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Abstract: Clouds can block solar radiation from reaching the surface, so timely and effective cloud
cover test and forecasting is critical to the operation and economic efficiency of photovoltaic (PV)
plants. Traditional cloud cover algorithms based on meteorological satellite observation require many
auxiliary data and computing resources, which are hard to implement or transplant for applications
at PV plants. In this study, a portable and fast cloud mask algorithm (FCMA) is developed to
provide near real-time (NRT) spatial-temporally matched cloud cover products for PV plants. The
geostationary satellite imager data from the Advanced Himawari Imager aboard Himawari-8 and
the related operational cloud mask algorithm (OCMA) are employed as benchmarks for comparison
and validation. Furthermore, the ground-based manually observed cloud cover data at seven
quintessential stations at 08:00 and 14:00 BJT (Beijing Time) in 2017 are employed to verify the
accuracy of cloud cover data derived from FCMA and OCMA. The results show a high consistency
with the ground-based data, and the average correlation coefficient (R) is close to 0.85. Remarkably,
the detection accuracy of FCMA is slightly higher than that of OCMA, demonstrating the feasibility
of FCMA for providing NRT cloud cover at PV plants.

Keywords: cloud cover; photovoltaic plants; geostationary satellite

1. Introduction

To reduce global carbon emissions and finally achieve the target of carbon neutraliza-
tion and carbon peaking, the proportion of renewable energy, such as wind and solar power,
in the energy structure of the globe and China will increase significantly in the coming
decades [1,2]. Across the globe, the photovoltaic solar energy capacity has increased by
approximately 40% per year since 2009. Notably, China is the world leader in the total
installed PV capacity and growth rate [3], with approximately 257.1 GW (gigawatts) in
August 2021. The installed PV capacity is rapidly increasing, and the value in 2021 was
255.4% more than that in 2016 in China [4–6]. Therefore, it is foreseeable that the PV
industry will attract more attention and funding in the future.

Theoretically, the generating efficiency of PV plants primarily depends on the down-
ward solar radiance flux on the solar panels, which is highly susceptible to variations of
cloud cover at the PV plant. The scattering and absorption effects of cloud will substantially
attenuate downward solar energy, inducing a decrease in generated electric energy. No-
tably, the considerable uncertainties in the incoming solar energy will cause unpredictable
changes in voltage, resulting in the instability of PV power generation. Consequently, high
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randomicity and intermittency of PV solar energy induced by cloud cover or movement
can have a negative effect on the electric grid system and reduce economic benefits. Hence,
accurate and timely monitoring and forecasting of cloud cover or movement is paramount
for converting solar energy to electric energy by PV plants [7,8]. In addition, it is also
significant and imperative to the transformation of China’s energy structure and carbon
emission reduction.

Various methods have already been developed and applied to detect instantaneous
cloud cover at PV plants. Such a physics-based forecasting method will explicitly consider
the effects of cloud cover when it predicts downward solar energy [9]. The physics-based
method primarily uses atmospheric and surface parameters retrieved from satellite mea-
surements and other data sources, such as reanalysis data. The cloud cover could be
detected and characterized by processing successive sky imageries over PV plants [10,11].
The physics-based method is based on successive imageries from geostationary (GEO)
satellites [12,13] or ground-based sky camera [14] measurements, and therefore can predict
cloud cover or movement at PV plants up to 6 h in advance. Moreover, common numerical
weather prediction (NWP) can also provide an accurate cloud cover forecast from 6 h to
the next couple of days in advance. However, the accuracy of these methods is highly
dependent on the uncertainties of variables used for forecasting [15]. Moreover, the compli-
cated and labile cloud microphysical properties and the limitations in spatial resolution
of satellite imagery and numerical models make it still difficult to accurately predict near
real-time (NRT) cloud cover for a long time in advance. It is of great importance for the safe
operation, control, and management of PV plants to obtain the ahead cloud fraction, which
is also a prerequisite for the grid connection of PV plants [16]. The Advanced Himawari
Imager on board the H8 satellite can provide images with much higher spatial, temporal,
and spectral resolutions. Thus, we should first accurately determine the cloud cover or
fraction at the PV plants. Generally, unique cloud mask or cover algorithms have already
been widely developed and implemented for standalone space-based optical sensors, such
as the Moderate-resolution Imaging Spectroradiometer (MODIS) [17,18], the Advanced
Very-High-Resolution Radiometer (AVHRR) [19], the Advanced Baseline Imager (ABI) on
the GEO satellite platform, the Advanced Geostationary Radiation Imager (AGRI), and the
Spinning Enhanced Visible and Infrared Imager (SEVIRI) [20].

As mentioned above, cloud mask algorithms based on geostationary satellites can
be used to analyze NRT cloud cover. The related algorithms of new-generation geosta-
tionary meteorological satellites are very sophisticated. However, the current operational
cloud mask algorithm aims to generate some backend science products, weather pre-
diction, and data assimilations [21]. Therefore, it is likely to be unsuitable for obtaining
NRT cloud cover at the PV plants. The main problems are as follows: (1) The current
cloud mask or cover algorithm does not carefully consider daily variation characteristics
of clouds, especially geographical differences at different PV plants, (2) its processing
procedure is too complex, costly, and not easy to implement or transplant, and (3) there
is not yet a professional cloud cover algorithm for PV stations. For these reasons, the
primary objective of this investigation is to develop a portable, fast, and accurate cloud
mask algorithm based on GEO satellite data and then provide NRT cloud cover over
scatter-distributed in-situ PV plants.

The remainder of this paper is organized as follows. Section 2 introduces the Himawari-
8 GEO satellite imager data, the ground-based manually observed cloud cover data, and
the mechanisms of operational and fast (or new) cloud mask algorithms. In Section 3, the
differences in cloud cover between new and original operational cloud mask algorithms are
compared and analyzed. The consistencies between these two algorithms are also analyzed
in Section 3. Section 4 summarizes the main conclusions of this investigation.
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2. Data and Methodology
2.1. Geostationary Satellite Imagery Data

Himawari-8 (H8), successfully launched on 7 October 2014, was the new-generation
three-axis stabilized operational GEO meteorological satellite of the Japan Meteorological
Agency (JMA) (http://www.jma-net.go.jp/msc/en/, accessed on 10 October 2015). Its
nadir point on the equator is located at 140.7◦E, and the full-disk observation imagery
primarily focuses on Japan Island and the Pacific Ocean areas. As the unique optical sensor
on board the H8 satellite, the Advanced Himawari Imager (AHI) has 16 earth-view bands
from 0.45 µm to 13.3 µm, including three visible (VIS), three near-infrared (NIR), and ten
infrared (IR) bands, which routinely execute a full-disk observation mode within a 10-min
time interval and fast regional scanning with a 2.5-min maneuver mode. The nominal
spatial resolutions of H8/AHI for VIS, NIR, and IR bands are 0.5 km (band at 0.65 µm),
1 km, and 2 km, respectively [22].

The NRT H8/AHI level-1B radiance data with the original horizontal resolution
mentioned above only can be downloaded from the China Meteorological Administration
(CMA) internal international data exchange File Transfer Protocol (FTP) site. Still, it is
sometimes unstable for data transmission. Moreover, we can freely download the H8/AHI
Level-1B (L1B) observation radiance data and some Level-2 (L2) science products from the
exclusive JAXA (Japan Aerospace Exploration Agency) Himawari data FTP site (ftp.ptree.
jaxa.jp) from 7 July 2015 (http://www.jma-net.go.jp/msc/en/, accessed on 10 October
2015) with approximately 2–3 h lag. Our previous studies [23–25] have already illustrated
this data acquisition issue for real-time data applications. The unstable and untimely data
transmission will negatively impact the monitoring or predicting/extrapolating of cloud
cover at PV plants. As one of the general data acquisition methods recommended by
JMA, users always use the compact Himawari-8 satellite data-receiving antenna to obtain
the NRT down-sampling data from JMA Himawari-Cast in China (see the antenna at the
Zhuhai campus of Sun Yat-sen University in Figure 1). To ensure highly efficient data
transmission, the down-sampling full-disk H8/AHI data only have 14 bands within 1 km
(VIS) and 4 km (NIR and IR bands) horizontal resolutions, lacking 0.47 µm and 0.51 µm
bands. However, the timely and high-quality H8/AHI data can still be used to retrieve
NRT cloud cover at the PV plants.

2.2. Ground-Based Cloud Cover Observation Data

The total cloud cover (TCC) observed by ground-based stations refers to the fraction
of the sky covered by all the visible clouds ranging from 0 to 10. It can be used to
validate the results of cloud cover from GEO satellite observations. In this study, TCC
values were manually observed using the naked human eye three times per day at
00:00, 06:00, and 12:00 UTC, and the observation data were subjected to systematic
quality inspection and control. However, vision-obstructing weather, such as blowing
snow, sand-dust storms, and fog, may significantly affect the observed TCC results. The
visibility observed simultaneously is also categorized into four piecewise ranks (0–2 km,
2–10 km, 10–20 km, and ≥ 20 km) to determine the quality of the observed TCC by
the ground-based stations. When the visibility is less than 2 km, the error of manual
observation data is large. In this study, these data are regarded as invalid data and are
removed. All the visibility data are measured automatically with the visibility meters,
and they have been adjusted before they are used [26].

http://www.jma-net.go.jp/msc/en/
ftp.ptree.jaxa.jp
ftp.ptree.jaxa.jp
http://www.jma-net.go.jp/msc/en/
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#2 building of Zhuhai campus of Sun Yat-sen University, Guangdong Province, China. 

2.2. Ground-Based Cloud Cover Observation Data 

The total cloud cover (TCC) observed by ground-based stations refers to the fraction 

of the sky covered by all the visible clouds ranging from 0 to 10. It can be used to validate 

the results of cloud cover from GEO satellite observations. In this study, TCC values were 

manually observed using the naked human eye three times per day at 00:00, 06:00, and 

12:00 UTC, and the observation data were subjected to systematic quality inspection and 

control. However, vision-obstructing weather, such as blowing snow, sand-dust storms, 

and fog, may significantly affect the observed TCC results. The visibility observed simul-

taneously is also categorized into four piecewise ranks (0–2 km, 2–10 km, 10–20 km, and 

≥ 20 km) to determine the quality of the observed TCC by the ground-based stations. 

When the visibility is less than 2 km, the error of manual observation data is large. In this 

study, these data are regarded as invalid data and are removed. All the visibility data are 

measured automatically with the visibility meters, and they have been adjusted before 

they are used [26]. 

In this investigation, to validate cloud cover retrieved by GEO satellite measure-

ments, we chose seven geographically and climatically representative ground-based sta-

tions that are located in different regions of China. The TCC data at these stations at 08:00 

and 14:00 BJT (Beijing time) in 2017 are extracted. Figure 2 shows the geographical distri-

butions of these seven selected ground-based stations and the PV plants (http://da-

tasets.wri.org/dataset/globalpowerplantdatabase, accessed on 1 March 2020) in China. 

Figure 1. Compact near real-time Himawari-8 satellite data receiving antenna on the roof of Haiqin
#2 building of Zhuhai campus of Sun Yat-sen University, Guangdong Province, China.

In this investigation, to validate cloud cover retrieved by GEO satellite measurements,
we chose seven geographically and climatically representative ground-based stations that
are located in different regions of China. The TCC data at these stations at 08:00 and 14:00
BJT (Beijing time) in 2017 are extracted. Figure 2 shows the geographical distributions of
these seven selected ground-based stations and the PV plants (http://datasets.wri.org/
dataset/globalpowerplantdatabase, accessed on 1 March 2020) in China. More detailed
information on these seven ground-based stations is listed in Table 1. From Figure 2, we
find more PV plants are distributed over eastern and northern China, which is attributed to
the climatic conditions and the local demands of economic construction for energy. It is
noteworthy that the operational TCC manual observations at approximately two-thirds of
the ground-based stations in China have already been cancelled by CMA from 1 January
2014. Thus, it is impossible to collect sufficient TCC data to validate the cloud cover in
China. Moreover, as introduced before, the main coverage of H8/AHI full-disk is around
Japan Island and its surrounding areas, and the regions in western China such as the Tibet
Plateau and Xinjiang Province are unable to be aptly observed by the H8/AHI (with the
relatively large satellite view zenith angle). Therefore, we chose the Gaolan station located
at 103.95◦E, 36.35◦N as the westernmost station in this study. However, we still resized the
down-sampling H8/AHI full-disk L1B data, the horizontal and temporal resolutions of
which are 4 km and 10 min, respectively, into a 32 × 32-pixel box to retrieve the cloud mask
product [24,27] centered around the seven selected ground-based stations. The observation

http://datasets.wri.org/dataset/globalpowerplantdatabase
http://datasets.wri.org/dataset/globalpowerplantdatabase
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range based on the naked eye is approximately 20 km, which is approximately equal to
a 5 × 5 neighboring pixel box from a GEO satellite observation or cloud mask product.
Therefore, the value of cloud cover rate over ground-based stations using the satellite cloud
mask product (CCRC) can be defined as follows:

CCRC = (a + b)/(5× 5) (1)

where a and b are the number of cloudy and likely cloudy pixels [28] in a 5 × 5 neighboring
pixel box, respectively (same as the cloud cover from MODIS). As shown in Figure 3d, the
station is in the center, and the area enclosed by the red dotted line is the 5 × 5 neighboring
pixel box, which is the observation range of the naked eye. The related cloud cover rate
from the ground-based station data (CCRG) is expressed as follows:

CCRG = TCC/10 (2)
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Figure 2. Geographic distributions of the PV plants and seven selected ground-based meteorological
observation stations in China. The solid green circles and solid red pentagrams represent the PV
plants and the ground-based meteorological observation stations, respectively.

Table 1. Altitude, surface type, and climate type of the seven selected stations in this study.

Station Coordinate Surface Type Climate Type Altitude

Gaolan (103.95◦E, 36.35◦N) Valley and basin Temperate continental 1520 m

Beijing (116.47◦E, 39.80◦N) Plain Warm temperate semi-humid and
semi-arid monsoon 43.5 m

Changchun (125.22◦E, 43.90◦N) Plain Temperate monsoon 300 m
Wuhan (114.05◦E, 30.60◦N) Hills Subtropical monsoon 23.3 m

Hangzhou (120.17◦E, 30.23◦N) Hills Subtropical monsoon 19 m
Shapingbai (106.47◦E, 29.58◦N) Hills and bench terrace Subtropical monsoon humid 400 m
Guangzhou (113.48◦E, 23.22◦N) Middle and low mountains Subtropical monsoon 4.2 m
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Figure 3. Cloud mask results at Guangzhou station retrieved by FCMA (d) and OCMA (c), and the
spatial-temporally matched reflectance (a) and brightness temperature (b) at 0.64 µm and 11.2 µm
bands at 03:30 UTC (11:30 BJT) on 27 February 2017. White, gray, light green, and dark green colors
represent cloudy, likely cloudy, likely clear, and clear pixel labels, respectively.

As mentioned above, we should validate the CCRC results based on the CCRG data in
this study.

2.3. Multichannel Detection Cloud Mask Data of H8/AHI

Former studies [23–25] have already introduced the operational and unified multi-
channel detection cloud mask algorithm for Fengyun-4A (FY-4A) and H8/AHI. It is a
four-level cloud mask label product (clear, likely clear, likely cloudy, and cloudy), which
is the same as the MODIS product. This robust algorithm primarily includes the IR band
test, the shortwave-infrared band test, the solar-reflectance band test, the spatial uniformity
test, and the restoral test. These cloudy/clear pixel tests include six infrared tests, two
shortwave infrared tests, three solar-reflectance tests, and two spatial uniformity tests. By
taking four months of MODIS data as the benchmark, we find the hit rate or accuracy is
approximately 91.04% and 91.82% for FY-4A/AGRI and H8/AHI, respectively, indicating
the high quality of this operational cloud mask algorithm.

The complex OCMA was initially developed based on the Fengyun Geostationary
Algorithm Testbed (FYGAT), which was primarily used for satellite data assimilation and
backend science product retrieval [23,29,30]. Although this robust cloud mask algorithm is
also applied to calculate the NRT cloud cover at PV plants, its regular operational running
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needs many other auxiliary data, such as the numerical weather prediction (NWP) data.
Furthermore, it also takes a great deal of time to deal with the spatial-temporally matched
NWP data and calculate VIS and IR atmospheric radiative transfer models, which are
also used in the backend science product retrieval. Last but not least, the fixed thresholds
over land for cloudy/clear pixel tests in this algorithm also do not consider regional and
temporal differences, which is likely to introduce some errors in calculating the diurnal
cycle of cloud cover [24]. In other words, maintaining such a cloud mask or cover algorithm
for scattered PV plants is too expensive and complex. Therefore, it is indispensable to
develop a more accessible and more accurate algorithm for monitoring the NRT cloud cover
at PV plants by using the data from the antenna receiving device mentioned in Section 2.1.

2.4. Fast Cloud Mask Algorithm of H8/AHI for Scattered PV Plants

Considering the cost and efficiency, we have developed a new and fast cloud mask
algorithm (FCMA) for scattered PV plants in this investigation, which only works during
daytime using six bands of H8/AHI (at 0.64, 0.86, 3.9, 7.0, 11.2, and 12.3 µm) and five
inherited and improved cloudy/clear pixel tests from the MODIS official cloud mask
algorithm. The five cloudy/clear pixel tests are summarized as follows.

(1) HVHCT: H2O Vapor channel (BT7.0µm) High Cloud Test.

Under the clear-sky situation, the radiance or the corresponding BT7.0µm (brightness
temperature at the 7.0 µm band calculated by using the classical Planck function) measured
by the satellite sensor is emitted by the water vapor in the atmosphere between 200 hPa
and 400 hPa. The radiance at the 7.0 µm band emitted by ground or lower clouds will
be absorbed by the above atmosphere, which usually makes it undetectable for satellite
sensors. Therefore, thick and high clouds above or near the top of the atmospheric layer
(approximately 200–400 hPa) will induce a lower-brightness temperature than surrounding
pixels that contain clear skies or low clouds. This relatively low BT is caused by the
absorption effect of high clouds. On the flip side, it can also be used to test high clouds.
The thresholds at the 7.0 µm band for HVHCT in this study are 235 K, 240 K, and 245 K for
low confidence, mid-point, and high confidence, respectively.

(2) BTTCT: BT11µm−BT12µm Brightness Temperature Thin Cirrus Test.

The difference between BT11µm and BT12µm or BTD11-12µm, usually referred to as
the split window technique, is widely used for cloud screening of the early AVHRR and
GOES (Geo-stationary Operational Environmental Satellite) imager. The BTD11-12µm can
be used to detect optically thin cirrus clouds because the value of BTD11-12µm over thin
cirrus clouds is larger than that over clear or likely clear pixels [31]. BT11µm and BT12µm are
usually different, primarily due to the wavelength dependence of optical thickness and the
non-linear nature of the Planck function (Bλ). The BTD11-12µm is applied in both OCMA
and FCMA algorithms. Note that the BTTCT thresholds are set as a function of the satellite
zenith angle, BT11µm and BT12µm.

(3) BTLCT: BT11µm–BT3.9µm Brightness Temperature Low Cloud Test.

The difference between BT11µm and BT3.9µm can also detect the presence of clouds.
BTD11-3.9µm can effectively detect water clouds in the lower atmosphere in most scenes
during the daytime. When the value of BTD11-3.9µm becomes much more negative, it is
easier to detect non-uniform scenes such as broken clouds. This is consistent with Planck’s
law that the brightness temperature relies heavily on the warmer portion of the scene
and increases with the decreasing wavelength. Since the cloud emissivity at 3.9 µm is
prominently lower than that at 11 µm, stratus clouds show positive BTD11-3.9µm. It is also
worth noting that detecting clouds at high latitudes using infrared window radiance data
is still a challenge due to very cold surface temperatures. The thresholds for BTLCT in
this study are set as −14 K, −12 K, and −10 K for low confidence, mid-point, and high
confidence of clear sky, respectively.
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(4) VRT: R0.65µm Visible Reflectance Test.

VRT is a single-channel threshold cloud test. Theoretically, it is used to distinguish
bright clouds from dark surfaces. In this investigation, for PV plants, the water surface
type is not considered. The reflectance thresholds at 0.65 µm over land, desert, and snow
surfaces where the PV plants are located are developed. These thresholds in the VRT
test are the functions of the scattering angle and the background normalized difference
vegetation index [32]. The thresholds used in this test are listed in Table 2.

Table 2. Thresholds of seven stations used in the VRT test.

Stations Threshold [High, Middle, Low]

Gaolan [0.22, 0.18, 0.14]
Beijing [0.22, 0.18, 0.14]

Changchun [0.22, 0.18, 0.14]
Wuhan [0.20, 0.16, 0.12]

Hangzhou [0.22, 0.18, 0.14]
Shapingbai [0.24, 0.20, 0.16]
Guangzhou [0.22, 0.18, 0.14]

(5) RRT: R0.86µm/R0.65µm Reflectance Ratio Test.

The principle of the RRT test is that the spectral reflectance at two different shortwave
wavelengths (0.86 µm and 0.65 µm) is closer over clouds (the ratio is close to 1) than that of
the clear sky over vegetation and water surface. A previous study found that the range of
R0.86µm/R0.65µm is from 0.9 to 1.1 of cloudy pixels by using the AVHRR data. It is worth
noting that, for the PV plants distributed in arid and semi-arid areas (Figure 2), the RRT
test is very beneficial for cloud detection. The thresholds during the different periods in
this test are listed in Table 3.

Table 3. Thresholds of the seven stations during different periods in a day used in the RRT test.

Station
Threshold [Low, Middle, High]

BJT 7:30~09:30 BJT 09:30~12:30 BJT 12:30~15:30 BJT 15:30~16:30

Gaolan [1.82, 1.87, 1.92] [1.84, 1.89, 1.94] [1.81, 1.86, 1.91] [1.81, 1.86, 1.91]
Beijing [1.84, 1.89, 1.94] [1.84, 1.89, 1.94] [1.84, 1.89, 1.94] [1.82, 1.87, 1.92]

Changchun [1.85, 1.90, 1.95] [1.89, 1.94, 1.99] [1.85, 1.90, 1.95] [1.90, 1.95, 2.00]
Wuhan [1.81, 1.86, 1.91] [1.83, 1.88, 1.93] [1.83, 1.88, 1.93] [1.85, 1.90, 1.95]

Hangzhou [1.86, 1.91, 1.96] [1.89, 1.94, 1.99] [1.89, 1.94, 1.99] [1.90, 1.95, 2.00]
Shapingbai [1.89, 1.94, 1.99] [1.90, 1.95, 2.00] [1.90, 1.95, 2.00] [1.84, 1.89, 1.94]
Guangzhou [1.84, 1.89, 1.94] [1.88, 1.93, 1.98] [1.88, 1.93, 1.98] [1.83, 1.88, 1.93]

After using five independent cloudy/clear sky pixel tests mentioned above, a general
confidence test (GCT) will be conducted. Four different thresholds (l, h, p, m) are set here
for this confidence test. l is the lower limit of the set, h is the higher limit of the set, p is
a power value, and m is the median of the set. Note that the value of h-m is equal to m-l.
In the new FCMA algorithm developed in this study, we should iteratively tune the test
thresholds for different PV plants. The optimal thresholds determined for each station need
a large number of experiments. The confidence value of c is defined as:

c = 2(p−1) × ((I − l)/(2× (h−m)))p (3)

After the GCT test, if c is greater than 1, it will be set to 1, and if c is minus, it will be
forcibly set to 0. Its dynamic range is from 0 to 1. We use the same four-level label from the
classical MODIS cloud mask algorithm here to describe cloudy/clear pixels based on the final
test confidence value c (c > 0.99 = clear, 0.95 < c ≤ 0.99 = likely clear, 0.66 < c ≤ 0.95 = likely
cloudy, and c ≤ 0.66 = cloudy). Note that the FCMA algorithm only should use the fixed
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surface type where the PV plants are located. Therefore, only two surface types of land and
desert are considered in this study.

To compare the consistency of the two different cloud mask algorithms mentioned
above, the 32 × 32-pixel cloud mask products retrieved by OCMA and FCMA and spatial-
temporally matched reflectance and brightness temperatures at 0.64 µm and 11.2 µm bands
are shown in Figures 3 and 4. Figure 3 shows the results at Guangzhou station at 03:30
UTC (11:30 BJT) on 27 February 2017 and Figure 4 shows the results at Hangzhou station
at 00:50 UTC (08:50 BJT) on 16 August 2017. As can be seen, the consistency between the
two cloud mask algorithms is relatively good, which can be confirmed by the visualization
results of radiance at the 0.64 µm and 11.2 µm bands. On the other hand, the cloud cover
results (the cloud cover values retrieved by OCMA and FCMA in Figure 3 are 0.36 and
0.4, respectively, and those in Figure 4 are 0 and 0.12, respectively) in the 5 × 5 pixels box
with a red dotted line agree well with each other. However, differences in the detections of
likely land/clear land pixels and likely cloudy/cloudy pixels can still be found between
them. The differences between cloudy and likely cloudy pixels, and land and likely land
pixels, are primarily attributed to the defining methods used by OCMA and FCMA for
these pixels. The spatial uniformity test and restoral test are used in OCMA to identify
likely cloudy and clear pixels, which are related to the results of neighbor pixels. However,
FCMA uses a final test confidence value of c to distinguish the four categories.
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Figure 4. Cloud mask results at Hangzhou station retrieved by FCMA (d) and OCMA (c), and the
spatial-temporally matched reflectance (a) and brightness temperature (b) at 0.64 µm and 11.2 µm
bands at 00:50 UTC (08:50 BJT) on 16 August 2017. White, gray, light green, and dark green colors
represent cloudy, likely cloudy, likely clear, and clear pixel labels, respectively.
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Next, the mean absolute error (MAE), root mean square error (RMSE), mean bias
error (MBE), and correlation coefficient (R) of cloud cover are employed to evaluate the
consistency between two independent algorithms. The results from the OCMA are used as
truth here. The definitions of MAE, RMSE, MBE, and R can be expressed as follows:

MAE =
1
n

n

∑
i=1
|y1,i − y2,i| (4)

RMSE=

√
1
n ∑n

i=1(y1, i − y2, i)
2 (5)

MBE =
1
n

n

∑
i=1

(y1,i − y2,i) (6)

R=
∑n

i=1(y1, i − y1)(y2, i − y2)√
∑n

i=1(y1, i − y1)
2
√

∑n
i=1(y2, i − y2)

2
(7)

y1 =
1
n

n

∑
i=1

y1,i (8)

y2 =
1
n

n

∑
i=1

y2,i (9)

where y1 and y2 represent the cloud cover retrieved by the FCMA and OCMA, respectively.
n represents the total number of days with effective data.

Three imperative statistical variables (∆Q, RMSE, and R) are used in this study to
verify the cloud cover from two space-based cloud mask algorithms based on the results
from ground-based observation stations. Here, the bias of ∆Q is defined as follows:

∆Q = Qcld −Qobs (10)

where Qcld is the cloud cover retrieved by FCMA or OCMA and Qobs is the matched
manually observed cloud cover from a ground-based station.

3. Results and Discussions
3.1. Accuracy of Cloud Cover from the FCMA Relative to the OCMA

This investigation evaluates the consistency between the continuous and spatial-
temporally matched cloud mask and cover products in 2017 derived from the FCMA and
OCMA retrieval algorithms. As known from a previous study [24], after being validated
using the spatial-temporally matched MODIS Level-2 cloud mask data, the mean hit rate
or accuracy of OCMA is approximately 92%, which illustrates the high quality of OCMA.
Figure 5 shows the hourly CCRC results at seven selected ground-based stations from
the FCMA and OCMA during the daytime. The hourly data in each box include the six
neighboring data before and after the specified hour. For example, the data at 08:00 are
composed of the data observed at 07:30, 07:40, 07:50, 08:00, 08:10, and 08:20. As shown in
Figure 5a–g, in most cases, the CCRC values of the OCMA are significantly larger than
those from the FCMA, indicating the more manifest variation in cloud cover retrieved by
the OCMA. However, the average values of these two algorithms are relatively close, and
the difference between them is less than 0.1. This finding clearly indicates the excellent
consistency of cloud cover between the two algorithms at each hour, especially for the
results from 08:30 to 15:30 BJT. It is worth noting that the CCRC results at Shapingbai
station retrieved by the FCMA are close to 1, which are remarkably different from those
retrieved by the OCMA.
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Figure 5. Box plots of the hourly mean cloud cover retrieved by FCMA (light green solid box) and
OCMA (light coral solid box) during the daytime (from 08:00 to 16:00 BJT) in 2017. The subfigures
represent (a) Gaolan, (b) Beijing, (c) Changchun, (d) Wuhan, (e) Hangzhou, (f) Shapingbai, and
(g) Guangzhou stations. Boxes show the 25th, 50th, and 75th percentiles. The whiskers extend to the
most extreme data points between the 75th and 25th percentiles. The dotted line in the box is the
mean value.

As in Figure 5, Figure 6 shows the hourly mean results of MAE, RMSE, MBE, and R
by comparing FCMA with OCMA. Apparently, the results of MAE, RMSE, MBE, and R at
08:00 BJT are relatively large, indicating the remarkable difference in the cloud cover values
at 08:00 BJT between the two algorithms. The same problem also exists around 16:00 BJT.
These differences during the sunrise and sunset times are primarily attributed to the use
of visible bands in the FCMA. Before 08:00 BJT and after 16:00 BJT, the instantaneous sun
zenith angle is greater than 65◦, which will introduce stray light and induce some error in
the visible reflectance used in the FCMA.

Furthermore, we also find some differences in the cloud cover results at different
stations. For the four stations (Wuhan, Hangzhou, Shapingbai, and Guangzhou) at rela-
tively low latitudes (see Figure 6d–g), the values of MAE and RMSE are approximately 0.1,
the MBE is very close to 0, and the R exceeds 0.8 in most of the time (8 h) between 08:30
and 16:30, suggesting good results from the FCMA. However, by contrast, Figure 6a–c
reveal the relatively large values of MAE, RMSE, and MBE at the three stations (Gaolan,
Beijing, and Changchun) with relatively high latitudes. Furthermore, the duration with
an R-value greater than 0.8 is also substantially shortened to 6 h (from 08:30 to 14:30 BJT).
As elucidated above, the thresholds used in the FCMA at each station have already been
optimized. The difference at different latitudes is thus primarily attributed to the impact of
different satellite and solar zenith angles between these ground-based stations.
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Figure 6. Box plots of the hourly mean MAE (light sky blue), RMSE (yellow green), MBE (sandy
brown), and R (cadet blue) of cloud cover by comparing FCMA with OCMA during the daytime
(from 08:00 to 16:00 BJT) in 2017. The subfigures represent (a) Gaolan, (b) Beijing, (c) Changchun,
(d) Wuhan, (e) Hangzhou, (f) Shapingbai, and (g) Guangzhou stations. Boxes show the 25th, 50th,
and 75th percentiles. The whiskers extend to the most extreme data points between the 75th and 25th
percentiles. The dotted line in the box is the mean value.

3.2. Comparisons of Cloud Covers from the FCMA and OCMA with the Ground-Based Observations

In this section, the cloud cover of seven ground-based stations at 08:00 BJT and 14:00
BJT (during the daytime) in 2017 retrieved by FCMA and OCMA are compared with the
manually observed cloud cover data. Before comparison, the cloud cover data from the
ground-based station with simultaneous surface visibility of less than 2 km are excluded.
This is the result of the avoided error induced in the manually observed data when the
ambient visibility is less than 2 km.

Figure 7 shows the inter-comparison of ∆Q between FCMA and OCMA at 08:00 BJT
and 14:00 BJT in 2017. The related RMSE, R, and sample number of n are also listed at the
top of the subfigures. For the validation at 08:00 BJT (morning time), the differences in
cloud cover between the FCMA and the ground-based stations are not significant from
April to October (boreal warm season). Significantly, the duration time for this good
consistency with the correlation coefficient exceeding 0.8 and the RMSE less than 0.25 is
longer at Shapingbai and Guangzhou stations. However, for some stations at relatively
high latitudes, such as Gaolan, Beijing, and Changchun, the bias ∆Q is larger in January,
February, March, November, and December (boreal cold season). Sometimes, the value
of ∆Q even exceeds 0.5, indicating the significant overestimation of cloud cover retrieved
by FCMA.
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Figure 7. Time series of cloud cover biases (∆Q) of FCMA (solid line) and OCMA (dashed line) at
08:00 BJT (left panel) and 14:00 BJT (right panel) in 2017. The subfigures represent the results at 08:00
BJT for (a1) Gaolan, (b1) Beijing, (c1) Changchun, (d1) Wuhan, (e1) Hangzhou, (f1) Shapingbai, and
(g1) Guangzhou stations, and at 14:00 BJT for (a2) Gaolan, (b2) Beijing, (c2) Changchun, (d2) Wuhan,
(e2) Hangzhou, (f2) Shapingbai, and (g2) Guangzhou stations. The corresponding RMSE and R
values are also written at the top of each subfigure. n represents the total number of available days or
samples in 2017.

In contrast, the ∆Q values of OCMA at 08:00 BJT are negative most of the time,
implying the significant underestimation of cloud cover retrieved by OCMA. The cloud
detection effect of FCMA was very close to OCMA, and even exceeds the OCMA at some
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stations, such as Changchun and Guangzhou. Instead, for the validation at 14:00 BJT
(afternoon time), the biases between the results of the two algorithms and the true values
are manifestly decreasing. It also shows that the values of |∆Q| are less than 0.5 most of the
time. Despite the considerable improvement at 14:00 BJT, the cloud cover from FCMA and
OCMA is still slightly larger and lower than those from ground-based stations, respectively.
As seen from the results at 14:00 BJT, more stations show better cloud cover data than the
results retrieved by the OCMA.

According to Figure 7, it can be found that the cloud cover accuracies of the two
algorithms seem to be remarkably reduced at some stations in the boreal winter season.
There are obvious seasonal differences in cloud masks retrieved by these two algorithms,
so the data at each ground-based station are divided into four seasons for further analysis.
Figure 8 shows the comparisons of correlation coefficient R between the observed cloud
cover and the retrieved cloud cover by the two algorithms at the 7 stations at 08:00 BJT
and 14:00 BJT in 2017, respectively. The four seasons are divided as follows. Spring
includes March, April, and May (MAM), summer includes June, July, and August (JJA),
autumn includes September, October, and November (SON), and winter includes December,
January, and February (DJF). From the comparison at 08:00 BJT, the cloud cover from these
two algorithms is highly correlated with those observed at the ground-based stations in
spring, summer, and autumn (close to 0.85). However, in winter, the performance of the
OCMA and FCMA decreases. This is likely due to the increase in the solar zenith angle in
winter, which reduces the performance in the visible-band-based cloud test. In addition,
the visibility in winter is remarkably lower than in other seasons [33], which is prone to
cause errors in manually observed cloud cover data. For the results at 14:00 BJT, we can
find a relatively high R between them in winter. For other seasons, the R values of the
two algorithms are also very consistent with the manually observed data at ground-based
stations. However, there are still some sporadically apparent differences in the comparison
results at different stations in the same season, such as Gaolan, Wuhan, and Guangzhou
stations in summer.
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Figure 8. Comparisons of R between cloud covers observed by the ground-based stations and
retrieved by the two algorithms at seven stations at 08:00 BJT (a) and 14:00 BJT (b) in 2017. Light sky
blue, yellow green, sandy brown, and cadet blue solid boxes represent the seasonal mean results in
the boreal spring, summer, autumn, and winter, respectively.
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4. Conclusions

Based on new-generation GEO satellite data, this study aims to develop a portable,
fast, and accurate cloud mask algorithm (FCMA) to provide NRT cloud cover at PV plants.
Based on the Level-1B radiance data of H8/AHI, we compared the operational cloud mask
algorithm (OCMA) with this new FCMA and verified the accuracy of these two algorithms
by using the manually observed cloud cover data at seven quintessential ground-based
stations in China in 2017. The main conclusions are summarized as follows.

Through the detection performance of FCMA in Ground-based stations in this paper
and considering the diurnal cycle of cloud cover and geographical differences, the fast and
new cloud mask algorithm with five independent cloudy/clear pixel tests can retrieve the
NRT cloud cover at PV plants. It only uses the level-1B radiance data of the GEO satellite
imager without complicated calculations and extra ancillary data.

The FCMA cloud cover data are compared with the OCMA cloud cover data at seven
typical stations. The results show that the correlation coefficient R exceeds 0.8, and the
RMSE and MAE are approximately 0.13, indicating good consistency between the two
independent algorithms. It is also worth noting that the cloud cover results of the FCMA
are slightly higher than that of the OCMA (with an average MBE of −0.1).

Compared with the manually observed cloud covers at seven typical ground-based
stations at 08:00 and 14:00 BJT, the correlation coefficient between the cloud cover of the
two algorithms and the ground-based observation is high (the averaged R is close to 0.85).
The averaged R of FCMA and OCMA are 0.84714 and 0.82892, respectively. Notably, it also
proves that the cloud cover data quality derived from the FCMA is slightly better than that
from the OCMA. Moreover, the RMSE at 14:00 BJT is slightly higher than that at 08:00 BJT,
which may be related to the effect of the solar zenith angle on visible reflectance.

Overall, the high-quality cloud mask or cover of H8/AHI at PV plants can be retrieved
by using the new, portable, and fast FCMA in this investigation. The extensive coverage
of GEO satellites facilitates the acquisition of satellite data over each PV plant, which can
be used in FCMA to calculate cloud cover. The results aptly demonstrate the reliability of
this new algorithm of the GEO satellite imager for retrieving NRT cloud cover products.
It is therefore very valuable and less costly to provide accurate NRT cloud cover data for
PV plants as an alternative solution. Moreover, it should be noted that researchers using
FCMA should be careful when the solar zenith angle is more than 65◦.

Author Contributions: Conceptualization, P.X. and M.M.; methodology, M.M.; formal analysis, P.X.;
investigation, P.X.; resources, Y.W.; data curation, Y.Y.; writing—original draft preparation, P.X.;
writing—review and editing, M.M.; visualization, M.M.; funding acquisition, M.M. and L.Z. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported partly by the Guangdong Major Project of Basic and Applied
Basic Research (Grant 2020B0301030004), the National Natural Science Foundation of China (Grants
42175086 and 41975031), and the Guangdong Province Key Laboratory for Climate Change and
Natural Disaster Studies (Grant 2020B1212060025).

Data Availability Statement: Publicly available datasets were analyzed in this study. These data
can be found here: The H8/AHI Level-1B (L1B) observation radiance data and some Level-2 (L2)
science products ca be downloaded from the exclusive JAXA (Japan Aerospace Exploration Agency)
Himawari data FTP site (ftp.ptree.jaxa.jp) from 7 July 2015 (http://www.jma-net.go.jp/msc/en/,
accessed on 10 October 2015) with approximately 2–3 h lag.

Acknowledgments: The authors would like to acknowledge the Japan Meteorological Agency for
making their Himawari-8 data publicly available. The authors also thank NOAA, NASA, and CIMSS
at the University of Wisconsin Madison for freely providing their gfs data, MODIS IMAPP software,
and cloud mask algorithm, respectively.

Conflicts of Interest: The authors declare no conflict of interest.

ftp.ptree.jaxa.jp
http://www.jma-net.go.jp/msc/en/


Remote Sens. 2023, 15, 1141 16 of 17

References
1. Shi, H.; Zhang, J.; Zhao, B.; Xia, X.; Hu, B.; Chen, H.; Wei, J.; Liu, M.; Bian, Y.; Fu, D.; et al. Surface brightening in eastern and

central China since the implementation of the clean air action in 2013: Causes and implications. Geophys. Res. Lett. 2021, 48, 3.
[CrossRef]

2. Li, M.; Virguez, E.; Shan, R.; Tian, J.; Gao, S.; Patiño-Echeverri, D. High-resolution data shows China’s wind and solar energy
resources are enough to support a 2050 decarbonized electricity system. Appl. Energy 2022, 306, 117996. [CrossRef]

3. Kruitwagen, L.; Story, K.T.; Friedrich, J.; Byers, L.; Skillman, S.; Hepburn, C. A global inventory of photovoltaic solar energy
generating units. Nature 2021, 598, 604–610. [CrossRef] [PubMed]

4. Burandt, T.; Xiong, B.; Löffler, K.; Oei, P.Y. Decarbonizing China’s energy system—Modeling the transformation of the electricity,
transportation, heat, and industrial sectors. Appl. Energy 2019, 255, 113820. [CrossRef]

5. Li, T.; Li, A.; Guo, X.P. The sustainable development oriented development and utilization of renewable energy industry-A
comprehensive analysis of MCDM methods. Energy 2020, 212, 118694. [CrossRef]

6. Bai, B.; Wang, Y.; Fang, C.; Xiong, S.; Ma, X. Efficient deployment of solar photovoltaic stations in China: An economic and
environmental perspective. Energy 2021, 221, 119834. [CrossRef]

7. Lamsal, D.; Sreeram, V.; Mishra, Y.; Kumar, D. Kalman filter approach for dispatching and attenuating the power fluctuation of
wind and photovoltaic power generating systems. IET Gener. Transm. Distrib. 2018, 12, 1501–1508. [CrossRef]

8. Senatla, M.; Bansal, R.C. Review of planning methodologies used for determination of optimal generation capacity mix: The
cases of high shares of photovoltaic and wind. IET Renew. Power Gener. 2018, 12, 1222–1233. [CrossRef]

9. Mathiesen, P.; Kleisssl, J. Evaluation of numerical weather prediction for intra-day solar forecasting in the continental United
States. Sol. Energy 2011, 85, 967–977. [CrossRef]

10. Hamill, T.; Nehrkorn, T. A short-term cloud forecast scheme using cross correlations. Weather. Forecast. 1993, 8, 401–411. [CrossRef]
11. Hammer, A.; Heinemann, D.; Lorenz, E.; Lückehe, B. Short-term forecasting of solar radiation: A statistical approach using

satellite data. Sol. Energy 1999, 67, 139–150. [CrossRef]
12. Perez, R.; Kivalov, S.; Schlemmer, J.; Hemker, K., Jr.; Renné, D.; Hoff, T.E. Validation of short and medium term operational solar

radiation forecasts in the US. Sol. Energy 2010, 84, 2161–2172. [CrossRef]
13. Perez, R.; Moore, K.; Wilcox, S.; Renné, D.; Zelenka, A. Forecasting solar radiation—Preliminary evaluation of an approach based

upon the national forecast database. Sol. Energy 2007, 81, 809–812. [CrossRef]
14. Chow, C.W.; Urquhart, B.; Lave, M.; Dominguez, A.; Kleissl, J.; Shields, J.; Washom, B. Intra-hour forecasting with a total sky

imager at the UC San Diego solar energy testbed. Sol. Energy 2011, 85, 2881–2893. [CrossRef]
15. Huang, C.; Shi, H.; Gao, L.; Liu, M.; Chen, Q.; Fu, D.; Wang, S.; Yuan, Y.; Xia, X.A. Fengyun-4 Geostationary satellite-based solar

energy nowcasting system and its application in North China. Adv. Atmos. Sci. 2022, 39, 1–13. [CrossRef]
16. Zhu, T.; Zhou, H.; Wei, H.; Zhao, X.; Zhang, K.; Zhang, J. Inter-hour direct normal irradiance forecast with multiple data types

and time-series. J. Mod. Power Syst. Clean Energy 2019, 7, 1319–1327. [CrossRef]
17. Frey, R.A.; Ackerman, S.A.; Liu, Y.; Strabala, K.I.; Zhang, H.; Key, J.R.; Wang, X. Cloud detection with MODIS. Part I: Improvements

in the MODIS cloud mask for collection 5. J. Atmos. Ocean. Technol. 2008, 25, 1057–1072. [CrossRef]
18. Ackerman, S.A.; Strabala, K.I.; Menzel, W.P.; Frey, R.A.; Moeller, C.C.; Gumley, L.E. Discriminating clear sky from clouds with

MODIS. J. Geophys. Res. 1998, 103, 32141–32157. [CrossRef]
19. Stowe, L.L.; Davis, P.A.; McClain, E.P. Scientific basis and initial evaluation of the CLAVR-1 global clear/cloud classification

algorithm for the advanced very high resolution radiometer. J. Atmos. Ocean. Technol. 1999, 16, 656–681. [CrossRef]
20. Hocking, J.; Francis, P.N.; Saunders, R. Cloud detection in Meteosat Second Generation imagery at the Met Office. Meteorol. Appl.

2011, 18, 307–323. [CrossRef]
21. Di, D.; Li, J.; Han, W.; Yin, R. Geostationary Hyperspectral Infrared Sounder Channel Selection for Capturing Fast-Changing

Atmospheric Information. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4102210. [CrossRef]
22. Yang, J.; Zhang, Z.; Wei, C.; Lu, F.; Guo, Q. Introducing the new generation of Chinese geostationary weather satellites, FengYun-4.

Bull. Am. Meteorol. Soc. 2017, 98, 1637–1658. [CrossRef]
23. Min, M.; Wu, C.; Li, C.; Liu, H.; Xu, N.; Wu, X.; Chen, L.; Wang, F.; Sun, F.; Qin, D.; et al. Developing the science product algorithm

testbed for Chinese next-generation geostationary meteorological satellites: Fengyun-4 series. J. Meteorol. Res. 2017, 31, 708–719.
[CrossRef]

24. Wang, X.; Min, M.; Wang, F.; Guo, J.; Li, B.; Tang, S. Intercomparisons of Cloud Mask Products Among Fengyun-4A, Himawari-8,
and MODIS. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8827–8839. [CrossRef]

25. Wang, F.; Min, M.; Xu, N.; Liu, C.; Wang, Z.; Zhu, L. Effects of linear calibration errors at low temperature end of thermal infrared
band: Lesson from failures in cloud top property retrieval of FengYun-4A geostationary satellite. IEEE Trans. Geosci. Remote Sens.
2022, 60, 5001511. [CrossRef]

26. Yu, Y.; Ren, Z.H.; Meng, X.Y. Reconstruction of daily haze data across China between 1961 and 2020. Int. J. Climatol. 2022, 60, 1–15.
[CrossRef]

27. Min, M.; Li, J.; Wang, F.; Liu, Z.; Menzel, W.P. Retrieval of cloud top properties from advanced geostationary meteorological
satellite imager measurements based on machine learning algorithms. Remote Sens. Environ. 2020, 239, 111616. [CrossRef]

28. Martins, J.V.; Tanré, D.; Remer, L.; Kaufman, Y.; Mattoo, S.; Levy, R. MODIS cloud screening for remote sensing of aerosols over
oceans using spatial variability. Geophys. Res. Lett. 2002, 29, 1619. [CrossRef]

http://doi.org/10.1029/2020GL091105
http://doi.org/10.1016/j.apenergy.2021.117996
http://doi.org/10.1038/s41586-021-03957-7
http://www.ncbi.nlm.nih.gov/pubmed/34707304
http://doi.org/10.1016/j.apenergy.2019.113820
http://doi.org/10.1016/j.energy.2020.118694
http://doi.org/10.1016/j.energy.2021.119834
http://doi.org/10.1049/iet-gtd.2017.0663
http://doi.org/10.1049/iet-rpg.2017.0380
http://doi.org/10.1016/j.solener.2011.02.013
http://doi.org/10.1175/1520-0434(1993)008&lt;0401:ASTCFS&gt;2.0.CO;2
http://doi.org/10.1016/S0038-092X(00)00038-4
http://doi.org/10.1016/j.solener.2010.08.014
http://doi.org/10.1016/j.solener.2006.09.009
http://doi.org/10.1016/j.solener.2011.08.025
http://doi.org/10.1007/s00376-022-1464-0
http://doi.org/10.1007/s40565-019-0551-4
http://doi.org/10.1175/2008JTECHA1052.1
http://doi.org/10.1029/1998JD200032
http://doi.org/10.1175/1520-0426(1999)016&lt;0656:SBAIEO&gt;2.0.CO;2
http://doi.org/10.1002/met.239
http://doi.org/10.1109/TGRS.2021.3078829
http://doi.org/10.1175/BAMS-D-16-0065.1
http://doi.org/10.1007/s13351-017-6161-z
http://doi.org/10.1109/TGRS.2019.2923247
http://doi.org/10.1109/TGRS.2022.3140348
http://doi.org/10.1002/joc.7552
http://doi.org/10.1016/j.rse.2019.111616
http://doi.org/10.1029/2001GL013252


Remote Sens. 2023, 15, 1141 17 of 17

29. Min, M.; Bai, C.; Guo, J.; Sun, F.; Liu, C.; Wang, F.; Xu, H.; Tang, S.; Li, B.; Di, D.; et al. Estimating summertime precipitation
from Himawari-8 and global forecast system based on machine learning. IEEE Trans. Geosci. Remote Sens. 2019, 57, 2557–2570.
[CrossRef]

30. Schmit, T.J.; Griffith, P.; Gunshor, M.M.; Daniels, J.M.; Goodman, S.J.; Lebair, W.J. A closer look at the ABI on the GOES-R Series.
Bull. Am. Meteorol. Soc. 2017, 98, 681–698. [CrossRef]

31. Saunders, R.W.; Kriebel, K.T. An improved method for detecting clear sky and cloudy radiances from AVHRR data. Int. J. Remote
Sens. 1988, 9, 123–150. [CrossRef]

32. Hutchison, K.D.; Roskovensky, J.K.; Jackson, J.M.; Heidinger, A.K.; Kopp, T.J.; Pavolonis, M.J.; Frey, R. Automated Cloud
Detection and Typing of Data Collected by the Visible Infrared Imager Radiometer Suite (VIIRS). Int. J. Remote Sens. 2005, 26,
4681–4706. [CrossRef]

33. Li, X.; Huang, L.; Li, J.; Shi, Z.; Wang, Y.; Zhang, H.; Ying, Q.; Yu, X.; Liao, H.; Hu, J. Source contributions to poor atmospheric
visibility in China. Resour. Conserv. Recycl. 2019, 143, 167–177. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/TGRS.2018.2874950
http://doi.org/10.1175/BAMS-D-15-00230.1
http://doi.org/10.1080/01431168808954841
http://doi.org/10.1080/01431160500196786
http://doi.org/10.1016/j.resconrec.2018.12.029

	Introduction 
	Data and Methodology 
	Geostationary Satellite Imagery Data 
	Ground-Based Cloud Cover Observation Data 
	Multichannel Detection Cloud Mask Data of H8/AHI 
	Fast Cloud Mask Algorithm of H8/AHI for Scattered PV Plants 

	Results and Discussions 
	Accuracy of Cloud Cover from the FCMA Relative to the OCMA 
	Comparisons of Cloud Covers from the FCMA and OCMA with the Ground-Based Observations 

	Conclusions 
	References

