation of precipitation data. Moreover, Tajikistan is prone to natural disasters such as
floods, avalanches, landslides, extreme temperatures, and droughts. Such events damage
and destroy land, crops, and infrastructure, reducing sources of income and affecting the
livelihoods of people. Recent research has shown that the lack of gauge data availability
or scarcity is the main cause of the paucity of studies on the effects of climate change.
Therefore, it becomes critical to explore different sources of precipitation products in devel-
oping countries, especially the rugged surface causing the uneven distribution of gauge
networks [6]. Moreover, the literature review indicated that the detailed performance
analysis of the latest SBPD (IMERG, TRMM, PERSIANN-CDR, and PERSIANN-CSS) at
multiple spatiotemporal scales over the Pamir-Alay Mountains of Central Asia (Tajikistan)
has not yet been conducted. Therefore, this study is evaluated to fill this major research
gap. Moreover, the Ministry of Energy and Water Resources of the Republic of Tajikistan
is planning to develop many hydrological structures (dams, spillways) over the entire
country. According to a literature assessment, the lack of in situ meteorological stations has
made it difficult to use their data for a variety of hydro-meteorological applications in the
Tajikistan area [14,15]. Therefore, this study was carried out to evaluate and compare the
error characteristics of four SBPD (IMERG, TRMM, PERSIANN-CDR, and PERSIANN-CSS)
with observations from the available meteorological stations in the Tajikistan region. This
will be the first performance analysis of the four SBPD (IMERG, TRMM, PERSIANN-CDR,
and PERSIANN-CSS) over the limited gauge network of Tajikistan.

Today, SBPD uses signals from infrared (IR) and microwave (MW) sensors to feed
an advanced precipitation estimating algorithm, which produces reliable data on a fine
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spatiotemporal scale [16]. The many SBPDs for a variety of hydro-climatic applications
are available from organizations (NASA and JAXA) [9]; IMERG and TRMM are two
examples of these datasets [17]. Additionally, the products in the Precipitation Estimation
from Remotely Sensed Information using Artificial Neural Network PERSIANN-CDR
and CCS can combine data from IR and MW sensors to produce continuous precipitation
estimations [18–20]. In the past, several scholars have validated the SBPD’s accuracy to
gauge estimations of precipitation in various domains of the world; for instance, Anjum
et al. [12] evaluated PERSIANN’s products along with CHIRPS and SM2Rain. Similarly,
many hydrologists have evaluated the performance of many SBPDs in different regions
of the world, such as in Asia [14,15,19–26], Europe [4], Austria [10], Australia [27,28],
China [7,17,26,29], and Pakistan [5,6,11,12,26].

Among the considered SBPD, PERSIANN-CCS has cloud categorization system cus-
tomizable initializations [21]. The variable threshold technique used in PERSIANN-CCS,
as opposed to the conventional approach, permits the identification and isolation of cloud
computing spots [22]. Using information from the Global Precipitation Measurement (GPM)
satellite constellation, the IMERG product offers uninterrupted estimates of precipitation.
It offers quasi-global coverage and has a resolution of 0.25. The IMERG offers different
forms of products (early run, late run, and final run) [10]. Previously, many researchers
have analyzed the performance of many SBPDs in different parts of the world [10,23]. The
findings showed the common conclusion that the accuracy of precipitation datasets mainly
depends upon the in situ topographical and climatic conditions [24]. Therefore, it is very
important to evaluate the performance of SBPD. The findings of this investigation will
be extremely helpful to algorithmic developers, meteorologists, hydrologists, SBPD data
consumers, water conservation practices, and Tajikistan policymakers.

2. Materials and Methods
2.1. Study Region

Tajikistan is one of the mountainous countries of Central Asia, and due to geographical
factors, it is landlocked and stretches 700 km from west to east and 350 km from north
to south. Tajikistan is located in the southeast of Central Asia between 36◦40′ and 41◦05′

north latitude and 67◦31′ and 75◦14′ east longitude. Tajikistan borders Afghanistan in
the south, Kyrgyzstan in the north, China in the east, and Uzbekistan in the west. The
area of the country is 142,100 km2. It should be noted that Tajikistan is separated from
India and Pakistan in the southeast by the territory of Afghanistan, which is 15 to 65 km
wide [1]. Tajikistan, due to its mountainous conditions and the natural precipitation in
this mountainous region, has a significant impact on the hydrological system. The digital
elevation model (DEM) and the available meteorological stations are evaluated in Figure 1.
The general annual climate regime at an altitude of less than 1000 m is characterized by
an average annual positive air temperature and relatively little precipitation. The average
annual precipitation at an altitude of 1200–3200 m is 560–650 mm. Eastern Pamirs (Murgab
region) precipitation is only 80 mm at an altitude of 4000 m. In the Central part of Tajikistan,
at an altitude of 1500–2000 m, precipitation annually reaches 1800–2000 mm. There are
differences in the amount of annual precipitation in individual regions of Tajikistan. In most
of the plains and foothills of Tajikistan, the lowest precipitation of an annual cycle is typical
for the eastern summer of the region. At the same time, a large amount of precipitation
falls in the foothills and valleys in March-April, and in the highlands in April–May.

2.2. Datasets

In Tajikistan, in situ gauge stations are very limited and managed by many Tajikistan
meteorological department weather stations. The daily data from 18 in situ gauging
stations were collected. However, for this performance analysis, the daily estimations of
only 18 meteorological stations were found to be reliable due to missing values (more than
30%) in other meteorological stations. Table 1 presents the locations of all meteorological
stations installed in the Pamir-Allay region of Tajikistan, which were considered for this
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research. Previously, many studies have used these measurement-based datasets in hydro-
climatic studies in mountainous areas of Central Asia [14,15]. Similarly, the detailed
information (period, spatiotemporal resolutions, and data sources of SBPD (IMERG, TRMM,
PERSIANN-CDR, and PERSIANN-CSS) are described in Table 2. The PERSIANN-CDR
and CCS datasets are managed by the Center for Hydrometeorology and Remote Sensing
(CHRS) at the University of California [25].
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Figure 1. Topographic map and applied gauging stations of Tajikistan.

Table 1. Weather stations used in performance analysis of SBPD.

Serial Number Weather Station Latitude (◦) Longitude (◦) Elevation (m)

1 Agbai Anzob 39.08 68.87 3373
2 Agbai Shahriston 39.34 68.35 3143
3 Bulunkul 37.42 72.57 3747
4 Darvoz 38.47 70.88 1284
5 Dehavz 39.45 70.2 2561
6 Dushanbe 38.58 68.78 790
7 Faizobod 38.55 69.32 1215
8 Humrogi 38.31 71.38 1736
9 Irkht 38.17 72.63 3290
10 Ishkoshim 36.73 71.6 2646
11 Javshangoz 37.36 72.46 3576
12 Khorug 37.5 71.5 2075
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Table 1. Cont.

Serial Number Weather Station Latitude (◦) Longitude (◦) Elevation (m)

13 Khovaling 38.35 69.95 1468
14 Madrushtak 39.43 69.65 2234
15 Rushon 37.45 71.52 1966
16 Sangiston 39.38 68.62 1502
17 Savnob 38.18 72.28 2800
18 Shaymoq 37.46 74.4 3835

Table 2. Salient features of SBPD.

Satellite Datasets Spatial/Temporal Resolution Time Coverage Data Source (All the Data Assessed
on 13 January 2019)

PERSIANN-CDR 0.25◦ × 0.25◦/1-day January 1983 to September 2023 www.ncdc.noaa.gov/cdr/
operationalcdrs.html

PERSIANN-CCS 0.04◦ × 0.04◦/1-day January 2003 to January 2023 ftp://persiann.eng.uci.edu/
CHRSdata/PERSIANN-CCS

IMERG 0.1◦ × 0.1◦/1-day January 1998 to December 2020 http://pmm.nasa.gov/data-access/
downloads/gms/

TRMM 0.25◦ × 0.25◦/1-day January 1998 to December 2020 http://disc2.nascom.nasa.gov/
tovas/

2.3. Methods

The performance in the estimations of four (SBPD) satellite-based precipitation datasets
(IMERG, TRMM, PESIANN-CCS, and PERSIANN-CDR) was evaluated in anticipation
of observed-based datasets. According to the methodology of previous evaluations of
SBPD, only SBPD grids with at least one rain gauge were factored into the equation for this
evaluation [26]. To supplement the SBPD with weather stations, a grid-to-point matching
approach is used; the SBPD grid with a central location closest to the weather station is
matched to this station. Figure 2 illustrates the overall process for the performance analysis
of SBPD [27]. Therefore, for those stations where two or more stations were built in a single
grid, simple averaging of the measurements of in gauge estimations was taken into consid-
eration. This method was also applied in several earlier investigations [28]. The estimations
of the considered SBPD were compared with each other at multiple spatiotemporal scales
over the dense network of Central Asia. The information related to evaluation indices [4]
and categorical indices used for the validation of SBPD with gauge estimations is described
in Table 3.

Table 3. The formulations of all evaluation and categorical indices used in performance evaluation.

Statistical Analysis Details Acceptable Range

cc = ∑n
i=1 (Gi−G)(Ei−E)√

∑n
I=1(Gi−G)2×

√
∑n

I=1(Ei−E)2

CC = Correlation Coefficient
Gi = In situ gauge data

G = average of in situ gauge data
Ei = SBPD of estimations

E = mean of SBPD estimations
n = total number of SBPD

1

BIAS = ∑n
i=1(Ei−Gi)

n

Ei = estimates of SBPD
Gi = In situ gauge data

n = total number of SBPD
0

rbias = ∑n
i=1(Ei−Gi)
∑n

I=1 Gi × 100

rbias = Bias, relative Bias
Ei = estimates of SBPD
Gi = In situ gauge data

n = total number of SBPD

±10

www.ncdc.noaa.gov/cdr/operationalcdrs.html
www.ncdc.noaa.gov/cdr/operationalcdrs.html
ftp://persiann.eng.uci.edu/CHRSdata/PERSIANN-CCS
ftp://persiann.eng.uci.edu/CHRSdata/PERSIANN-CCS
http://pmm.nasa.gov/data-access/downloads/gms/
http://pmm.nasa.gov/data-access/downloads/gms/
http:
//
disc2.nascom.nasa.gov/tovas/
disc2.nascom.nasa.gov/tovas/
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Table 3. Cont.

Statistical Analysis Details Acceptable Range

RMSE =
√

1
n

n
∑

I=1
(Ei− Gi)2

RMSE = Root Mean Square Error
Ei = estimates of SBPD
Gi = In situ gauge data

n = total number of SBPD

0

POD = A
A+B

POD = Probability of Detection
A = number of precipitation events that the SBPD actually tracked

B = number of precipitation events that the reference gauging
stations observed but were not tracked by SPBD

1

FAR = C
A+C

FAR = False Alarm Ratio
C = number of precipitation events that the SBPD misrepresented
A = number of precipitation events that the SBPD actually tracked

0

CSI = A
A+B+C

CSI = Critical Success Index
A = Amount of precipitation events that were reported by SBPD
B = Amount of precipitation events missed by SBPD while being

observed by reference gauging stations
C = Amount of precipitation events that were inaccurately

tracked by SBPD

1
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The Thiessen polygon method is described in Figure 3 for the calculation of aerial
precipitation. The Thiessen polygon method [30] is first used in ArcGIS10.7.1 to determine
the gauge weight for each meteorological station. Each station’s gauge weight is multiplied
by its precipitation to determine the estimated amount of airborne precipitation. The
Thiessen polygon approach assumes that each pixel will record the amount of precipitation
in a particular area (A). Hence, the amount of precipitation recorded at pixel I only applies
to that area. The region of the Thiessen polygon that each pixel belongs to determines its
weight. According to the World Meteorological Organization (WMO) protocol, the criteria
for daily precipitation rates for light (<2 mm/day), medium (2–10 mm/day), and heavy
precipitation are (>10 mm/day) used for the performance analysis of SBPD. Furthermore,
the capability of each analyzed precipitation product in Tajikistan is represented in terms
of the likelihood that it would be detected (POD). Roebber [4] created the presentation
graph for assessing outcomes of categories indices using classed indices. For appropriate
results, the moving average graphs, performance diagrams, box schemes, Taylor diagrams,
and probability density function (PDF%) are used for the performance analysis of IMERG,
TRMM, PESIANN-CCS, and PERSIANN-CDR.
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3. Results
3.1. Spatial and Temporal Capability of SBPD

The spatial variability of annual precipitation datasets (IMERG, TRMM, PESIANN-
CCS, and PERSIANN-CDR) is depicted in Figure 4. Using geostatistical spatial interpolation
methods (Kriging with external drift (KED)), a map of the yearly average precipitation over
the study domain was created. In mountainous areas, KED is advised for interpolation [31].
The gauge observation identifies that the rocky topography in hilly places activates the
fronts, and cyclonic activity is also visible here in the summer. Western and northern
Tajikistan’s valley regions, as well as the high-mountain region of the Eastern Pamir,
are all covered by a dry climate zone (75–300 mm of precipitation per year). The rainy
climate zone is found in the region that is situated on the southern windward slopes of
the Gissar spots mark range (more than 1200 mm per year). Moreover, precipitation peaks
in foothills and valleys in March–April and in highlands in April–May. The IMERG and
TRMM performance is very satisfactory as compared to other datasets (CDR and CCS) in
response to tracking spatial variability of humidity (<500 mm). Over high topography,
the PERSIANN-CDR shows a significant amount of overestimation and underestimation
at low elevations. In arid conditions (precipitation > 300 mm), all SBPD capability to
track spatial variability is better as compared to semi-arid and humid conditions. In
semi-arid (precipitation (300–500 mm), the TRMM dataset outperforms all other SBPD.
The IMERG performance is unmatchable compared to other SBPD in humid conditions
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(precipitation < 500 mm). However, the overall performance of IMERG is not as good as
PERSIANN-CCS on yearly spatial estimations.

Remote Sens. 2023, 15, x FOR PEER REVIEW 10 of 30 
 

 

  
Figure 4. Distribution of annual precipitation datasets based on (a) IMERG, (b) TRMM, (c) PER-
SIANN-CDR, (d) PERSIANN-CSS, and (e) gauging stations using the Kriging method in the moun-
tainous territories of Tajikistan in Central Asia. 

Figure 4. Distribution of annual precipitation datasets based on (a) IMERG, (b) TRMM,
(c) PERSIANN-CDR, (d) PERSIANN-CSS, and (e) gauging stations using the Kriging method in the
mountainous territories of Tajikistan in Central Asia.



Remote Sens. 2023, 15, 1420 9 of 27

Figure 5 illustrates the temporal variability of all SBPD and gauge estimations. The
average estimations of (TRMM, IMERG, PERSIANN-CDR, and CCS) are compared with the
gauge estimations. In general, two peaks are shown by the gauge estimations. PERSIANN-
CCS showed the highest peak in the early days of April, while the gauge data showed the
maximum peak in mid-November. The CDR and CCS showed a significant amount of
overestimation in the starting days of the year (mid-January to mid-March). The temporal
variability of IMERG is very comparable to the gauge estimations. Only the IMERG dataset
tracked the highest peak of gauge temporal variability, which is produced in mid-September.
The TRMM performance is more satisfactory as compared to PERSIANN-CDR and CCS
in response to tracking temporal variability of observed data. Figure 6 describes the
comparison of temporal variability of all SBPD’s moving average estimations for temporal
estimations generated by in situ ground datasets. The average of all daily data (2000–2013)
of SBPD (TRMM, IMERG, PERSIANN-CDR, and CCS) and gauge data is calculated, and
the 30-day lag time is provided for a better understanding of the results. Hamza et al. [31]
used a similar method to track the temporal variability of satellite datasets over the rugged
surface of Hindu Kush in Central and South Asia, the product showed underestimation in
all months, while a (July–August) slight overestimation was shown for the TRMM dataset.
The PERSIANN-CCS exposed a significant amount of overestimation until mid-August;
after August, a significant amount of underestimation was tracked by CCS. The CDR shows
the series of (over/under estimations) to track the temporal variability of gauge data. The
IMERG performed better in response to capturing the temporal variability of observed
data. Slight overestimation is tracked by the IMERG in September. Overall, the IMERG’s
skills are better compared to all other SBPD (TRMM, CDR, and CC) in response to tracking
the temporal variability of observed estimations.
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3.2. Ability of SBPD on a Daily Scale

Figure 7 defines the spatial variability of all datasets (TRMM, IMERG, PERSIANN-
CDR, and CCS) and gauge observations over the mountainous domain of Tajikistan. Due
to the mountainous region of the study area, a significant amount of precipitation is
illustrated by each dataset and gauging station. Northern Tajikistan and the Eastern Pamir
highland region (75–300 mm of precipitation per year). Spots delineate the area with a rainy
climate (more than 1200 mm per year) in the Gissar range’s southern windward slopes. The
southern part of the country receives more rainfall in the winter season. Over low elevations,
the maximum amount of precipitation is captured by all datasets and gauge observations.
All SBPDs were unable to track precipitation over the northern highlands of the study
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area. Results indicated that the CCS dataset revealed poor skill to capture the daily spatial
variability produced by gauge precipitation; a significant amount of underestimation is
shown over the northern mountains. The performance of TRMM and CDR is reasonable
over plain topography, but their performance is not satisfactory over hill topography, as
indicated by the significant amount of overestimation. IMERG outperformed all other
selected datasets to capture spatial variability over the rugged surface of the study area.

Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 30 
 

 

 
Figure 5. Temporal variability of all SBPD and gauge estimation. 

 
Figure 6. Comparison of moving averages of all SBPD and gauge estimations. 

3.2. Ability of SBPD on a Daily Scale 
Figure 7 defines the spatial variability of all datasets (TRMM, IMERG, PERSIANN-

CDR, and CCS) and gauge observations over the mountainous domain of Tajikistan. Due 
to the mountainous region of the study area, a significant amount of precipitation is illus-
trated by each dataset and gauging station. Northern Tajikistan and the Eastern Pamir 
highland region (75–300 mm of precipitation per year). Spots delineate the area with a 
rainy climate (more than 1200 mm per year) in the Gissar range’s southern windward 
slopes. The southern part of the country receives more rainfall in the winter season. Over 
low elevations, the maximum amount of precipitation is captured by all datasets and 
gauge observations. All SBPDs were unable to track precipitation over the northern high-
lands of the study area. Results indicated that the CCS dataset revealed poor skill to cap-
ture the daily spatial variability produced by gauge precipitation; a significant amount of 
underestimation is shown over the northern mountains. The performance of TRMM and 
CDR is reasonable over plain topography, but their performance is not satisfactory over 
hill topography, as indicated by the significant amount of overestimation. IMERG outper-
formed all other selected datasets to capture spatial variability over the rugged surface of 
the study area.  

0

2

4

6

8

10

12

14

16

1 30 59 88 117 146 175 204 233 262 291 320 349

D
ai

ly
 P

re
ci

pi
ta

tio
n 

(m
m

)

Day of the year

Gauge Average TRMM Average IMERG Average CDR Average CCS Average

0

1

2

3

4

5

6

1 30 59 88 117 146 175 204 233 262 291 320 349

D
ai

ly
 p

re
ci

pi
ta

to
n 

(m
m

)

Day of the year

IMERG Moving  Average CDR Moving  Average TRMM Moving  Average
CCS Moving  Average Gauge Moving  Average

Figure 6. Comparison of moving averages of all SBPD and gauge estimations.

Remote Sens. 2023, 15, x FOR PEER REVIEW 12 of 30 
 

 

The spatial distributions of all evaluation indices (CC, BIAS, rBIAS, and RMSE) pro-
duced from TRMM, IMERG, PERSIANN-CDR, and CCS are described in Figure 8. We 
observed a significant number of changes in the ranges of evaluation indices all over the 
country. The IMERG product showed maximum spatial variation in CC values. The CDR 
and CCS showed less spatial variation compared to TRMM and IMERG. The maximum 
variation in CC between gauge and SBPD datasets was observed where the precipitation 
rate was high. The TRMM product shows the least variation in terms of RMSE, followed 
by the IMERG and PERSIANN products. IMERG’s ability to track high and low precipi-
tation events is comparable to the gauge’s spatial variability, as demonstrated by CC, 
BIAS, and RMSE values of the IMERG product. 

The box schemes of all daily evaluation indices are described in Figure 9. As indicated 
by box plots, the CC values for all SBPD (IMERG, TRMM, CDR, and CCS) are 0.61, 0.48, 
0.37, and 0.29, respectively. The values of CC revealed the poor relationship between 
SBPD and gauge estimations; only IMERG performance was up to the mark. While the 
performance of CCS and CDR is very poor, as described by the CC box plots. Moreover, 
the error values are also maximum for CCS followed by CDR and TRMM. The IMERG 
shows the least error values, as described in the box size of RMSE. As indicated by box 
plots of rBIAS, the significant amount of over/underestimation is revealed by CCS and 
CDR, which indicates the unsatisfactory performance of these products against the daily 
gauge estimations. 

 
Figure 7. Comparison of daily spatial variability of all SBPD and gauge estimations. Figure 7. Comparison of daily spatial variability of all SBPD and gauge estimations.

The spatial distributions of all evaluation indices (CC, BIAS, rBIAS, and RMSE) pro-
duced from TRMM, IMERG, PERSIANN-CDR, and CCS are described in Figure 8. We
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observed a significant number of changes in the ranges of evaluation indices all over the
country. The IMERG product showed maximum spatial variation in CC values. The CDR
and CCS showed less spatial variation compared to TRMM and IMERG. The maximum
variation in CC between gauge and SBPD datasets was observed where the precipitation
rate was high. The TRMM product shows the least variation in terms of RMSE, followed by
the IMERG and PERSIANN products. IMERG’s ability to track high and low precipitation
events is comparable to the gauge’s spatial variability, as demonstrated by CC, BIAS, and
RMSE values of the IMERG product.
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The box schemes of all daily evaluation indices are described in Figure 9. As indicated
by box plots, the CC values for all SBPD (IMERG, TRMM, CDR, and CCS) are 0.61, 0.48,
0.37, and 0.29, respectively. The values of CC revealed the poor relationship between
SBPD and gauge estimations; only IMERG performance was up to the mark. While the
performance of CCS and CDR is very poor, as described by the CC box plots. Moreover,
the error values are also maximum for CCS followed by CDR and TRMM. The IMERG
shows the least error values, as described in the box size of RMSE. As indicated by box
plots of rBIAS, the significant amount of over/underestimation is revealed by CCS and
CDR, which indicates the unsatisfactory performance of these products against the daily
gauge estimations.

Figure 10 illustrates the impact of altitude on the evaluation indices (CC, BIAS, rBIAS,
and RMSE) for all selected SBPD (TRMM, IMERG, PERSIANN-CDR, and CCS). The results
show that CC values decreased with an increase in elevation. Similarly, error values are
in direct relation to the elevation. The CC’s values of CDR, CCS, and TRMM illustrated
the poor agreement against the gauge estimations. The IMERG showed better results even
at higher elevations. The BIAS values appear unaffected by elevation variation across all
datasets. The TRMM also showed comparable variations in response to elevation; its error
values are also in good agreement at higher elevations.
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A comparison of the performance of all SBPD and in situ observations at a daily
scale is illustrated in the Taylor diagram (Figure 11). For the generation of the Taylor
diagram [32], all daily estimations of (gauge, TRMM, IMERG, PERSIANN-CDR, and
CCS) were normalized. The blue lines showing the CC values of all datasets indicated a
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poor relationship between the gauge and SBPD estimations. The CC values for all SBPD
(IMERG, TRMM, CDR, and CCS) are 0.61, 0.48, 0.37, and 0.29, respectively. Conversely, the
error values are very high for PERSIANN’s datasets (shown by semicircular green lines)
compared to IMERG and TRMM products. The standard deviation of all products is also
comparable, as indicated by the black dotted line circles.
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Figure 11. Taylor diagram showing the performance of daily estimation of SBPD.

Figure 12 shows the performance diagram of all SBPD (TRMM, IMERG, PERSIANN-
CDR, and CCS) in response to capturing the daily estimations of observed data. In terms
of probability of detection (POD), the IMERG outperformed the remaining SBPD (TRMM,
CCS, and CDR) with POD ranges for IMERG, TRMM, PERSIANN-CDR, and CCS of 0.59,
0.52, 0.31, and 0.24, respectively. The success ratio (SR) is also very poor for CCS and
CDR. While the false alarm ratio (FAR) is at minimum for the IMERG product, which
exposes the satisfactory performance of IMERG in response to tracking the probability of
daily estimations.

3.3. Ability of SBPD on a Monthly Scale

Figure 13 illustrates the impact of precipitation intensity on the evaluation indices
(CC, BIAS, rBIAS, and RMSE) for all selected SBPD (TRMM, IMERG, PERSIANN-CDR,
and CCS). The results show that the CC values increase with an increase in precipitation
intensity. Conversely, the error values are in inverse relation to the precipitation intensity.
The CC’s values of CDR, CCS, and TRMM illustrated poor agreement against the gauge
estimations. The IMERG showed better results even at lower precipitation intensities. The
BIAS values show significant variation in response to precipitation intensity across all
datasets. The TRMM also shows comparable variations in response to the intensity of
precipitation; its error values are also in good contrast at maximum precipitation intensity.

The box schemes of all monthly evaluation indices are described in Figure 14. As
indicated by the box plots, the CC values for all SBPD (IMERG, TRMM, CDR, and CCS)
are 0.91, 0.8, 0.82, and 0.4, respectively. The values of CC reveal a good relation between
SBPD and gauge estimations, but IMERG performance is more than satisfactory. While the
performance of CCS is very poor, as described by the CC box plots. Moreover, the error
values are also maximum for CCS followed by CDR and TRMM. The IMERG shows the least
error values, as described in the box size of RMSE. As indicated by the box plots of rBIAS,
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a significant amount of over/underestimation is revealed by the CCS, which indicates the
unsatisfactory performance of these products against the monthly gauge estimations.

Remote Sens. 2023, 15, x FOR PEER REVIEW 17 of 30 
 

 

 
Figure 11. Taylor diagram showing the performance of daily estimation of SBPD. 

 
Figure 12. SBPD’s performance on a daily scale. 

3.3. Ability of SBPD on a Monthly Scale 
Figure 13 illustrates the impact of precipitation intensity on the evaluation indices 

(CC, BIAS, rBIAS, and RMSE) for all selected SBPD (TRMM, IMERG, PERSIANN-CDR, 
and CCS). The results show that the CC values increase with an increase in precipitation 
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A comparison of the performance of all SBPD and in situ observations on a monthly
scale is illustrated in the Taylor diagram (Figure 15). For the generation of the Taylor
diagram, all of the monthly estimations of (gauge, TRMM, IMERG, PERSIANN-CDR, and
CCS) were normalized. The blue lines showing the CC values of all datasets indicate the
excellent relationship between the gauge and SBPD estimations, except for PERSIANN-CCS.
Similarly, the error values are very high for PERSIANN’s datasets (shown by semicircular
green lines) as compared to IMERG and TRMM products. The standard deviation of all
products is also comparable, as indicated by the black dotted lines circle.

3.4. Ability of SBPD on a Seasonal Scale

The box schemes of all the seasonal evaluation indices are described in Figure 16. As
indicated by the box plots, the CC values for all SBPD (IMERG, TRMM, CDR, and CCS) are
more satisfactory in the autumn season compared to other seasons (summer, winter, and
spring). Throughout the spring season, only the IMERG performance is comparable, while
other products show very unsatisfactory performance. The CCS is unable to track gauge
observations in all seasons (as indicated by the box plots). In the winter season, all SBPD
describe the maximum BIAS compared to other seasons. The box plots of RMSE for each
SBPD (IMERG, TRMM, CDR, and CCS) revealed that the IMERG’s error value is less than
0.5, while other SBPD show significant amounts of error values. Other than the summer
season, the TRMM shows reasonable performance.
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Figure 15. Taylor diagram showing the performance of monthly estimations of SBPD.

Figure 17 displays the seasonal rBIAS (%) of all SBPD (IMERG, TRMM, CDR, and CCS).
In the summer season, a significant amount of overestimation is shown by PERSIANN
CCS (40%), followed by CDR (35%) and IMERG (14%). While, on the other hand, TRMM
underestimates the autumn season (−30%). All SBPD illustrate underestimation in the
summer season, with the most significant underestimation displayed by CDR (−60%) in the
summer. The TRMM product examined significant underestimation (−40%) in the spring
season and significant overestimation in the winter season (43%), while the performance
of CCS is only acceptable in the spring season. In the winter season, both CCS and CDR
make underestimations, with ranges of (−38%) and (−19%), respectively. Overall, the
performance of IMERG is better in all seasons compared to other SBPD (TRMM, CCS,
and CDR) .

Figure 18 presents the performance diagram of all SBPD (TRMM, IMERG, PERSIANN-
CDR, and CCS) in response to capturing the seasonal estimations of observed data. In terms
of probability of detection (POD), the IMERG outperforms all other SBPD (TRMM, CCS,
and CDR) in all seasons except in the winter season, with ranges (>0.71 in all seasons). For
CCS and CDR, the success ratio (SR) is similarly alarmingly low. While the false alarm ratio
(FAR) for the IMERG product is at a minimum, this demonstrates that IMERG satisfactorily
performs when responding to the track probability of seasonal estimations. In all seasons,
the CCS performance is weakest among other datasets.
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The probability function of all daily and seasonal SBPD (TRMM, IMERG, PERSIANN-
CDR, and CCS) was analyzed (as described in Figure 19) against the daily and sea-
sonal gauge estimations for the entire country. In the mountainous domain of central
Asia, light precipitation events (<2 mm/day) are mostly revealed compared to medium
(2–10 mm/day) and high (<10 mm/day) precipitations [31]. The TRMM displayed a signifi-
cant amount of overestimation (80%) in response to tracking daily light precipitation events.
The CDR presented significant underestimation (−52%), while the performance of IMERG
was catchable by the in situ gauge observations in all seasons and on daily scales. The CDR
showed underestimations in all seasons (summer, winter, autumn, and spring) with PDF
ranges of (35%, 30%, 52%, and 61%), respectively. The TRMM showed underestimation
in the autumn season, while over-underestimation in others. During the summer season,
all SBPD displayed underestimation. Overall, the performance of IMERG was the most
satisfactory in all seasons in tracking light and medium precipitation events. While in
response to high precipitation events, the IMERG illustrated a slight overestimation.
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Figure 19. PDF (%) of all SBPD at (a) daily, (b) winter, (c) spring, (d) summer, (e) autumn scales
over Tajikistan.
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4. Discussion

This study evaluated the assessment of four SBPDs (TRMM, IMERG, PERSIANN-CDR,
and CCS) against local meteorological stations installed over the mountainous domain of
Central Asia (Tajikistan). Widely used statistical analyses were considered for the perfor-
mance analysis. Previously, many researchers have validated the ground evaluation of the
latest SBPD, including (TRMM, IMERG, PERSIANN-CDR, and CCS) [13,17,32–38]. It is
well recognized that local terrain and climatic variables have a substantial impact on SBPD
effectiveness. For instance, Nadeem et al. [32] assessed the uncertainty of four PERSIANN
family products over the Himalayan Mountains in South Asia, and they concluded that
the accuracy of all SBPD mainly depends upon regional topographic conditions. Similarly,
Hamza et al. [31] compared PERSIANN-CDR and IMERG, along with many other SBPD;
his results also showed that evaluation indices (CC, BIAS, rBIAS, RMSE) were massively
dependent on local elevation, precipitation intensity, and seasonality.

Fu et al. [39] also evaluated the accuracy of many satellites over the territory of China.
His findings revealed that the performance of all satellite data completely depends on
in situ topographical and climatic conditions. He found significant changes in the CC
values as elevation changed. The results of our study also concluded that the performance
assessment of all datasets showed significant spatial and temporal variation over the
dense network of Tajikistan. Our findings indicate that the accuracy of SBPD (TRMM,
IMERG, PERSIANN-CDR, and CCS) is better on the monthly scale compared to the daily
scale. Similar findings have been outlined in many published studies [32,39,40]. Both
products of the CHRS data portal (PERSIANN-CDR and PERSIANN-CCS) performance
were very poor in response to capturing spatiotemporal variability compared to GPM
products (TRMM and IMERG); a similar performance of the PERSIANN family of products
was found in the results of Pellarin et al. [41]. In Figure 17, during the summer season, a
significant amount of overestimation was shown by PERSIANN CCS (40%), followed by
CDR (35%) and IMERG (14%), which was consistent with the findings of references [21,41].
Figure 13 concludes that the CC values increased with an increase in precipitation intensity.
Conversely, the error values were in inverse relation to the precipitation intensity. The
findings of many [23,42–45] studies are exactly parallel to the results of our performance
analysis. Asif et al. [30] found that CC values decreased with an increase in elevation.
Similarly, the error values were in direct relation to elevation, and our results were exactly
in linear relation to this statement. The IMERG’s POD was maximum in all temporal
scales (daily, monthly, and seasonal); similar definitions were found in [29,41]. The CCS
performance in all seasons was very poor, which was comparable to the findings of [12,41].
In our opinion, light precipitation events (<2 mm/day), mostly revealed compared to
medium (2–10 mm/day) and high (<10 mm/day) precipitations [12,28,37,38,46], were
equally valid for this decision. Generally, the ground validation of SBPD was acceptable
on a monthly scale. However, the daily estimations of all SBPDs were not satisfactory.
Therefore, for more effective use of SBPD, modern methods, and algorithms [47,48] (data-
driven approaches such as machine learning/deep learning, downscaling of precipitation
products, and bias correction of SBPD) should be applied to minimize the error values of
SBPD estimations.

5. Conclusions

In this evaluation, we analyzed the ground validation of four (TRMM, IMERG,
PERSIANN-CDR, and CCS) satellite-based precipitation datasets. All SPBD estimations
were assessed against the 18 ground weather stations installed over the mountainous area of
Tajikistan. Performance was assessed at multiple temporal scales (daily, monthly, seasonal,
and annual) and spatial scales (point pixel). The main conclusions of our performance
analysis were:
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• On a monthly scale, the performance of all SBPD is more analogous to gauge estima-
tions compared to on a daily scale.

• The IMERG capability to track the spatiotemporal variability over the mountainous
domain of Central Asia (Tajikistan) is unmatchable compared to other selected datasets
(CDR, TRMM, and CCS).

• In high-elevated areas, IMERG performance is more satisfactory compared to other
datasets. While the performance of TRMM and PERSIANN-CDR is reasonable on flat
sites, the performance of CCS is unacceptable.

• In terms of probability of detection (POD), the IMERG outperforms all other SBPD
(TRMM, CCS, and CDR) in all seasons, except in the winter season, with ranges (>0.71
in all seasons). While the false alarm ratio (FAR) is minimal for the IMERG product.

• The TRMM displays a significant amount of overestimation (80%) in response to
tracking daily light precipitation events. The CDR exhibits significant underestimation
(−52%), while the performance of IMERG is catchable by the in situ gauge observations
in all seasons and on daily scales. Moreover, all SBPDs show more variability in
tracking light precipitation events compared to medium and high precipitation events.

• The PERSIANN-CCS performance is only satisfactory in the spring season. The
IMERG outperforms all other products in all seasons.

• All SBPD illustrate underestimations during the summer season, with the most sig-
nificant underestimation displayed by CDR (−60%) in summer. The TRMM product
displays significant underestimation (−40%) in the spring season, and significant
overestimation in the winter season (43%).

• On annual estimations, the performance of IMERG is not satisfactory compared to
other scales (daily, monthly, and seasonal). However, IMERG dominates all other
SBPDs to track spatiotemporal variability over a limited gauge network of Tajikistan.

• Generally, the CC values between SBPD and gauge estimations increase with the
increase in precipitation intensity. Conversely, the relationship between the gauge and
SBPD decreases at higher altitudes.

The results of our performance analysis highlight that the IMERG outperformed all
other selected datasets (TRMM, PERSIANN-CDR, and PERSIANN-CCS) at multiple scales
over the complete mountainous area of Tajikistan. IMERG’s spatial-temporal capabilities
are more than satisfactory over the different topographical and climatic conditions of the
study area. Moreover, its CC (>0.7) and r-BIAS (±10) are acceptable ranges. Furthermore,
we offer the use of deep learning/machine learning approaches, as well as advanced
models, to enhance algorithm retrievals of SBPD for more suitable applications. Therefore,
we suggest that policymakers, hydrologists, meteorologists, and SBPD data users use
estimations of IMERG for hydroclimatic applications over Tajikistan.
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