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Abstract: Forest inventory parameters play an important role in understanding various biophysical
processes of forest ecosystems. The present study aims at integrating Terrestrial Laser Scanner (TLS)
and ALOS PALSAR L-band Synthetic Aperture Radar (SAR) data to assess Aboveground Biomass
(AGB) in the Barkot Forest Range, Uttarakhand, India. The integration was performed to overcome
the AGB saturation issue in ALOS PALSAR L-band SAR data for the high biomass density forest of
the study area using 13 plots. Various parameters, namely, Gray-Level Co-Occurrence Matrix (GLCM)
texture measures, Yamaguchi decomposition components, polarimetric parameters, and backscatter
values of HH and HV band intensity, were derived from the ALOS SAR data. However, TLS was
used to obtain the diameter at breast height (dbh) and tree height for the sample plots. A total of
23 parameters was retrieved using TLS and SAR data for integration with the LiDAR footprint. The
integration was performed using Random Forest (RF) and Artificial Neural Network (ANN). The
statistical measures for RF were found to be promising compared with ANN for AGB estimation.
The R2 value obtained for the RF was 0.94, with an RMSE of 59.72 ton ha−1 for the predicted biomass
value. The RMSE% was 15.92, while the RMSECV was 0.15. The R2 value for ANN was 0.77, with an
RMSE of 98.46 ton ha−1. The RMSE% was 26.0, while the RMSECV was 0.26. RF performed better in
estimating the biomass, which ranged from 122.46 to 581.89 ton ha−1, while uncertainty ranged from
15.75 to 85.14 ton ha−1. The integration of SAR and LiDAR data using machine learning shows great
potential in overcoming AGB saturation of SAR data.

Keywords: aboveground biomass; Terrestrial Laser Scanner; Light Detection and Ranging; ALOS
PALSAR; Random Forest; Artificial Neural Network

1. Introduction

Forest productivity estimation is important for forest management and ecosystem
services monitoring [1]. Destructive sampling techniques are restricted due to labor inten-
siveness, tedious work, and unsuitability to inaccessible terrain. The emerging techniques
of remote sensing are progressively superseding traditional methods. Dataset products
from Terrestrial Laser Scanners (TLSs), Airborne Laser Scanning (ALS), Unmanned Aerial
Vehicles (UAVs), and other space-borne (GEDI, ICESat-2) platforms, in combination with
various machine learning algorithms, have become the preferred options for assessing
and mapping aboveground biomasses (AGB) [2,3]. Machine learning algorithms, such as
Random Forest (RF) and Artificial Neural Network (ANN) have been used to improve the
saturation of biomass value ranges caused by data restrictions [4,5]. The primary aim is to
reduce uncertainty in biomass assessment using remote sensing.
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Data fusion and integration can play a crucial role in mitigating the uncertainty of
biomass [6,7]. Used together, Synthetic Aperture Radar (SAR) and Light Detection and
Ranging (LiDAR) overcome the saturation of biomass, with the specific bands of SAR
data reducing result biases [8]. Previously, biomass was estimated based on empirical
models using PolInsar and PolSAR techniques, which sometimes produced uncertainty
of the biomass [9,10]. Subsequently, the use of LiDAR became ubiquitous; however, the
occlusion of trees in a plot can occur due to different sets of scanning positions when using
ground-based static LiDAR systems [11]. Thus, the resultant uncertainty is also reflected in
the results. The detection of trees in forests also depends on the type and density of the
forest as well as the scanning positions of the TLS [12].

The estimation of Aboveground Forest Carbon Stocks (AFCS) is always challenging in
tropical regions due to structural complexity and high species diversity. ALOS PALSAR
texture information resolves AFCS estimation issues in tropical regions [13]. Previously,
empirical modeling, such as Extended Water Cloud Models (EWCMs) and Water Cloud
Models (WCMs), showed the best correlation among forest parameters and HV backscatter
values as well as volume scattering values [14]. The integration of different platform
datasets yields promising results as well as complex information. Allometric modeling and
biomass calibration and validation can be done using TLS and SAR data [15].

The aim of this study is to investigate other tree attributes derived with TLS and ALOS
PALSAR and examine tree attribute correlations with biomass using machine learning.
The objective is to overcome biomass saturation over high-density forests using RF and
ANN. RF has been used for the estimation of biomass using airborne LiDAR data in
moderately dense forests, taking into consideration the correlation between canopy cover
and biomass [16–18]. Furthermore, other vegetation indices, such as NDVI, have been
explored and exhausted to find the best possible correlation and prediction of biomass.
Moreover, machine learning algorithms, such as RF and ANN, have been used to predict
biomass using different combinations of tree metrics [19,20].

2. Materials and Methods
2.1. Study Area

The study area selected for this research was the Barkot Forest Range of Dehradun
Forest division, Uttarakhand, India. It lies at a latitude of 30◦03′52′′ to 30◦10′43′′N and a
longitude of 78◦09′49′′ to 78◦17′09′′E. The altitude ranges from 340 m to 560 m above Mean
Sea Level (MSL). The study area is in the foothills of the Himalayas and is surrounded by
the lesser Himalayas to the north and the Shivalik range to the south. The total area of
the forest is 84.96 km2. The forest type is tropical, moist, deciduous. It is dominated by
Shorea robusta (Sal), with co-associated tree species such as Mallotus philippensis (Rohini).
The topography of the study area varies from plain to undulating. As the depth of the soil
increases, the consistency changes from non-sticky and friable to sticky and firm. A lower
horizon of the soil profile is sticky, firm, compact, and comparatively hard [21,22]. The
study area is shown in Figure 1.
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handheld GPSs. Field sampling was done at the LiDAR footprint using a stratified ran-
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Figure 1. Study area [23].

2.2. Above-Ground Biomass Inventory

Tree inventory data were collected by demarcating 13 plots of 31.5 m × 31.5 m. The
instruments used for the field data collection were measuring tape, rangefinders, and
handheld GPSs. Field sampling was done at the LiDAR footprint using a stratified random
sampling method. The sampling locations are shown in Figure 2. Tree parameters, such as
dbh and tree height, were measured and the geo-location of each tree was recorded. The
CBH (Circumference at Breast Height) was converted to dbh using the equation:

dbh =
CBH

π
(1)
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The aboveground biomass was calculated using national species-specific volumetric
equations. The tree volume was calculated for all the trees in the plot and then used to
calculate biomass using the following equation:

Biomass = V ∗ S ∗ 1.59 (2)

where V is stem volume, S is specific wood gravity, and 1.59 is biomass expansion factor.
The biomass was calculated and regressed with the field estimated biomass for all the
trees [24].

2.3. Terrestrial Lidar Data Acquisition and Processing

The point cloud of trees was generated using a terrestrial static LiDAR system (TLS
Riegl VZ-400), which works in the range of 1.5 m to 600 m. The horizontal and vertical
angles considered were 0◦ to 360◦ and 30◦ to 130◦, respectively. The angular resolution
selected for the data acquisition was 0.03◦. The TLS data processing was conducted using
RiSCAN Pro software 2.0. The TLS data were acquired using the scheme shown in Figure 3a.
A total of four scans was completed, of which three were side scans and one was a center
scan. Multiple scans were conducted to minimize the occlusion effect in the plots due
to variability in the position and density of trees. Tags and retro-reflectors were used to
identify the trees when segmenting out the plot and individual trees, as shown in Figure 3b.
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Figure 3. Representation of (a) scheme of the plot scanned with TLS and retro-reflectors; (b) scanned
plot with the location of reflectors (red dot); (c) extracted plot and single tree; and (d) trunk of the tree
with noise, and after the application of a noise filter [23].

For alignment between any two scans, a minimum of three common tie points was
required. Figure 2 shows the scanned plot and the location of the reflectors. Iron rods were
placed at the four corners of the plot as a reference to make extraction of the plot from the
merged point cloud data easier. After extracting the plots, individual trees were identified
and segmented out from the plots, as shown in Figure 3c. Thereafter, noise filtering was
conducted to remove outliers from the dataset, as represented in Figure 3d.
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Retrieval of Tree Parameters Using RANSAC Algorithm

The Random Sample Consensus (RANSAC) shape detection algorithm was used to
estimate the dbh and height of the trees in the plot [25]. The following parameters were
used for this purpose:

(1) D: Dataset with inliers and outliers, which were later characterized and removed
using the RANSAC algorithm.

(2) MSS (Minimal Sample Set) of points: These were formed using random mathematical
shape parameters out of all the points entered as D, finally yielding a model with
definite shape parameters.

(3) k: The points which are required for the MSS.
(4) Theta: Parameters obtained from the MSS points, such as height, radius, center, etc.
(5) CS: The consensus set of points with an error less than the threshold error.
(6) δ: The error threshold, which is responsible for the points that belong to the model

or not.

To obtain the dbh and height of the tree, the tree point clouds were fitted into a
cylinder primitive [24]. A cylinder is defined by its height, axis, and radius. The points
obtained from the MSS were used to form the CS of points. The cylinder was fitted to
ensure no outlier points. The diameter of trees was calculated by the radius, using the
following equation:

d = 2r (3)

where “r” is the radius and “d” is the diameter of the tree.
The height of the tree was calculated by setting the lowest point of the tree cloud. After

allocating the tree base position, the XY position was defined by computing the median
coordinates of all the points that lay above the lowest tree point cloud to a user-defined
height. The z-coordinate was defined using the points that lay closest to the XY position of
the terrain.

2.4. ALOS PALSAR Data Processing

The PALSAR sensor was launched using the Japan Aerospace Agency (JAXA) and an
onboard ALOS-1 (Advanced Land Observation Satellite) in 2006. This active microwave
sensor has L-band technology and can acquire an image in both Fine Beam Single (FBS)
and Fine Beam Dual (FBD) modes. The range resolution is between 0◦ and 60◦. The image
used in this study was acquired in April 2018 in quad-polarization (HH + HV + VH + VV).
The SAR data was mutilooked to obtain a pixel resolution of 18.42 m.

The pre-processing of the data was conducted, including slant range to ground range
conversion and generation of amplitude image using imagery (Q) and real (I) components
of the image in Equation (4). This was further used in the power image generation in
Equation (5). Speckle filtering was required to improve the visualization of the image,
although this was at the expense of losing some pixel information. The filter used was the
Boxcar filter. Another step was multilooking to obtain a square pixel. The final step was
linear to backscatter image conversion, as shown in Equation (6).

Amplitude = 2
√
(I)2 + (Q)2 (4)

Power = (Amp)2 (5)

σ0
i,j =

DNi,j

K

(
1

G
(
θi,j
)2

)(
R(i,j)

R(re f )

)4

sin
(
αi,j
)

(6)

where, the pixel intensity of the power image at the ith image line and the jth image column
was DNi,j= I2 + Q2. K, keeping absolute calibration constant. σ0

i,j, Sigma nought at image
line and the column “i, j” [26]. G

(
θi,j
)
, two-way antenna gain at the distributed target
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look angle corresponding to the pixel at image line and the column “i, j”, as shown in
Equation (7).

G
(
θi,j
)

= 4π
s

λ2 (7)

where, θi,j is the look angle corresponding to the pixel at the image line and the column
“i, j”. R(i,j) is the slant range distance to the pixel at the image line and the column “i, j”.
R(re f ) is the reference slant range distance (800 km for all beams and modes). αi,j is the
incidence angle at the pixel of the ith row and the jth column. The backscatter cross-section
measures the object’s reflective strength, which is known as sigma (σ). This cross-section is
then represented in the logarithmic scale, i.e., a decibel (dB). The backscatter intensity can
be observed in the linear to decibel conversion of the image [27], as shown in Equation (8).

dB = log10 σ0i, j (linear) (8)

Decomposition of Scattering Components

The decomposition of the image was done using the Yamaguchi decomposition algo-
rithm. Initially, the 2 × 2 scattering matrix was generated, while the coherency matrix was
generated by multiplying the scattering matrix to lexicographic basis scattering vectors
with its transpose [28]. The scattering matrix is depicted as follows:[

ES
H ES

V

]
= [SHH SHV SVH SVV ]

[
EI

H EI
V

]
(9)

The lexicographic basis scattering vector is represented as follows:

KL =
[
SHH

√2SHV SVV

]
(10)

The Pauli format of the scattering vector is represented as follows:

KP =
1
√2

[SHH + SVV SHH − SVV 2SHH ] (11)

The Yamaguchi equation is represented as follows:

〈[T]〉 = fs〈[T]〉sur f ace + fd〈[T]〉double−bounce + fv〈[T]〉volume + fc〈[T]〉helix (12)

where, 〈[T]〉 is the coherency matrix, 〈[T]〉surface, 〈[T]〉double-bounce, 〈[T]〉volume, 〈[T]〉helix, are the
coherency matrices for surface, double-bounce, volume, and helix scattering, respectively.
The fs, fd, fv, fc are their respective expansion coefficients. The volume scattering is modeled
using the canopy of the tree, which includes the branches and the leaves. The modeled
equation can be shown as follows:

〈[T]〉volume =
1
4
[2 0 0 0 1 0 0 0 1 ] (13)

The surface scattering component was obtained for backscattered energy emerging
from the ground only, as shown in the matrix below:

〈[T]〉sur f ace =
[
1 β∗ 0 β |β|2 0 0 0 0

]
(14)

where β, is equal to Rh−Rv
Rh+Rv

, Rh is the horizontal polarization and Rv is the vertical polariza-
tion coefficient of Fresnel’s reflection. The double-bounce scattering was obtained from the
scattering from the tree trunk and the surface of the ground.

〈[T]〉double−bounce =
[
|α|2 α 0 α∗ 1 0 0 0 0

]
(15)
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where α = SHH+SVV
SHH−SVV

and |α| < 1. Finally, the helix scattering component was also considered,
derived from the helical scatter.

〈[T]〉helix =
1
2
[0 0 0 0 1 ± j 0 ± j 1 ] (16)

The polarimetric parameters used were Biomass Index (BMI), Canopy Structure Index
(CSI), Volume Scattering Index (VSI), Radar Vegetation Index (RVI), cross-pol HH/VV ratio,
cross-pol VV/VH ratio, and co-pol HH/VV ratio. The GLCM textural parameters were
also used for the regression analysis of the biomass [29].

2.5. Prediction of AGB Using RF and ANN

The RF and neural net package were used in this study. RF was used to generate
training and testing data using multiple decision trees. The model was trained using
training datasets, while the prediction was made using testing datasets. RF and ANN
were implemented in R software. Two input parameters were required, namely, ntree,
the bootstrap samples used for creating several decision trees, and mtry, the number of
variables provided for each tree for random sampling. The neural net was developed with
several neurons, and these neurons were trained using the dataset provided. The hidden
layer helped to learn the nodes from the previous layer and neurons to assign weights. The
workflow is depicted in Figure 4.
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2.6. Mapping Spatial Distribution of AGB

The spatial distribution of AGB was based on the integration of TLS and ALOS
PALSAR L-band data regression outputs using RF and ANN. The detailed workflow is
depicted in Figure 5.
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3. Results
3.1. Co-Registration of Scans

The 13 plots were scanned using TLS at four different scan positions, namely, center
and three side scans. The scans were co-registered using the center scan fixed, while the
remaining three scans were registered to the center scan. The RMSE obtained for the center
to scan positions 1, 2, and 3 was 0.03, 0.017, and 0.029, respectively, for a single plot. The
scan position pattern is depicted in Figure 3a.

3.2. TLS-Derived Parameters and Regression Analysis

Parameters such as dbh, dbh2, and the height of the trees were retrieved using TLS
point cloud. The correlation was established between field-estimated biomass and the TLS-
derived parameters. As can be seen in Figure 6, the R2 value obtained between height and
biomass was 0.63; the logarithmic relation between height and biomass was also performed
to improve the R2 value to 0.88. The R2 value obtained for dbh and biomass was 0.96. This
value was enhanced by transforming the value of dbh. The transformation of dbh to dbh2

changes the relation between dbh and biomass, with an R2 value of 0.98.
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3.3. ALOS PALSAR L-Band Parameter Retrieval
3.3.1. Yamaguchi Decomposition

The correlation analysis was conducted using all three decomposition components of
Yamaguchi, derived from ALOS PALSAR L-band data. It was observed that the R2 value
between double-bounce and biomass was 0.55, while the correlation value obtained for the
surface scattering and biomass was 0.05. The R2 value obtained for the volume scattering
and biomass was 0.20. Therefore, a better correlation between the double-bounce and
biomass can be inferred from the observed data. This seems to correlate with the field data
given that the data was acquired in April, which is a leaf off-season in the study area. Thus,
the backscatter was mostly from the woody portion of the trees, whereas less backscatter
was observed from the canopy of the trees. The decomposition map is shown in Figure 7.
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3.3.2. Regression Analysis with Polarimetric Parameters

The polarimetric parameters used in this study were CSI, RANSAC shape detection,
VSI, BMI, cross-pol HH/HV ratio, co-pol HH/VV ratio, cross-pol VV/VH ratio and, RVI.
The R2 value obtained for the CSI and biomass was 0.85, which showed a higher correlation
between the canopy and the biomass. The ecosystem comprises more vertical and woody
structures. The correlation R2 obtained between VSI and biomass was 0.49, which clearly
showed that the thickness of the canopy was less; hence, VSI is less significant in the
biomass assessment [30]. The R2 value obtained for BMI and biomass was 0.58 and 0.59 for
RVI and biomass. This emphasizes the greater significance of RVI over BMI.

3.3.3. Regression Analysis with Backscatter and Textural Parameters

The biomass correlation was carried out using 7 textural variables, namely, mean,
entropy, correlation, homogeneity, second moment (ASM), contrast, and variance. The
backscatter values for HH and HV intensity were also considered. The regression analysis
showed both a negative and a positive correlation. This is because in the modeling,
both positive and negative correlations were useful in regulating the significance of the
independent variables over the dependent variables. As can be seen in Figure 8, the positive
R2 value was obtained with entropy and variance. The R2 value for the entropy was 0.21.
The R2 value obtained for the variance and biomass was 0.52. The degree of randomness
and variability of the area was more relevant, whereas the negative R2 value obtained was
for ASM and mean. Therefore, textural parameters such as ASM, entropy, variance, and
mean were significant in predicting the biomass of a natural forest.
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The relation between the backscatter values for HH and HV intensity and the biomass
showed that the R2 value obtained for HH intensity and biomass was 0.40, while 0.49
was obtained for HV intensity. Log transformation was then conducted to enhance the
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correlation between the variables HH and HV intensity with the biomass. Thus, the R2

value increased to 0.67 and 0.77 for HH and HV intensity with the biomass, respectively.

3.3.4. Regression between ALOS PALSAR L-Band and TLS-Derived Variables

The double-bounce and volume scattering were regressed with the height obtained
using point cloud. The double-bounce scattering component was found to be more signifi-
cant. As can be seen in Figure 9, the relation was not linear. The regression between height
and volume scattering was log-transformed to better fit with an R2 value of 0.40, while the
double-bounce and height were transformed to a higher order to obtain a better correlation
with the R2 value of 0.53.
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The double-bounce scattering component showed a correlation of 0.32 with dbh,
which was a high-order relation, while dbh and volume scattering were log-transformed,
yielding an R2 value of 0.44. A linear relation was found between dbh2, double-bounce, and
the volume-scattering components. The correlation value was enhanced to 0.59 with the
high-order polynomial relation for dbh2 and double-bounce, while the dbh2 and volume
scattering were log transformed to show some relation, yielding an R2 value of 0.46. Here,
the double-bounce showed a better correlation with dbh2.

3.3.5. Integration of Outputs of ALOS PALSAR and TLS
RF Regression Approach

Based on the correlation values of the 19 variables, the RF regression approach was
used to integrate the TLS and SAR parameters. The % IncMSE showed the mean square
error in the absence of any independent variables, while the IncNodePurity defined the
purity of nodes at ntree in the presence of any important variables, as shown in Figure 10a.

In Figure 10c, the range of error is shown as per the number of trees. As the number of
trees increased, the error of the graph decreased. Training datasets and RMSE were used to
optimize the parameter (ntree, mtry) values and found values that were used for the best
prediction of the dependent variable (AGB). In Figure 10d, the prediction and observed
biomass values were plotted based on the best RMSE and R2 values, which were 38.95 and
0.94, respectively. Parameters such as ntree and mtry were optimized repeatedly to obtain
the best results and reduce errors.
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Figure 10. Visualization of (a) % IncMSE and IncNodePurity of the variables used to train the model;
(b) out-of-bag (OOB) error while training the data; (c) estimated error based on different no. of trees,
(d) error and RMSE of the number of variables and trees in the RF model; and (e) scatterplot for the
observed and predicted biomass value (ton/ha).

A graph between the RMSE and the number of variables was plotted to obtain the
cross-validation of the number of variables taken for the estimation of the dependent
variable. The forest error rate was calculated using Out-of-Bag (OOB) error analysis. OOB
error was calculated for four mtry values. The mtry value for which OOB fewer errors
were found was 4, while the highest probability of error was found for mtry 16. Using
this method, each tree was tested on 1/3rd of the number of observations and not used in
building the tree, indicating that the high strength of the tree showed a lower error. The
maximum error obtained for mtry was 16 due to the high correlation between trees. The
lowest error was obtained for mtry 4 due to the lesser correlation between the trees.
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ANN Regression Approach

ANN were trained and tested with 23 independent variables. The variables were
divided based on the number of weights assigned to each variable. The hidden layers were
optimized to obtain a better R2 and RMSE. The negative weight assigned to any variable
indicated the least contribution of that variable. The predicted and observed values of
biomass are shown in Figure 11. The R2 value obtained for the ANN was 0.77. The number
of hidden layers was fitted to ensure maximum accuracy for the prediction. Several hidden
layers were tried to ensure minimum RMSE and maximum accuracy for the model. Figure 3
shows the different number of hidden layers and their accuracy at each level. Based on
the R2 and RMSE of the model, an analysis was conducted and spatial distribution of
biomass was carried out. The R2 value for RF was 0.94, the RMSE was 59.72 ton ha−1,
and the percentage RMSE was 15.97. The R2 value of ANN was 0.77, with an RMSE of
98.46 ton ha−1 and a percentage RMSE of 26.32, as shown in Table 1. Based on this analysis,
the RF was found to be the best model for predicting biomass.
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Table 1. Statistical parameters for the models.

Sr. No. Model R2 RMSE (ton ha−1) RMSE% RMSECV

1 RF 0.94 59.72 15.97 0.15

2 ANN 0.77 98.46 26.32 0.23

Spatial Distribution and Uncertainty of Biomass

The spatial distribution of biomass was conducted with RF predictions over the region
of the Barkot Forest Range. The variable used for the spatial distribution encompassed
the ALOS PALSAR GLCM textural variables as well as the polarimetric and TLS-derived
parameters. The predicted biomass range was between 122.46 and 581.89 ton ha−1.

The uncertainty distribution of AGB over the Barkot Forest Range was conducted
using the bootstrap resampling method and the Monte Carlo approach. The uncertainty
ranged from 15.75 to 85.14 ton ha−1. The percentage of uncertainty obtained was 20.54%.
The uncertainty map of the AGB and biomass spatial distribution is shown in Figure 12.
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Figure 12. Visualization of the (a) spatial distribution of AGB (t/ha) and (b) uncertainty of AGB (t/ha).

4. Discussion

In this study, we used terrestrial LiDAR (TLS) and ALOS PALSAR L-band derived
variables to address the biomass saturation problem in forest regions. This method can be
applied mainly in temperate forest zones, but can also be used in other forest-type regions.
The RF and ANN model training was carried out using the calibration data. Previous
research has shown that biomass value improvisation can be achieved by integrating
different datasets or parameters derived from satellite data [19].

It has been shown that machine learning algorithms such as RF and ANN can esti-
mate AGB with considerable accuracy. Overall, the RF showed promising accuracy when
integrated with different RS (Remote Sensing) datasets over linear regression modeling [31].

The use of integrated data has shown great promise in reducing the underestima-
tion of forest biomass values. Using a single RS dataset to predict biomass can result in
considerable uncertainty [32]. SAR data can be used to estimate biomass, but there is a
problem with the saturation of specific bands as forest density increases [33]. It has been
observed that LiDAR data are more reliable in estimating biomass because they maintain
the precision and accuracy of the predicted biomass. These data have yielded promising
results, with an R2 value of 0.98 and an RMSE of 0.08 Mg [34]. The collective information
obtained from both SAR and LiDAR is key in overcoming the biomass saturation problem
in SAR when using machine learning. This is because several machine learning algorithms
have already been proven to yield the best results in estimating forest biomass.

The ALOS PALSAR-derived variables showed an important correlation with biomass.
The GLCM texture variables showed a potential correlation with biomass, improving the
area’s biomass prediction values. In one study, it was shown that textural information
yields good correlation with biomass, improving the AGB estimation [35]. ALOS PALSAR
polarimetric parameters and Yamaguchi decomposition parameters, such as surface scat-
tering, double-bounce, and volume scattering, were used to establish a correlation with
the biomass. The results revealed that the CSI, RVI, and BMI showed a potentially high
correlation with biomass [36].
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The uncertainty prediction was also performed for the RF model since the quantifica-
tion of uncertainty was required to prove the model’s performance. The uncertainty in the
spatially distributed AGB indicated that the pattern of forest distribution plays a crucial
role in modeling biomass. Moreover, the uncertainty value was lower in the high-density
areas of the forest and higher in the low-density areas because of the low correlation of
biomass with tree attributes derived using ALOS.

5. Conclusions

In the current research, biomass was predicted using both ALOS PALSAR L-band and
TLS-derived parameters in the study area of the Barkot Forest Range. Biomass was calcu-
lated using TLS-derived parameters. Correlations were also examined between biomass
and various SAR parameters, such as texture (GCLM co-occurrence), backscattered values,
polarimetric ratios, other SAR indices, and parameters derived using TLS. Thus, the two
models, RF and ANN, were trained with field data. Then, the integration of the above-
mentioned parameters or indices was conducted using two machine learning algorithms,
RF and ANN. The best fit model obtained for the prediction of biomass was RF, with an R2

value of 0.94 and an RMSE of 15.9%. In contrast, the R2 obtained for ANN was 0.77, with
an RMSE of 26.3%. It has been concluded that L-band integration with TLS-derived param-
eters shows great potential for the assessment of forest areas with very high biomass. The
uncertainty can be mitigated using different machine learning algorithms and increasing
the number of variables to train the model.
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