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Abstract: Hyperspectral images (HSIs) are one of the most successfully used tools for precisely and
potentially detecting key ground surfaces, vegetation, and minerals. HSIs contain a large amount
of information about the ground scene; therefore, object classification becomes the most difficult
task for such a high-dimensional HSI data cube. Additionally, the HSI’s spectral bands exhibit a
high correlation, and a large amount of spectral data creates high dimensionality issues as well.
Dimensionality reduction is, therefore, a crucial step in the HSI classification pipeline. In order to
identify a pertinent subset of features for effective HSI classification, this study proposes a dimension
reduction method that combines feature extraction and feature selection. In particular, we exploited
the widely used denoising method minimum noise fraction (MNF) for feature extraction and an
information theoretic-based strategy, cross-cumulative residual entropy (CCRE), for feature selection.
Using the normalized CCRE, minimum redundancy maximum relevance (mRMR)-driven feature
selection criteria were used to enhance the quality of the selected feature. To assess the effectiveness
of the extracted features’ subsets, the kernel support vector machine (KSVM) classifier was applied
to three publicly available HSIs. The experimental findings manifest a discernible improvement in
classification accuracy and the qualities of the selected features. Specifically, the proposed method
outperforms the traditional methods investigated, with overall classification accuracies on Indian
Pines, Washington DC Mall, and Pavia University HSIs of 97.44%, 99.71%, and 98.35%, respectively.

Keywords: hyperspectral image classification; subset detection; MNF; CCRE; feature reduction;
spectral features

1. Introduction

Due to the extraordinary advancement of hyperspectral remote sensors, hundreds of
tiny and continuous spectral bands are feasible to acquire from the electromagnetic (EM)
spectrum, which typically spreads in the ranges 0.4 µm to 2.5 µm and includes visible
to the near-infrared region of the EM spectrum [1]. For example, with an exceptional
spectral resolution of 0.01 µm, the airborne visible/infrared imaging spectrometer (AVIRIS)
sensor effectively captures 224 spectral images for the Indian Pines (IP) hyperspectral image
(HSI) scene [2]. Due to the superior spectral resolution, ground objects are becoming a
more commonly used research topic [3]. Every single spectral channel is recognized as
a feature for classification in this context, as long as it contains distinct ground surface
responses [4]. An HSI is represented by a 3D data cube, from which we can extract 2D spatial
information corresponding to the HSI’s height and width and 1D spectral information
corresponding to the HSI’s total number of spectral bands. Due to the enormous amount
of data made available by HSIs, traditional HSIs pose significant challenges during image
processing processes such as classification [5]. The reasons are as follows: (i) There is a
strong correlation between the input image bands; (ii) Not all spectral bands have the
same amount of information to convey, and some of it is noisy [6]; (iii) The spectral bands
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are collected in a continuous range by hyperspectral sensors, which means that certain
spectral bands might reveal unusual information about the surface of the earth [7]; (iv) The
increased spectral resolution of hyperspectral images improves classification techniques
but limits computational capacity. Additionally, because there are few training examples,
this high-dimensional data cube’s classification accuracy is relatively unsatisfactory; (v) The
ratio of the amount of input HSI features to training samples is not balanced. The test data
classification accuracy steadily degrades as a result, a phenomenon known as the Hughes
phenomenon or the curse of the dimensionality effect [8]. To increase classification accuracy,
it is crucial to condense the high-dimensional HSI data to a useful subspace of informative
features. Therefore, the fundamental goal of this study was to use a constructive approach
to reduce the HSI dimensions for improved classification.

The HSI high-dimensional data may be reduced into a lower dimension using various
feature reduction techniques. Feature extraction, feature selection, or a combination of the
two can be used for this [9,10]. By utilizing a linear or nonlinear transformation, feature
extraction converts the original images from the original space of S dimensionality to a new
space of P dimensionality, where P << S. However, because HSIs are noisy data, the noise
must be removed [11]. Feature extraction strategies for data subsets might be supervised
or unsupervised [12]. Known data classes are used in supervised algorithms. To infer
class separability, these approaches require datasets containing labeled samples. The most
used supervised methods include linear discriminant analysis (LDA) [13], nonparametric
weighted feature extraction (NWFE) [14], and genetic algorithms [15]. The fundamental
drawback of these approaches is the need for labeled samples to reduce dimensionality.
The unavailability of labelled data is addressed via unsupervised dimensionality reduc-
tion approaches. Minimum noise fraction (MNF) is an extremely popular unsupervised
technique and is used to evaluate extracting features. Even though principal component
analysis (PCA) is used to extract features from HSI data in many analyses, PCA did not
accurately show the ratio of noise in the HSI data [16–18]. In this case, PCA only considers
the HSI’s global variance to uncorrelate the data [19]. For such noisy data, the image quality
is ignored when applying a variance because of the lack of consideration for the original
signal-to-noise ratio (SNR) [20]. Therefore, MNF is introduced as a better approach for
feature extraction in terms of image quality. In MNF, the components are ordered according
to their SNR values, regardless of how noise appears in bands [21]. Some studies have
shown that even though feature extraction moves the original data to a newly generated
space, ranking the extracted features is still important [13,22,23]. MNF is unsupervised
and takes SNR into account exclusively; therefore, there is a chance that some classes will
negatively impact accuracy and that the first few features would not be used.

Therefore, feature selection is necessary to prioritize the features generated by the
feature extraction method which contain the most spatial information. In order to obtain a
blend approach that performs better than either feature extraction or feature selection alone,
it is common practice at the moment to combine existing feature extraction and feature
selection methods to obtain an approach that performs better than either feature extraction
or feature selection alone [10]. Combining feature extraction and selection is advantageous
for the reason that feature extraction performed prior to feature selection can fully utilize
the spectral information to generate new features, whereas feature selection performed
after feature extraction can generate new features. In the following step, feature selection
approaches are utilized to select the appropriate bands based on a set of predefined criteria.
Due to combinatorial explosion from local minima and excessive computation, search-
based feature selection typically fails [24]. Mutual information (MI)-based feature selection
is one example of an information-theoretic approach that can be used to uncover non-linear
as well as linear correlations between input image bands and ground-truth labels [10].
However, it is conditional on the marginal and joint probabilities of the outcomes. Due to
the exponential increase in the estimation of marginal and joint probability distributions
with dimensionality, it is incapable of successfully selecting features from high-dimensional
data [25]. In the suggested approach, we select a subset of informative features by lowering
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the number of features using cross-cumulative residual entropy (CCRE). The CCRE method
is applied as a feature selection technique that quantifies the similarity of information
between two images. A significant advantage over MI is that CCRE is more robust and
has significantly greater immunity to noise. As CCRE is not bound to [0, 1], we propose to
normalize CCRE and apply the extracted image by MNF and the available class tackling
the minimum redundancy and maximum relevance (mRMR) criteria. Consequently, the
informative characteristics are ordered, and a feature subset that can be employed for
classification is exposed. Therefore, the proposed method to generate the subset of features
is termed as MNF-nCCREmRMR. A kernel support vector machine (KSVM) was used to
classify the data and is compared with other methods to determine its reliability. Below is a
summary of this paper’s significant contributions.

• In addition to MNF and CCRE, we propose a hybrid feature reduction technique.
• To avoid selecting redundant features, we propose a normalized CCRE-based mRMR

feature selection approach over the extracted features.

We organize the rest of the paper as follows. In Section 2, we first describe conventional
feature reduction methods such as PCA, MNF, MI, and CCRE. In Section 3, the proposed
hybrid subset detection method, MNF-nCCREmRMR, according to mRMR, is comprehen-
sively described. In Section 4, we provide a detailed explanation of the experiments carried
out on the three real HSI datasets utilizing the proposed method compared with the current
state of the art. The results are summarized in Section 5, which also outlines the paper’s
conclusion.

2. Preliminaries
2.1. Principal Component Analysis (PCA)

To extract meaningful features from spectral image bands, PCA, the most used linear
unsupervised feature extraction method in HSI classification, determines the association
between the bands. It depends on the fact that the HSI’s neighboring bands are highly
correlated and usually convey information about ground things that are similar to one
another [26–28]. Let the spectral vector of a pixel, denoted as Xn, in X be defined as
Xn = [Xn1Xn2 . . . XnP]

T, where n ∈ [1 Sall]. Now, subtract the mean spectral vector, M, to
obtain the mean adjusted spectral vector, In, as:

In = Xn −M, (1)

Where the mean image vector, M = 1
Sall

∑Sall
n=1 Xn. The zero-mean image, denoted by I, is

thus obtained as I = [I1I2 . . . In]. Subsequently, the covariance matrix, C, is computed as
follows:

C =
1

Sall
I IT. (2)

Eigenvalues E = [E1E2 . . . EP] and eigenvectors V = [V1V2 . . . VP] are obtained by
decomposing the covariance matrix C as C = VEVT. The orthonormal matrix, Z, is
composed by choosing K eigenvectors after rearranging the eigenvectors with highest
eigenvalues, where K < P and often K � P. Finally, the transformed or projected data
matrix, Y, is calculated as:

Y = ZTI. (3)

2.2. Minimum Noise Fraction (MNF)

MNF transformation is used to estimate an HSI’s intrinsic features, which is the
superposition of two PCA [28]. As such, instead of using the global variance to assess the
relevance of features, the MNF is more appropriate, which uses SNR. Let X denote the input
HSI, where X = [x1, x2 . . . . . . xp]T, and p represents the number of image bands. As noise
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exists in HSI in the signal, X will be X = Sg + N, where Sg and N are the noiseless image,
and noise separately. Now, the covariance can be computed by the following equation:

C(X) = ∑ = ∑ Sg + ∑ N, (4)

Here, ∑Sg = covariances of the signal, and ∑N = covariances of the noise. The MNF
transformation can be computed in terms of noise covariance as:

Zi = ATX, (5)

Here, A represents the eigenvector matrix, and it can be computed as:

∑ −1 ∑ N = ΛA, (6)

where Λ represents the diagonal eigenvalues matrix and can also be computed using the
noise ratio, as:

Λ = Var
(

ai
TN
)

/Var
(

ai
TX
)

. (7)

The components are reorganized in accordance with the SNR after passing through the
MNF transformation, in contrast to PCA, which employs global data statistics. Therefore,
the few MNF components include meaningful and less noisy classification features.

2.3. Mutual Information (MI)

MI is a fundamental notion in the field of statistics to determine the dependency of
two input variables, A and C, and is defined as:

I(A, C) = ∑ c∈C ∑ a∈A p(a, c)log
p(a, c)

p(a)p(c)
, (8)

where p(a) and p(c) represent the marginal probability distributions and the joint proba-
bility distribution, p(a, c), of the two variables A and C. MI can also be defined in terms
of entropy, provided that A is a band of an input image, and C is a class label of the input
image.

I(A, C) = H(A) + H(C) − H(A, C), (9)

where H(A) and H(C) represent the entropies of A and C, and H(A, C) is their joint entropy.
It is possible to utilize the MI value in Equation (8) or Equation (9) as the selection criterion
in order to choose the features that are the most helpful and informative.

2.4. Cross-Cumulative Residual Entropy (CCRE)

CCRE was introduced in [29] as a well-known similarity measure technique for multi-
modal image registration. CCRE can be utilized to compare the similarities between the
two images where cumulative residual distribution is applied rather than probability distri-
bution. Cumulative residual entropy (CRE), developed in [30], can be used to determine
CCRE. Let a in R be a random variable. Then, we can write CRE as:

ε(a) =
∫
<+

f (λ)logF(λ)dλ, (10)

where <+ = (x ∈ R; x ≥ 0). As a result, the following formula can be used to estimate the
CCRE between images a and b:

C(a, b) = ε(a)− E[ε(a|b)], (11)
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where ε(a|b)] = conditional CRE between a and b, and E[ε(a|b)]= expectation of ε(a|b)] .
One way to calculate the conditional CRE ( ε(a|b)] ) between a and b is as follows:

ε(a|b) = −
∫
<+

P(|a| > a|b)logP(|a| > a|b)da. (12)

Now, the CCRE of two images I and J can be given by:

CCCRE = ∑ L
u=1 ∑ L

v=1G(u, v)log
(

G(u, v)
GI(u)PJ(v)

)
, (13)

where L is the maximum value of any pixel in the images, G(u) is the joint cumulative
residual distribution, GI(u) is the marginal cumulative residual distribution of I, and PJ(v)
is the marginal probability of J. CCRE is mostly used to determine how the training data
and the transformed MNF images are related so that the informative MNF component can
be found based on the available class label.

3. Proposed Methodology

There are two primary phases in the proposed feature reduction process: (i) feature
extraction through the implementation of the classical MNF on the complete HSI; and (ii)
feature selection through the measurement of normalizing CCRE-based mRMR criteria on
the transformed features of the HSI. Figure 1 illustrates the practical steps of our proposed
method.
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3.1. mRMR-Driven CCRE-Based Feature Selection

When deciding which features are most useful, the CCRE value in Equation (12) is
taken into account. Using a comparison between the newly generated features from MNF
component, Zi, and the available training class labels, C, CCRE is able to isolate the subset
of features that were most important. Therefore, the feature that is calculated to be the most
informative is as [31]:

V = Maxi∈pCCCRE(Zi, C), (14)

where V is the most informative classification feature (maximum CCRE value) that was
given to S (the number of features that were chosen). This ranked the MNF components,
with the possibility that the first few components are the most useful for classification.
However, there may be redundancy in the features chosen using Equation (14). Overall,
the selected features should be as relevant as possible while being as redundant as possible.
The greedy strategy can be utilized to select the (k + 1)th feature; then, it can be assigned to
the subsets that have already been chosen. As such, the mRMR algorithm can be used to
determine the model that was picked for subspace detection as:

G(Zi, k) =
[

CCCRE(Zi, C)− 1
|S|∑ i,j∈SCCCRE

(
Zi, Zj

)]
, Zi 6⊂ S. (15)
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In Equation (15), S represent the subset of selected feature, Zi is the current features
extracted from MNF, k denotes the number of features to be selected for the feature space S,
C signifies the ground truth image of the HSI, and Zj represents the already selected feature
in the feature space, S.

3.2. Improved Feature Selection

(i) Using normalized CCRE: The values of CCRE are not constrained to a particular
limit. Direct application of the G(Zi, k) in the aforementioned method is complicated by
the fact that it is sensitive to the entropy of two variables and does not have a fixed range
of validity. The quality of a given CCRE value is evaluated by comparing it to the range
[0, 1] [32,33]. The normalized CCRE can be defined as:

ĈCCRE(Z, C) =
CCCRE(Z, C)√

CCCRE(Z)CCCRE(C)
(16)

We propose nCCREmRMR, utilizing the normalized CCRE in Equation (16). Accord-
ingly, the subset of features using our proposed method can be defined as:

Ĝ(Zi, k) =
[

ĈCCRE(Zi, C)− 1
|S|∑ i,j∈SĈCCRE

(
Zi, Zj

)]
, Zi 6⊂ S. (17)

The observation is made that the (k + 1)th feature to be added to the target subspace of
features, S, should have the largest value of Ĝ(Zi, k).

(ii) Discard Negative values: Using Equation (17), the largest value of the difference
might be less than zero, resulting in the chosen features being different from the previously
picked characteristics, which is undesirable. As a result, in this study, Ĝ(Zi, k) was assumed
to be positive, i.e., Ĝ(Zi, k) > 0. If the greatest difference value is not positive, it might mean
that there are no longer any desirable characteristics, and that the informative subspace has
grown to its specified width.

(iii) Remove the noisy features: The formula described in Equation (17) is likely to be
used to choose undesirable features. The selected features are thus only weakly related to
the target when the largest difference value derives from two tiny values. The user-defined
threshold (T) is introduced as a means of avoiding complications (if ĈCCRE(Zi, C) < T,
remove Zi). The preprocessing stage applies the user-defined threshold, T, to condense
the searching space for the greedy technique and eliminate the noisy feature. An outline
of the suggested hybrid feature reduction method’s algorithm is provided below. Now,
the selected set S contains the most informative features. The proposed feature reduction
methodology is illustrated in Algorithm 1.

Algorithm 1. MNF-nCCREmRMR

(Y is the original HSI data, Z represents the transform MNF components, C is the ground truth
image, T defines a user-defined threshold, and S represents the final subsets of n number of
features.)

i. Start (Z: the projected data matrix of original HSI, Y)
ii. Evaluate ĈCCRE(Zi, C) and utilize T, if ĈCCRE (Zi, C) < T
iii. Set, S0 = {φ}
iv. Set S1 = S0 ∪ Zj, where Zj is first feature utilizing Equations (14) and (16)
v. Apply steps (vi) and (vii) until the S contains n features
vi. Update S by utilizing Equation (17)
vii. Output S as the subsets of effective features
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4. Experimental Setup and Analysis
4.1. Remote Sensing Data Sets

For experimental analysis, we used three HSI datasets publicly available and broadly
used for HSI classification, i.e., AVIRIS IP, HYDICE Washington DC Mall (WDM), and
ROSIS Pavia University (PU). Detailed descriptions of these datasets are given below.

4.1.1. AVIRIS IP Dataset

NASA’s AVIRIS sensor captured the IP dataset in June 1992, which consists of 220
imaging bands [34]. The ground truth image, which is made up of sixteen classes and has a
dimension of 145 by 145 pixels, contains the dataset. Furthermore, the data have a 0.1 µm
spectral resolution. We excluded the classes “Oats” and “Grass/Pasture mowed” from
this experiment for their insufficient training and testing samples. Figure 2 presents the IP
false-color RGB and ground truth image.
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4.1.2. HYDICE WDM Dataset

The WDM data collection comprises 191 image bands, and each band consists of
1280 × 307 pixels. The HYDICE sensor captured the data in 1995 over the WDM. In the
scenario depicted by the ground truth image, there are a total of seven distinct classes [35].
We have not employed “paths” in this study because the training data are insufficient.
Figure 3 presents the WDM false-color RGB and ground truth image.
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4.1.3. ROSIS PU Dataset

The ROSIS optical sensor was utilized to gather the PU dataset from the University of
Pavia’s urban environment in Italy. A spatial resolution of 1.3 m per pixel and an image size



Remote Sens. 2023, 15, 1147 8 of 21

of 610× 610 were used in this his [36]. The acquired image contains 103 data channels (with
a spectral range from 0.43 µm to 0.86 µm). A false-color composite of the image appears in
Figure 4a, whereas nine ground-truth classes of interest are depicted in Figure 4b. Table 1
reviews the key features of all the three datasets.
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Table 1. Summary of the HSI datasets.

Name of the
Dataset Capturing Sensor P Wavelength

Range (nm) H W Ground
Classes

Ground Sampling
Distance (m)

IP AVIRIS 220 400–2500 145 145 16 20
WDM HYDICE 191 400–2400 1280 307 7 3

PU ROSIS 103 430–860 610 610 9 1.3

4.2. Analysis of Feature Extraction and Feature Selection

During feature extraction, the MNF technique generates new features using the trans-
formation principles. In order to enhance the subset of features, features are chosen utilizing
the normalized CCRE on newly generated features. It is possible to select the noisy fea-
ture using Equation (14). Furthermore, two weak MNF components might yield a large
variation, and the algorithm can pick a useless component that is weakly connected to the
ground truth image. We implemented a user-defined threshold T to prevent the use of
less informative features in classification. The advantage of using T is that throughout the
preprocessing steps, it first rejects noisy features. As a result, there is a reduced possibility
of selecting a noisy features, and the order of the chosen features is apparent. For assessing
the robustness of the proposed approach, we compared it to MNF, CCRE, MNF-MI, and
MNF-CCRE methods. Table 2 outlines the abbreviations associated with the stated and
different methods studied. For all studied and proposed methods, the order of the ranked
features is presented in Tables 3–5 for all three datasets, respectively. The proposed method
(MNF-nCCREmRMR), as shown in Table 3, ranks MNF component two (MNF-C: 2) and
MNF component four (MNF-C: 4) as the top two features, in contrast to the traditional
MNF method, which ranks MNF component one (MNF-C: 1) and MNF component two
(MNF-C: 2) as the first and second-ranked features, respectively. Figure 5 provides a graphic
representation of the first two ranking features of MNF, MNF-MI, and MNF-CCRE, as well
as the proposed approach of the AVIRIS image. The illustration demonstrates how the
suggested approach improves the effectiveness of the chosen characteristics and is more
visually appealing than the other approaches used.
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Table 2. Description of different studied and proposed methods.

Acronym Method
Type

Information Used
for Dimension

Reduction
Main Steps

PCA Conventional Spectral

i. Obtain the covariance matrix of mean
adjusted data.

ii. Apply the Eigen decomposition operation on
the covariance matrix.

iii. Calculate the projection matrix.

MNF Conventional Spectral

i. Whiten the noise.
ii. Obtain the covariance matrix of noise

adjusted data.
iii. Calculate the projection matrix.

MI Conventional Spatial
i. Calculate the MI of individual spectral bands

and ground truth image.
ii. Sort the image bands based on MI values.

CCRE Conventional Spatial
i. Calculate the CCRE of individual spectral

bands and ground truth image.
ii. Sort the image bands based on CCRE values.

nCCRE Conventional Spatial

i. Calculate the normalized CCRE of individual
spectral bands and ground truth image.

ii. Sort the image bands based on normalized
CCRE values.

PCA-MI Hybrid Spectral-spatial

i. Calculate the projection matrix using the PCA
approach.

ii. Calculate the MI values between the PCA
bands and ground truth image.

iii. Select the informative features according to
the MI values.

PCA-CCRE Hybrid Spectral-spatial

i. Calculate the projection matrix using the PCA
approach.

ii. Calculate the CCRE values between the PCA
bands and ground truth image.

iii. Select the informative features according to
the CCRE values.

MNF-MI Hybrid Spectral-spatial

i. Calculate the projection matrix using the
MNF approach.

ii. Calculate the MI values between the MNF
bands and ground truth image.

iii. Select the informative features according to
the MI values.

MNF-CCRE Hybrid Spectral-spatial

i. Calculate the projection matrix using the
MNF approach.

ii. Calculate the CCRE values between the MNF
bands and ground truth image.

iii. Select the informative features according to
the CCRE values.

MNF-
nCCRE Hybrid Spectral-spatial

i. Calculate the projection matrix using the
MNF approach.

ii. Calculate the normalized CCRE values
between the MNF bands and ground truth
image.

iii. Select the informative features according to
the normalized CCRE values.

MNF-
nCCREmRMR

Hybrid Spectral-spatial

i. Calculate the projection matrix using the
MNF approach.

ii. Select the informative features using the
proposed feature selection method.
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Table 3. The order of selected features for AVIRIS IP dataset.

Method Orders of the Selected Features

PCA PCA Components: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
MNF MNF Components: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

MI HSI Bands: 29, 22, 23, 32, 188, 128, 43, 192, 24, 25
CCRE HSI Bands: 22, 29, 28, 32, 27, 26, 30, 33, 25, 24

nCCRE HSI Bands: 32, 22, 34, 188, 191, 26, 23, 30, 28, 188
PCA-MI PCA Components: 1, 3, 4, 7, 8, 5, 6, 11, 15, 12

PCA-CCRE PCA Components: 1, 3, 2, 5, 9, 8, 11, 7, 16, 13
MNF-MI MNF Components: 2, 5, 4, 3, 6, 7, 8, 9, 10, 11

MNF-CCRE MNF Components: 3, 2, 6, 4, 5, 8, 7, 10, 9, 15
MNF-nCCRE MNF Components: 2, 3, 5, 11, 8, 13, 16, 12, 9, 10

MNF-nCCREmRMR MNF Components: 2, 4, 6, 4, 5, 10, 9, 13, 12, 11

Table 4. The order of selected features for HYDICE WDM dataset.

Method Orders of the Selected Features

PCA PCA Components: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
MNF MNF Components: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

MI HSI Bands: 82, 83, 28, 166, 128, 82, 155, 151, 52, 12
CCRE HSI Bands: 83, 50, 101, 77, 28, 57, 167,165, 51, 82

nCCRE HSI Bands: 83, 102, 52, 66, 42, 166, 182, 177, 15, 86
PCA-MI PCA Components: 1, 3, 4, 5, 2, 9, 11, 15, 13, 10

PCA-CCRE PCA Components: 1, 2, 5, 4, 9, 7, 11, 15, 16, 12
MNF-MI MNF Components: 2, 5, 4, 3, 6, 1, 191, 14, 18, 11

MNF-CCRE MNF Components: 2, 3, 4, 5, 1, 6, 7, 19, 18, 12
MNF-nCCRE MNF Components: 2, 3, 5, 6, 12, 7, 8, 4, 13, 11

MNF-nCCREmRMR MNF Components: 2, 4, 8, 5, 3, 6, 7, 11, 13, 12

Table 5. The order of selected features for ROSIS PU dataset.

Method Orders of the Selected Features

PCA PCA Components: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
MNF MNF Components: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

MI HSI Bands: 102, 103, 98, 101, 95, 96, 97, 88, 99, 100
CCRE HSI Bands: 103, 102, 100, 99, 86, 88, 96, 97, 92, 83

nCCRE HSI Bands: 103, 101, 98, 99, 87, 91, 83, 103, 92, 95
PCA-MI PCA Components: 1, 2, 4, 3, 6, 8, 7, 9, 12, 11

PCA-CCRE PCA Components: 1, 3, 5, 2, 9, 11, 10, 6, 15, 7
MNF-MI MNF Components: 2, 3, 4, 6, 5, 11, 9, 10, 8, 12

MNF-CCRE MNF Components: 2, 3, 4, 5, 7, 8, 13, 11, 16, 9
MNF-nCCRE MNF Components: 2, 3, 5, 4, 8, 7, 12, 10, 11, 13

MNF-nCCREmRMR MNF Components: 2, 4, 3, 9, 7, 11, 15, 16, 10, 8

4.3. Parameters Tuning for Classification

To evaluate the effectiveness of the chosen features, we used the KSVM classifier with
the Gaussian (RBF) kernel to classify the HSIs. In the classifier, we used a grid search
strategy based on tenfold cross-validation to determine the optimal values for the cost
parameter, C, and the kernel width, γ [37]. The complete parameter tuning results for
all the studied and proposed methods on the three datasets are presented in Tables 6–8,
respectively. In particular, we obtained the optimal parameters C = 2.9 and γ = 0.5 for the
AVIRIS dataset, C = 2.4 and γ = 2.1 for the HYDICE dataset, and C = 2.8 and γ = 3 for the
ROSIS PU HSI.
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Table 6. Parameter tuning results using tenfold cross-validation for the AVIRIS IP dataset.

Method Best C Best γ Training Accuracy

PCA 2.8 3 98.55
MNF 5 2.9 94.63

MI 3 2 81.3
CCRE 2.7 3.7 89.31

nCCRE 8 2.2 88.32
PCA-MI 10 1.3 96.98

PCA-CCRE 7 1 98.81
MNF-MI 10 2.7 97.53

MNF-CCRE 8 2.8 97.89
MNF-nCCRE 5 2 98.91

MNF-nCCREmRMR 2.1 1.2 99.85

Table 7. Parameter tuning results using tenfold cross-validation for the HYDICE WDM dataset.

Method Best C Best γ Training Accuracy

PCA 10 2.9 97.55
MNF 4 2.1 98.43

MI 2 3.7 85.61
CCRE 3 2 91.32

nCCRE 7 1.2 92.58
PCA-MI 8 2 98.58

PCA-CCRE 10 2.1 98.93
MNF-MI 8 2.8 99.09

MNF-CCRE 5 3 99.18
MNF-nCCRE 3 0.5 99.88

MNF-nCCREmRMR 2.2 1.8 99.95
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Table 8. Parameter tuning results using tenfold cross-validation for the ROSIS PU dataset.

Method Best C Best γ Training Accuracy

PCA 10 3 95.85
MNF 5 1.9 95.63

MI 2 2.7 87.86
CCRE 8 2.9 88.39

nCCRE 10 0.2 88.81
PCA-MI 8 2.5 97.98

PCA-CCRE 10 2.9 97.89
MNF-MI 1.2 3 98.06

MNF-CCRE 10 3 98.43
MNF-nCCRE 8 1.5 99.24

MNF-nCCREmRMR 5 2.2 99.91

4.4. Classification Performance Evaluation Metrics

In this study, the performance of the proposed method was assessed using commonly
used quality indicators, including overall accuracy (OA), average accuracy (AA), the Kappa
coefficient, and the F1 score. The proportion of all correctly categorized pixels is what the
OA calculates; it can be calculated as follows:

OA =
C

∑
i=1

Aii
B

(18)

The confusion matrix represented by A is determined by contrasting the classification
map with the actual image. The number of classes is denoted by the letter C in this equation.
Aii represents the number of samples in class i that are classified as class i, while B represents
the total number of test samples. AA stands for the average value of the proportion of
pixels in each class that have been correctly classified. This value is derived as follows:

AA =
∑C

i=1

(
Aii/ ∑C

i=1 Ai+

)
C

, (19)

where Aii stands for the total number of samples belonging to class i and classified as class
i, and Ai+ represents the total number of samples as classified as class i. The Kappa coeffi-
cient computes the proportion of classified pixels adjusted for the number of agreements
predicted only by chance. It indicates how much better the categorization performed than
the likelihood of randomly assigning pixels to their correct categories and can be calculated
using the notation used in Equations (18) and (19) as:

Kappa =

(
B ∑C

i=1 Aii −∑C
i=1(Ai+)(A+i)

)
(

B2 −∑C
i=1 ∑C

i=1(Ai+)(A+i)
) , (20)

where A+i represents the total number of actual samples of class i. Now, the F1 score is
calculated as follows:

F1 score =
2 × Precision × Recall

Precision + Recall
, (21)

where the precision and recall can be calculated as follows:

Precision =
TP

TP + FP
and Recall =

TP
TP + FN

. (22)

In Equation (22), TP, FP, and FN denote the number of true positive, false positive, and
false negative classification of the testing samples of multiple classes.
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4.5. Classification Results on the AVIRIS IP Dataset

In this experiment, we took approximately 50% samples of each class as the training set
and 50% samples as the testing set from a total of 2401 samples. The information regarding
the samples utilized for both training and testing is presented in Table S1. As shown in
Figure 2, the ground-truth image served as the basis for selecting both the training and
testing samples to be used in the classification process. We calculated the OA of AVIRIS
data without feature extraction and feature selection, and found 66.85% using the first
ten features. This result provides motivation to reduce the number of features used in
HSI classification. Table 9 shows the values of the OA, AA, Kappa, and F1 score of each
method. The proposed technique has the highest OA, AA, and Kappa values, as shown
in the table. This table demonstrates that the proposed MNF-nCCREmRMR approach
performs better than the state-of-the-art methods on every single criterion used to evaluate
performance. The two-dimensional line graphs presented in Figure 6 show the comparison
of the proposed and studied methods in a more meaningful way using the OA versus the
number of ranked features. As the number of features increases, the OA increases too.

Table 9. Classification performance measure (%) on the AVIRIS IP HSI.

Class PCA MNF MI CCRE nCCRE PCA-MI PCA-
CCRE

MNF-
MI

MNF-
CCRE

MNF-
nCCRE

MNF-
nCCREmRMR

Alfalfa 88.89 88.89 75.00 61.54 76.19 94.12 88.89 90.00 90.00 94.12 90.00
Wheat 86.84 90.41 83.58 85.71 80.49 86.84 88.00 95.65 95.65 97.06 95.65

Bldge-Grass 90.00 94.74 72.00 36.73 90.00 90.48 86.36 94.74 94.74 100.00 100.00
Soybean-min 97.63 97.70 79.31 71.32 80.95 97.08 97.08 98.84 98.87 97.16 98.87
Stone-Steel 76.00 94.74 76.00 62.50 76.00 79.17 76.00 95.24 96.55 89.29 100.00

Soybean-no till 92.71 91.49 57.85 90.91 61.07 92.71 94.68 98.90 98.90 96.81 98.94
Grass/Pasture 97.01 82.22 80.65 36.18 96.49 97.01 98.48 82.22 88.10 97.30 88.10

Corn-no till 78.95 77.59 64.81 56.45 64.81 90.00 90.00 79.37 90.91 90.57 90.91
Soybean Clean 64.71 52.38 52.38 52.38 52.38 64.71 57.89 64.71 72.22 86.67 75.00

Corn-min 83.33 93.75 71.43 71.43 73.33 83.33 90.16 94.20 94.20 94.03 98.48
Hay-windrowed 95.17 92.67 48.08 90.09 49.26 95.17 94.52 95.86 99.29 97.96 100.00

Woods 100.00 99.58 93.78 95.15 93.78 100.00 99.22 99.58 99.59 99.61 99.59
Grass/Trees 82.91 96.08 82.46 91.59 90.38 86.73 86.73 96.08 98.00 95.15 100.00

Corn 97.40 98.61 78.95 90.91 90.91 98.68 98.70 98.68 98.68 98.70 98.70

AA 87.97 89.35 72.59 70.921 76.86 89.72 89.05 91.7233 93.98 95.31 95.30
OA 92.38 93.04 72.95 75.126 75.96 93.55 93.63 94.90 96.72 96.90 97.44

KAPPA 91.42 92.17 69.66 72.33 73.09 92.73 92.82 94.3 96.3 96.50 97.10
F1 Score 88.07 89.13 73.53 73.20 77.31 89.33 89.04 91.90 94.7 94.70 96.3
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4.6. Classification Results on the HYDICE WDM Dataset

In this experiment, we have taken around 30% samples of each class as training set and
70% samples as testing set from a total of 5154 samples. Table S2 contains a representation
of the information regarding the samples used for both training and testing. As shown
in Figure 3, the ground-truth image is used to choose both the training samples and the
testing samples for classification. Table 10 shows the values of the OA, AA, Kappa, and
F1 score of each method. Performing the equivalent number of selected features, we find
the OA of 99.71% by the proposed MNF-nCCREmRMR method. This table demonstrates
that the proposed MNF-nCCREmRMR approach performs better than the state-of-the-art
methods on every single criterion used to evaluate performance. In addition, the line
graphs presented in Figure 7 shows the comparison of the proposed over the others. It can
be seen that the overall classification accuracy increases with the increase in the ranked
features.

Table 10. Classification performance measure (%) on the HYDICE WDM HSI.

Class PCA MNF MI CCRE nCCRE PCA-
MI

PCA-
CCRE

MNF-
MI

MNF-
CCRE

MNF-
nCCRE

MNF-
nCCREmRMR

Shadow (C1) 90.91 58.54 88.24 72.73 90.63 96.77 97.06 58.00 71.74 97.06 100.00
Tree (C2) 97.08 97.24 92.14 95.17 92.63 97.09 97.09 98.34 99.23 98.49 100.00
Roof (C3) 92.14 73.55 88.24 61.24 82.69 88.36 97.74 82.64 89.47 97.74 98.48

Water (C4) 92.38 95.41 82.90 95.36 87.11 93.27 93.33 97.94 98.92 96.55 98.77
Street (C5) 93.85 86.77 93.77 86.63 92.44 93.85 94.10 93.67 96.84 93.66 99.74
Grass (C6) 86.14 93.01 80.35 78.82 83.09 92.55 92.59 96.77 96.88 99.23 100.00

AA 92.08 84.09 87.61 81.66 88.10 93.65 95.32 87.89 92.18 97.12 99.50
OA 92.50 93.36 87.27 87.67 88.65 94.54 94.97 96.12 97.56 97.93 99.71

KAPPA 89.57 90.73 82.27 82.93 84.18 92.37 92.97 94.60 96.60 97.06 99.60
F1 Score 92.41 84.84 87.87 81.75 89.28 93.55 95.38 90.56 94.44 97.24 99.44
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4.7. Classification Results on the ROSIS PU Dataset

For the ROSIS PU dataset, we took approximately 17% samples of each class as training
set and 83% samples as testing set from a total of 20,075 samples. The detailed information
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of the training and testing samples is presented in Table S3. The ground-truth image is
used to select the training and testing samples for classification, as shown in Figure 4.
Table 11 shows the results of the OA, AA, Kappa, and F1 score of each method. Performing
on the same number of selected features, we found a classification accuracy of 98.35% by
the proposed MNF-nCCREmRMR method. This table also demonstrates that the proposed
MNF-nCCREmRMR method outperformed all the performance measurement metrics. Based
on the two-dimensional line graph presented in Figure 8, it can be seen that as the number
of features increases, the overall classification accuracy also increases.

Table 11. Classification performance measure (%) on the ROSIS PU HSI.

Class PCA MNF MI CCRE nCCRE PCA-MI PCA-
CCRE

MNF-
MI

MNF-
CCRE

MNF-
nCCRE

MNF-
nCCREmRMR

Asphalt 99.70 96.89 93.42 93.45 93.46 99.71 99.71 99.71 99.27 99.71 99.70
Meadows 90.34 92.25 73.73 75.29 75.29 99.32 99.41 99.86 97.70 99.89 100

Gravel 86.53 87.74 82.10 82.08 82.08 88.24 88.24 89.73 99.87 89.77 89.83
Tree 83.10 83.10 67.80 67.89 80.39 84.09 84.09 84.71 92.84 83.72 84.03

metal sheets 90.85 93.01 68.23 68.47 69.04 98.55 98.56 95.13 92.18 92.18 93.45
Bare soil 88.01 88.05 62.60 62.60 64.10 91.41 94.71 96.04 96.29 99.62 100
Bitumen 99.52 99.36 87.89 91.82 91.88 99.36 99.36 99.52 99.52 100.00 100
Blocking

Bricks 85.57 87.65 69.30 69.30 69.30 95.42 94.68 94.68 98.08 98.09 100

Shadow 86.96 86.96 86.96 86.96 86.96 100.00 100.00 100.00 100.00 100.00 100

AA 90.06 90.56 76.89 77.54 79.17 95.12 95.42 95.49 97.31 95.89 96.33
OA 90.87 91.35 75.48 76.13 76.90 96.12 96.58 96.89 97.62 97.88 98.35

KAPPA 88.88 89.46 70.11 70.94 71.86 95.28 95.84 96.22 97.09 97.42 98.00
F1 Score 90.47 91.24 76.94 77.99 79.21 95.66 95.64 95.87 96.62 96.21 97.39
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We next calculated the OA on the three datasets in various numbers of training and
testing ratios to confirm the robustness of the suggested feature extraction techniques in
comparison to the investigated state-of-the-art feature reduction techniques. Table 12 shows
the OA of the three datasets in 10%, 20%, and 30% of training samples. The results also
reveal that the proposed method for feature extraction was better that the investigated
state-of-the-art feature reduction methods for each of the three HSI datasets. On the other
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hand, we tested the investigated and proposed methods utilizing the three classifiers
(Naïve Bayes classifier, decision tree classifier, and SVM) for three datasets are presented
in Tables 13–15, respectively. From these tables’ data, we can conclude that the proposed
methods outperform the studied methods.

Table 12. OA measure using three different training: testing ratios on the three HSI datasets.

Training
Size Dataset PCA MNF MI CCRE nCCRE PCA-

MI
PCA-
CCRE

MNF-
MI

MNF-
CCRE

MNF-
nCCRE

MNF-
nCCREmRMR

10%
IP 89.94 89.29 67.39 67.95 68.18 89.21 90.12 90.09 91.10 91.39 93.21

WDM 89.89 90.08 84.57 85.17 85.31 91.85 91.89 94.38 95.75 95.56 97.39
PU 90.05 90.15 74.14 75.19 74.08 95.32 95.51 94.29 96.14 96.29 97.79

20%
IP 89.28 90.50 68.57 70.18 70.89 90.54 91.39 91.94 94.39 94.67 95.39

WDM 91.41 91.95 86.35 86.74 86.94 93.12 93.58 95.08 96.47 96.25 98.24
PU 90.87 91.35 75.48 76.13 76.90 96.12 96.58 96.89 97.62 97.88 98.35

30%
IP 91.23 91.58 70.56 72.61 72.97 91.86 92.01 93.80 95.22 95.94 96.92

WDM 92.50 93.36 87.27 87.67 88.65 94.54 94.97 96.12 97.56 97.93 99.71
PU 91.09 91.95 76.20 77.07 77.61 96.79 96.96 97.09 97.93 98.05 98.94

Table 13. Classification performance measure (%) on the AVIRIS IP HSI for different dimension
reduction methods and classification methods.

Classifiers Class PCA MNF MI CCRE nCCRE PCA-
MI

PCA-
CCRE

MNF-
MI

MNF-
CCRE

MNF-
nCCRE

MNF-
nCCREmRMR

Naïve
Bayesian
Classifier

AA 80.02 83.65 68.59 69.921 67.86 83.72 86.05 87.38 87.69 88.50 88.05
OA 81.38 83.01 67.95 68.126 67.96 82.55 86.17 86.41 87.04 88.20 89.04

KAPPA 82.33 84.24 67.66 69.33 68.09 82.73 86.09 88.63 87.02 87.31 88.89
F1 Score 80.20 83.32 68.53 68.20 68.31 81.33 86.04 86.82 87.27 86.89 87.39

Decision
Tree

AA 85.54 85.24 70.59 73.921 75.27 87.24 88.34 90.91 92.57 93.24 93.87
OA 88.22 87.12 70.95 73.126 75.31 88.91 87.87 91.27 93.35 93.54 94.68

KAPPA 89.06 85.68 71.66 74.01 74.28 87.34 89.68 91.39 92.64 92.21 93.25
F1 Score 84.07 86.72 70.53 73.20 72.30 87.27 88.18 90.28 91.18 93.31 92.58

SVM

AA 87.97 89.35 72.59 70.921 76.86 89.72 89.05 91.7233 93.98 95.31 95.30
OA 92.38 93.04 72.95 75.126 75.96 93.55 93.63 94.90 96.72 96.90 97.44

KAPPA 91.42 92.17 69.66 72.33 73.09 92.73 92.82 94.3 96.3 96.50 97.10
F1 Score 88.07 89.13 73.53 73.20 77.31 89.33 89.04 91.90 94.7 94.70 96.3

Table 14. Classification performance measure (%) on the HYDICE WDM HSI for different dimension
reduction methods and classification methods.

Classifiers Class PCA MNF MI CCRE nCCRE PCA-
MI

PCA-
CCRE

MNF-
MI

MNF-
CCRE

MNF-
nCCRE

MNF-
nCCREmRMR

Naïve
Bayesian
Classifier

AA 82.09 82.69 66.87 67.58 67.34 86.54 86.97 88.37 87.22 88.41 88.57
OA 84.64 85.72 68.39 69.29 69.38 88.23 88.56 89.21 88.19 89.57 89.86

KAPPA 82.64 83.66 65.28 67.64 68.39 86.35 87.58 86.41 85.31 87.24 88.94
F1 Score 81.47 81.47 65.44 67.38 67.46 83.57 86.34 87.85 83.54 87.28 89.07

Decision
Tree

AA 90.29 88.43 82.58 83.34 84.98 93.39 91.58 92.87 93.39 94.09 96.65
OA 91.07 90.97 84.24 84.71 85.34 95.47 93.42 94.49 95.27 95.33 97.39

KAPPA 88.65 87.29 80.39 82.98 83.48 93.74 91.79 92.39 92.74 95.03 96.74
F1 Score 88.47 86.98 79.73 82.75 81.39 94.09 90.98 91.85 92.45 94.17 96.29

SVM

AA 92.08 84.09 87.61 81.66 88.10 93.65 95.32 87.89 92.18 97.12 99.50
OA 92.50 93.36 87.27 87.67 88.65 94.54 94.97 96.12 97.56 97.93 99.71

KAPPA 89.57 90.73 82.27 82.93 84.18 92.37 92.97 94.60 96.60 97.06 99.60
F1 Score 92.41 84.84 87.87 81.75 89.28 93.55 95.38 90.56 94.44 97.24 99.44
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Table 15. Classification performance measure (%) on the ROSIS PU HSI for different dimension
reduction methods and classification methods.

Classifiers Class PCA MNF MI CCRE nCCRE PCA-
MI

PCA-
CCRE

MNF-
MI

MNF-
CCRE

MNF-
nCCRE

MNF-
nCCREmRMR

Naïve
Bayesian
Classifier

AA 80.99 78.18 62.22 61.31 64.22 83.10 82.39 84.41 84.44 94.39 85.99
OA 81.08 80.98 64.25 65.87 67.57 85.47 85.45 85.17 86.48 86.27 87.87

KAPPA 80.45 79.45 61.34 66.20 60.97 82.36 82.64 83.36 83.60 84.21 84.95
F1 Score 79.33 78.33 61.18 64.39 61.33 81.44 81.22 82.95 83.25 81.59 82.33

Decision
Tree

AA 86.19 86.3 70.09 71.47 71.31 91.33 92.14 92.31 93.19 94.69 95.29
OA 88.91 88.32 73.71 74.34 74.97 93.27 94.81 94.52 94.24 96.08 96.28

KAPPA 85.33 85.70 70.01 70.66 70.54 91.47 92.34 92.47 93.37 95.38 95.08
F1 Score 83.97 85.44 69.95 71.01 70.11 90.65 91.19 92.39 92.85 94.29 94.27

SVM

AA 90.06 90.56 76.89 77.54 79.17 95.12 95.42 95.49 97.31 95.89 96.33
OA 90.87 91.35 75.48 76.13 76.90 96.12 96.58 96.89 97.62 97.88 98.35

KAPPA 88.88 89.46 70.11 70.94 71.86 95.28 95.84 96.22 97.09 97.42 98.00
F1 Score 90.47 91.24 76.94 77.99 79.21 95.66 95.64 95.87 96.62 96.21 97.39

4.8. Features Scatter Plot Analysis

Here, we consider the feature space analysis approach using the scatter plot of the
first two selected features to evaluate the robustness of the proposed method (MNF-
nCCREmRMR). Figure 9 depicts the feature space for the AVIRIS IP dataset, utilizing the
conventional approaches such as MNF, MNF-MI, MNF-CCRE, and proposed method. We
used eight classes in the scatter plot to keep things simple. In this case, the standard
MNF and MNF-MI methods exhibited greater class overlap, as shown in Figure 9a,b. As
opposed to these studied methods, the proposed method MNF-nCCREmRMR demonstrates
that the classes are more visually separable. Similarly, the feature space for the traditional
MNF, MNF-MI, and MNF-CCRE, and the suggested approach on the WDM HYDICE
dataset, is also depicted in Figure 10. As shown in Figure 10a,b, the classes are more
intimately connected, but in the proposed method shown in Figure 10d, the class samples
are more distinguishable than in the investigated methods. Additionally, it demonstrates
how applying normalized CCRE with the mRMR approach to MNF data enhances the
dominance of the selected features.
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4.9. Extended Analysis

Each method’s execution time is analyzed and listed in this section for comparison. On
a desktop computer running the Microsoft Windows 10 operating system and powered by
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an Intel Core i5 3.2 GHz processor, the experiments were carried out using MATLAB R2014b.
Table 16 presents the execution time of each method for different datasets, from which
it can be seen that MNF-nCCREmRMR is computationally comparable with the existing
methods. In addition, the robustness of the proposed method MNF-nCCREmRMR for the
multiclass classification was assessed using the error matrices. Tables S4–S6 show the error
matrices using the AVIRIS IP, HYDICE WDM, and ROSIS PU datasets, respectively. All
three error matrices illustrate that almost all classes are correctly predicted except very few
of them by the proposed method.

Table 16. The computational time (in second) of each method on AVIRIS IP, HYDICE WDM, and
ROSIS PU datasets.

Dataset Stage PCA MNF MI CCRE PCA-MI PCA-CCRE MNF-MI MNF-
CCRE

MNF-
nCCREmRMR

AVIRIS IP
Transformation 0.11 0.12 — — 0.11 0.11 0.12 0.12 0.12

Feature Selection — — 1.56 1.38 1.51 1.37 1.6 1.45 1.58
Total Cost 0.11 0.12 1.56 1.38 1.62 1.48 1.72 1.57 1.7

HYDICE
WDM

Transformation 0.17 0.18 — — 0.17 0.17 0.19 0.19 0.19
Feature Selection — — 2.1 1.83 2.40 0.83 2.6 1.95 2.1

Total Cost 0.17 0.18 2.1 1.83 2.57 2.0 2.79 2.14 2.29

ROSIS PU
Transformation 0.12 0.10 — — 0.12 0.12 0.10 0.10 0.10

Feature Selection — — 1.88 1.49 1.91 1.52 2.1 1.6 1.78
Total Cost 0.12 0.10 1.88 1.49 2.03 1.64 2.2 1.7 1.88

5. Conclusions

This study proposes a dimension reduction strategy that combines feature extraction
and feature selection in order to find a relevant subset of characteristics for efficient HSI
classification. We specifically made use of the widely utilized feature extraction technique
MNF and the information theoretic approach CCRE for feature selection. The normalized
CCRE was employed alongside the mRMR-driven feature selection criterion to enhance the
quality of the chosen feature. The KSVM classifier was used to analyze the performance of
the produced feature subsets on three real HSIs. The testing results showed a considerable
improvement in the quality of the selected features and classification accuracy as well. The
results manifest that applying normalized CCRE to the MNF data with mRMR criteria
results in the subsets of informative features. The experiments also manifest that, in
comparison to the traditional MNF, feature selection using normalized CCRE after the
MNF transformation improves the grade of the selected features. This is the reason that
the proposed approach (MNF-nCCREmRMR) selected the subset of less noisy features,
provided relevant details about the appropriate objects, and ignored the redundant features.
The improvement of classification accuracy and feature space analysis demonstrates the
robustness of the proposed technique.

Future Work

Although, deep learning is now a trendy tool to analyze HSI but requires a large
amount of labeled data, which can be costly and time-consuming. Therefore, in future,
MNF-nCCREmRMR could be coupled with deep-learning-based approaches to extract both
spectral and spatial characteristics of HSIs for further improving the classification perfor-
mance which overcome the limitation of deep learning based HSI analysis.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs15041147/s1, Table S1. Training and testing samples of the
AVIRIS IP dataset. Table S2. Training and testing samples of the HYDICE WDM dataset. Table S3.
Training and testing samples of the ROSIS PU dataset. Table S4. Error matrix using the MNF-
nCCREmRMR for the IP dataset. Table S5. Error matrix using the MNF-nCCREmRMR for the WDM
dataset. Table S6. Error matrix using the MNF-nCCREmRMR for the ROSIS PU dataset.

https://www.mdpi.com/article/10.3390/rs15041147/s1
https://www.mdpi.com/article/10.3390/rs15041147/s1
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