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Abstract: Spaceborne snow water retrievals over oceans are assessed using a multiyear coincident
dataset of CloudSat Cloud Profiling Radar (CPR) and Global Precipitation Mission (GPM) Dual-
frequency Precipitation Radar (DPR). Various factors contributing to differences in snow water
retrievals between CPR and DPR are carefully considered. A set of relationships between radar
reflectivity (Ze) and snow water content (SWC) at Ku- and W-bands is developed using the same
microphysical assumptions. It is found that surface snow water contents from CPR are much larger
than those from DPR at latitudes above 60◦, while surface snow water contents from DPR slightly
exceed those from CPR at latitudes below 50◦. Coincident snow water content profiles between
CPR and DPR are further divided into two conditions. One is that only CPR detects the falling
snow. Another is that both CPR and DPR detect the falling snow. The results indicate that about
88% of all snow water content profiles are under the first condition and usually associated with
light snowfall events. The remaining snow water content profiles are generally associated with
moderate and heavy snowfall events. Moreover, CPR surface snow water contents are larger than
DPR ones at high latitudes because most light snowfall events are misdetected by DPR due to its low
sensitivity. DPR surface snow water contents exceed CPR ones at low latitudes because CPR may
experience a significant reduction in backscattering efficiency of large particles and attenuation in
heavy snowfall events. The low sensitivity of DPR also causes a noticeable decrease in detected snow
layer depth. The results presented here can help in developing global snowfall retrieval algorithms
using multi-radars.
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1. Introduction

Snowfall, as a major form of precipitation at mid and high latitudes, can significantly
affect the global hydrological cycle and energy budget. Over land, the falling snow can
remain on the ground for several days and strongly alter the surface albedo [1]. Over
oceans, the falling snow is related to the complex interaction with the ocean surface, since it
can cool and refresh the ocean surface through melting. [2]. The falling snow on the ground
is also an important freshwater resource, especially over the mountainous regions [3]. The
demand to accurately quantify global snowfall intensities has been increased dramatically
from scientific and social fields for better understanding of the global hydrological cycle and
monitoring of the global water resource. While ground-based observations are available
for snowfall detection over land, spaceborne observation are vital for detecting the falling
snow over oceans [4,5]. Compared with satellite rainfall retrievals, which have a long
history, satellite snowfall retrievals are still under development. Early studies mainly
employed satellite passive microwave sensors for snowfall detection [2,6]. Their results
have demonstrated the potential of high-frequency microwave channels in retrieving
snowfall intensities. Satellite active microwave sensors were not available until the launch
of CloudSat [7], which carried the first spaceborne microwave radar, Cloud Profiling Radar
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(CPR) [8]. Recently, the Global Precipitation Measurement (GPM) mission [5,9] further
emphasized the importance of global snowfall detection using satellite active and passive
microwave sensors. Its carried sensors, including GPM Microwave Imager (GMI) [10] and
Dual-frequency Precipitation Radar (DPR) [11], can substantially improve the quantitative
estimates of global snowfall events.

Currently, the CloudSat CPR and the GPM satellite sensors are primarily employed
for global snowfall retrievals. The CloudSat CPR is a nadir-looking microwave radar at
the W-band (94 GHz). Benefiting from its high sensitivity and horizontal spatial resolu-
tion, CPR is found to perform well in detecting light snowfall events globally. CloudSat
snowfall retrievals have been compared with several independent ground-based mea-
surements [12–14] and commonly used in global and regional snowfall studies. Liu [15]
employed CPR observations to characterize global snow clouds. Palerme et al. [16] de-
rived the climatological Antarctic precipitation characteristics using CloudSat products.
Kulie et al. [17] as well as Kulie and Milani [18] explored shallow cumuliform snowfall
events using multiyear CloudSat CPR observations. Milani et al. [19] evaluated CloudSat
snowfall estimates and presented a multiyear snowfall climatology in the region south of
60◦S. The GPM DPR is a dual-frequency radar consisting of 13.6 (Ku-band) and 35.5 (Ka-
band) GHz. Unlike CloudSat CPR, the DPR is a cross-track instrument, implying that
its swath width is much larger than that of CPR. Due to its relatively low sensitivity and
horizontal spatial resolution, DPR is more suitable for moderate and heavy snowfall events.
Adhikari et al. [20] used three-year GPM DPR Ku-band measurements to characterize
global snow precipitation features and properties. Subsequently, Adhikari and Liu [21]
explored global distributions of thundersnow events from six-year GPM DPR Ku-band
measurements. More recently, Chase et al. [22,23] examined current GPM DPR snow-
fall retrieval microphysical assumptions and presented a new DPR retrieval algorithm
of snow particle-size distribution parameters. The GMI is a conical microwave imager
with high-frequency channels at fine horizontal spatial resolutions. The official Goddard
profiling algorithm (GPROF) [24] has provided falling snow estimates. Panegrossi et al. [25]
explored the sensitivity of GMI high-frequency channels to falling snow at high latitudes.
Yin and Liu [26] proposed a variational snowfall retrieval algorithm for GMI. In addi-
tion, Rysman et al. [27,28] presented an all-surface snowfall retrieval algorithm for GMI.
Nevertheless, current GMI snowfall retrieval algorithms heavily rely on initial snowfall
profiles derived from CPR or DPR measurements, further highlighting the significance of
spaceborne microwave radars in global snowfall retrievals.

Since CloudSat CPR and GPM DPR provide valuable global snowfall measurements,
it is important to compare and assess their snowfall retrievals for future improvements on
global snowfall estimates. Tang et al. [29] directly compared CPR and DPR precipitation
retrieval products. Their results indicated that CPR outperforms DPR in terms of light
snowfall detection. On the other hand, DPR seems to observe more snowfall events
than CPR at low and mid latitudes, possibly due to different scanning characteristics
and precipitation phase classification methods between CPR and DPR. Casella et al. [30]
evaluated GPM DPR snowfall detection capability through comparisons with CloudSat
CPR. It is seen that DPR retrieval products miss a large portion of light snowfall events,
while CPR retrieval products underestimate intense snowfall events. The misdetection of
snowfall events by DPR is mainly caused by its large minimum detectable reflectivity values.
The side lobe clutter mitigation method also removes some weak snowfall signals associated
with small radar reflectivity values around minimum detectable reflectivities. In addition,
they pointed out that different precipitation phase classification methods used between CPR
and DPR retrieval products can further complicate the direct comparison of their snowfall
retrievals. Skofronick-Jackson et al. [31] compared GPM and CloudSat snowfall products
for a multiyear period. In general, DPR fails to detect most light snowfall events, while CPR
underestimates heavy snowfall rates due to decreased backscattering efficiency of large
particles and hydrometeor attenuation at W-band, which is also mentioned by some recent
studies [32,33]. They deliberately explored different factors contributing to CPR and DPR
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retrieval product discrepancies, including surface precipitation phase classification method,
instrument sampling (orbits and spatial resolutions), instrument sensitivity (minimum
detectable reflectivities) and retrieval algorithm assumptions (reflectivity to snowfall rate
relationships). After mitigating these four issues, the underestimation of global snowfall
rates by DPR is reduced to under 20%.

In this study, spaceborne radar snowfall estimates from multiyear coincident CloudSat
CPR and GPM DPR measurements [34] are assessed. Instead of directly using radar
products, snow water content profiles are firstly derived from CPR and DPR reflectivity
profiles using the same microphysical assumptions. Besides snowfall rate, snow water
content is also provided by CloudSat and GPM precipitation products. One advantage
of deriving snow water content is that there is no need to assume particle fall velocity
models which also contribute to precipitation product discrepancies. Only CPR and DPR
measurements over oceans are included for this study, since ground-based observations
for directly evaluating satellite snowfall retrievals are lacking. Other factors contributing
to snowfall retrieval discrepancies highlighted by Skofronick-Jackson et al. [31] are also
carefully considered and mitigated for a more equitable comparison. This study aims to
explain the remaining snowfall retrieval differences between CPR and DPR after mitigation
steps, which is important for truly assessing the snowfall detection capabilities of current
spaceborne radars. The results presented in this study can help develop global snowfall
retrieval algorithms for the upcoming Aerosol Cloud Convection and Precipitation (ACCP)
mission [35,36] with available Ku-, Ka- and W-band spaceborne radar measurements.

The remaining of this paper is organized as follows. Section 2 describes data sources,
mitigation methods to reduce snow water retrieval differences and retrieval methods.
Section 3 presents the assessment of CPR and DPR snow water retrievals and discusses
the remaining retrieval differences between CPR and DPR. Section 4 gives a summary and
conclusions for this study.

2. Data Sources and Methods
2.1. Satellite Sensor Description

The CloudSat–GPM coincidence dataset [34] is employed for multiyear assessment of
snow water retrievals. It mainly consists of collocated radar reflectivity profiles between
CPR and DPR as well as ancillary European Centre for Medium-range Weather Forecasts
(ECMWF) state variables interpolated to CPR bins. It is easy to incorporate other parameters
from CPR and DPR standard products using collocation indices. CloudSat 2B-GEOPROF,
GPM 2A Radar and GPM 2B Combined products are also used for constructing oceanic
annual mean surface snow water content maps.

The CloudSat was launched into a sun-synchronous orbit. The CPR operates at the
94 GHz (W-band) with nearly global coverage. Its footprint size is about 2.3 km along
the track and 1.4 km across the track. Its vertical bin size is about 240 m. The GPM Core
Observatory was launched into a non-sun-synchronous orbit at 65◦ of inclination. The
DPR operates at 13.6 (Ku-band) and 35.5 (Ka-band) GHz with a spatial coverage between
65◦S and 65◦N. The DPR Ku-band has one scanning pattern of normal scan (NS), while
the DPR Ka-band has two scanning patterns of match scan (MS) and high-sensitivity scan
(HS). The Ku NS has 49 footprints. In the Ka MS, there are 25 footprints matched to the
central footprints of Ku NS from 13 to 37. It has a footprint size of about 5.2 km at nadir
and 5.6 km at the largest scan angle. The vertical bin size of DPR is about 125 m for Ku
NS and Ka MS. While different orbits between CloudSat and GPM satellites can cause
differences in instrument sampling between CPR and DPR, the use of coincident CPR
and DPR measurements automatically ensures the same spatial coverage of spaceborne
radars between 65◦S and 65◦N. Different spatial resolutions between CPR and DPR are
also considered. Since the footprint size of CPR (about 2 km) is smaller than that of DPR
(about 5 km), the beam averaging method is applied to CPR reflectivity profiles. A CPR
profile matched to a single DPR profile is composited by averaging all CPR profiles within
a searching radius of 4 km around the location of that DPR profile. The vertical bin size
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of CPR (about 240 m) is larger than that of DPR Ku NS and Ka MS (about 125 m). In the
original coincidence dataset, a single CPR bin is matched with the first DPR bin above
this CPR bin searching from the bottom of a matched DPR profile. Vertically averaging
two nearest DPR bins above and below a CPR bin has been tested, producing very similar
results to the original dataset. Accordingly, the vertical matching method is kept the same
for this coincidence dataset.

2.2. Data Limitations and Processing Methods

As mentioned by Skofronick-Jackson et al. [31], different surface precipitation phase
classification methods can significantly affect snowfall retrievals especially over oceans
where temperature lapse rates near the surface can be steep. At high latitudes, the low-level
temperature inversion is frequently observed and can directly modify the surface precipita-
tion phase [37]. Any surface precipitation phase classification method not including the
information of temperature structure near the surface may overestimate the occurrence of
surface snowfall events. Therefore, a parameterization of surface snowfall probability from
Sims and Liu [38] is adopted here to select radar profiles associated with surface-falling
snow. This parameterization has included the information of the near-surface air tem-
perature and low-level vertical temperature lapse rate calculated from ECMWF ancillary
state variables for CPR to distinguish solid and liquid precipitation. A radar profile with a
surface snowfall probability higher than 50% is selected for this study.

Discrepancies in instrument characteristics between CPR and DPR can cause notice-
able differences in snowfall retrievals. In terms of instrument sensitivity, the minimum
detectable reflectivity of CPR is around −30 dBZ [8]. The precipitation threshold of CPR
reflectivity is defined as −15 dBZ [39,40]. On the other hand, Hamada and Takayabu [41]
showed that the post-launch minimum detectable reflectivity of the DPR Ku-band is about
12 dBZ over oceans, beyond the design specification [5]. Skofronick-Jackson et al. [31]
also showed this minimum detectable reflectivity value of 12 dBZ for the DPR Ku-band.
In this study, the minimum dateable reflectivity of CPR and DPR is defined as −30 and
12 dBZ, respectively. The precipitation threshold of −15 dBZ is adopted for CPR. Besides,
the employment of different radar frequencies between CPR and DPR also contributes to
differences in snowfall retrievals. As mentioned by previous studies [31,33], the backscatter-
ing of large snow particles at the W-band can become non-Rayleigh, leading to differences
in backscattering efficiency of snow particles between CPR and DPR. The attenuation at
different radar frequencies is another issue to be considered. At the W-band, the gaseous
attenuation is mainly due to water vapor, which is not negligible at low latitudes [7]. The at-
tenuation due to frozen hydrometeors can be substantial in heavy snowfall events, partially
balanced by multiple scattering [42]. Nevertheless, the uncertainty in modeling the effect
of multiple scattering in heavy snowfall events remains large. Supercooled liquid water
may also attenuate W-band radar reflectivities significantly. The CPR is not designed to
detect cloud liquid water droplets. One approach for correcting this type of attenuation is
to use coincident cloud liquid water retrievals from GPM precipitation products [43], while
this approach may contain some unavoidable errors. At the Ku-band, the attenuation effect
on radar reflectivity is generally negligible regardless of water vapor, frozen hydrometeors
and supercooled liquid water in snowfall events [44,45]. It is seen that the estimation
of attenuation due to hydrometeors and multiple scattering at the W-band may produce
some biases. Therefore, only gaseous attenuation at the W-band provided by CloudSat
2B-GEOPROF product is corrected for CPR.

Different scanning patterns between CPR and DPR are finally considered. Since the
DPR is a cross-track instrument, its surface clutter layer varies from 0.5 to 2 km over
oceans. Skofronick-Jackson et al. [31] only used the near-nadir beams of DPR for reducing
the height of surface clutter layer. In this study, 49 beams of DPR Ku NS are employed.
Hereafter, DPR refers to the DPR Ku-band. The impact of increased surface clutter layer
height on snow water retrievals will be evaluated later. The information of lowest clutter
free bin for DPR is provided by the DPR 2A Radar product. The CPR is a nadir-pointing
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instrument with a nearly constant surface clutter layer height over oceans. The lowest 1 km
layer above the surface is treated as the surface clutter layer for CPR. The near-surface bin is
defined as the first bin above the surface clutter layer for CPR and DPR. Eventually, about
19,100 coincident radar profiles with CPR reflectivity in the near-surface bin exceeding
−15 dBZ were selected for this study. It is worth mentioning that only about 40 coincident
radar profiles were found under the circumstance that DPR detects surface-falling snow
and CPR fails to detect it, possibly due to the remaining mismatch errors between CPR
and DPR. The geolocations of selected coincident radar profiles are displayed in Figure 1.
The color scheme from Green [46] is employed. Most radar profiles for surface snowfall
events are located at latitudes above 50◦. The locations of radar profiles are distributed
more homogenously in the southern hemisphere. The time span of selected radar profiles
covers from March 2014 to October 2017.
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2.3. Snow Water Retrieval Methods

Snowfall retrieval algorithms of CPR and DPR precipitation products employ different
microphysical assumptions, resulting in different implicit relationships between snowfall
rate/snow water content and radar reflectivity. In the CloudSat 2C-SNOW-PROFILE
product, pristine models for small particles and aggregate models for large particles are
used for calculating the backscattering properties of snow particles [47]. The snow particle-
size distribution is assumed in the exponential form. The slope and intercept parameters
of particle-size distribution are retrieved using an optimal estimation method [48]. This
optimal method minimizes a cost function representing the weighted sum of differences
between simulated and observed radar reflectivities as well as differences between a priori
and estimated snow microphysical properties. Snowfall rate or snow water contents profiles
are derived from retrieved particle-size distribution parameter profiles. In the GPM 2A
Radar product, snow particles are modeled as spherical particles [49]. The snow particle-
size distribution is assumed as Gamma distribution where the shape factor is assumed to be
known and constant. The slope and intercept parameters are constrained by a relationship
between snowfall rate and mass-weighted mean diameter. This relationship between
snowfall rate and mass-weighted mean diameter is modified to minimize the difference
between estimated and calculated path-integrated attenuation and increase the consistency
with Ka-band reflectivity. The GPM 2B Combined product also provides snowfall estimates
for DPR Ku NS [50]. It assumes a normalized gamma distribution of snow particle size and
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employs nonspherical pristine and aggregate models [51]. DPR Ku-band reflectivities are
used to derive initial precipitation estimates. The snow particle-size distribution parameters
are updated to be consistent with path-integrated attenuation, DPR Ka-band reflectivity and
GMI brightness temperature. As shown by Skofronick-Jackson et al. [31], snowfall retrievals
from GPM 2B Combined product are close to those from the GPM 2A DPR NS product,
since the GPM 2B Combined product also mainly relies on DPR Ku-band reflectivity.

For eliminating the impact of underlying microphysical assumptions on snow water
retrievals, a set of relationships between radar reflectivity (Ze) and snow water content
(SWC) at W and Ku-band is developed using the same microphysical assumptions. Sector
and dendrite models from Liu [52] are selected for representing small snow particles. The
sector particle is composed of three identical ellipsoids sharing the same center, while the
dendrite particle has many branches extending from the particle center. Both are commonly
observed in nature. One oblate aggregate model from Honeyager et al. [53] is selected
for representing snow aggregates. The oblate aggregate has an irregular shape and is
constructed from tiny rosette particles. The maximum particle size for sector and dendrite
models is restricted by 8 mm, while that for the oblate aggregate model can reach about
11 mm. The backscattering cross sections of the three snow particle models are calculated
using discrete dipole approximation (DDA) [54]. The exponential form of snow particle-size
distribution is assumed as

N(D) = N0exp(− ΛD) (1)

where D is the snow particle size, N0 is the intercept parameter, and Λ is the slope pa-
rameter. The exponential behavior of snow particle-size distribution has been found
under different atmospheric conditions from previous snowfall studies using airborne
measurements [55–57]. Forty-nine pairs of N0 and Λ provided by in situ measurements of
Braham [55] are adopted for developing Ze-SWC relationships. After obtaining the snow
particle-size distribution, Ze and SWC can be computed from the following equations

Ze =
λ4

π5|K|2

Dmax∫
Dmin

N(D)σbsc(D)dD (2)

and

SWC =

Dmax∫
Dmin

N(D)m(D)dD (3)

where λ is the wavelength, K is a function of the dielectric constant of water, Dmax and
Dmin are upper and lower limits of snow particle size, N(D) is the particle-size distribution,
σbsc(D) is the backscattering cross section of snow particle, and m(D) is the snow particle
mass. Figure 2 shows derived Ze-SWC relationships for CPR and DPR using sector, dendrite
and oblate aggregate models. Red and blue lines are obtained by least-square fitting of all
data points and can be represented by the following equations

SWC = 0.024Z0.75
e (CPR) (4)

SWC = 0.013Z0.56
e (DPR) (5)

where SWC is in g m−3 and Ze is in mm6 m−3. It is worth noting that either explicit or
implicit Ze-SWC relationship is very sensitive to employed microphysical assumptions.
The root-mean-square difference of the natural logarithm of snow water content (lnSWC)
between data points and fitting lines in Figure 2 is about 0.43 and 0.56 for W and Ku-band,
respectively. Since dlnSWC = dS/S, it means that the relative error of fitting lines due to the
spreading of data points is about 50%, consistent with results from Liu [15]. As mentioned
by previous studies [44,45], the uncertainty in the single-frequency Ze-SWC relationship
is generally large due to variability in snowflake microphysics. There is no intention to
derive the best Ze-SWC relationships at different radar frequencies for snowfall retrieval
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algorithms. A set of Ze-SWC relationships derived above is only a tool to make a more
equitable comparison between CPR and DPR.
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3. Assessment of Spaceborne Radar Snow Water Retrievals
3.1. Satellite Annual Mean Surface Snow Water Distributions

The annual mean surface snow water content distributions over oceans for the one
year of 2016 are firstly derived from CPR and DPR radar reflectivities as well as the GPM 2B
Combined product to demonstrate the effect of instrument sensitivity and retrieval methods
on snow water retrievals. The spatial coverage of snow water retrievals is restricted to
latitudes between 65◦S and 65◦N for reducing instrument sampling differences. The same
parameterization of the surface snowfall probability from Sims and Liu [38] is used to
classify the surface precipitation phase. CPR and DPR radar reflectivity is obtained from
CloudSat 2B-GEOPROF and GPM 2A Radar product, respectively. Snow water content
profiles are converted from CPR and DPR reflectivity profiles using Ze-SWC relationships
(4) and (5). The GPM 2B Combined product directly provides snow water content profiles
for DPR Ku NS. Figures 3 and 4 present annual mean surface snow water retrievals over
oceans from CPR and DPR reflectivities as well as the GPM 2B Combined product. Surface
snow water contents from the GPM 2B Combined product are much smaller than those
from DPR in both hemispheres. It implies that the underestimation of surface snow water
content by the GPM 2B Combined product is caused by employed retrieval methods. On
the other hand, surface snow water contents from CPR are much larger than those from
DPR at latitudes above 60◦, especially over the southern hemisphere. Since the same
retrieval method is applied to CPR and DPR, differences in surface snow water contents
between CPR and DPR are likely due to their different minimum detectable reflectivities,
as mentioned in Section 2.
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Figure 3. Northern hemisphere annual mean surface snow water content distributions over oceans
for the one year of 2016 derived from (a) CPR reflectivities, (b) DPR reflectivities and (c) the GPM 2B
combined product. Results are multiplied by 100.

It can be seen in Figures 3 and 4 that surface snow water contents from DPR exceed
those from CPR over broad regions at lower latitudes. To fully explore this finding, differ-
ences in annual mean surface snow water content distributions over oceans between CPR
and DPR (CPR minus DPR) are presented in Figure 5. In the northern hemisphere, there is
a region between 30◦W and 60◦W where positive differences can reach above 12 mg m−3 at
latitudes above 60◦N, while negative differences between 150◦E and 180◦E can be as large
as −3 mg m−3 at latitudes below 50◦N. In southern hemisphere, there is a broad region
at latitudes above 60◦S where positive differences are generally large and can reach up to
8 mg m−3. At latitudes below 50◦S, most regions are associated with negative differences
smaller than −1 mg m−3. Overall, surface snow water retrievals from CPR are much larger
than those from DPR for most regions at latitudes above 60◦. At latitudes below 50◦, surface
snow water retrievals from DPR become larger than those from CPR over a broad region
with small differences, especially over the southern hemisphere. In the following part,
the multiyear coincident spaceborne radar measurements are employed to further explore
snow water retrievals from CPR and DPR.
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3.2. Snow Water Retrievals from Coincident Satellite Radars

It is important to examine whether surface snow water retrievals from multiyear coin-
cident CPR and DPR measurements mimic their annual mean surface snow water retrievals
over oceans. The period of coincident CPR and DPR measurements covers from March
2014 to October 2017. Zonally mean surface snow water contents from coincident CPR
and DPR measurements over oceans are displayed in Figure 6. For reasonable sampling
numbers, 10◦ latitude band is used for producing mean surface snow water content values.
All snowfall events occur at latitudes above 40◦. It is clearly seen that mean surface snow
water contents from DPR generally increase towards lower latitudes, while those from CPR
tend to have larger values at higher latitudes. In the northern hemisphere, mean surface
snow water contents from CPR are larger than those from DPR with differences decreasing
towards lower latitudes. In the southern hemisphere, mean surface snow water contents
from DPR are smaller than those from CPR at latitudes above 50◦S. Only between 40◦S and
50◦S, mean surface snow water contents from DPR slightly exceed those from CPR. It is
evident that surface snow water retrievals from coincident CPR and DPR measurements
capture the main features of their annual mean surface snow water retrievals over oceans.
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Next, snow water content profiles derived from coincident CPR and DPR measure-
ments are divided into two conditions for better assessment. The snow water path is firstly
defined as the integrated snow water content in the vertical column. It is worth noting
that the CPR snow water path is always larger than zero because CPR reflectivities in
near-surface bins of selected radar profiles need to exceed the precipitation threshold of
−15 dBZ. One condition is that the DPR snow water path is equal to zero, meaning that
only CPR detects the falling snow. The other condition is that the DPR snow water path
is larger than zero, meaning that both CPR and DPR detect the falling snow. There are
about 16,800 snow water content profiles under the first condition, taking up about 88%
of all snow water content profiles. It implies that DPR only detects about 12% of CPR
snowfall events, generally consistent with the statistics from Skofronick-Jackson et al. [31].
This discrepancy in snowfall detection is mainly due to different instrument sensitivity
between CPR and DPR. The DPR minimum detectable reflectivity of 12 dBZ over oceans
tend to exclude most light snowfall events. All snow water content profiles under the
first condition are further grouped based on their CPR snow water paths at an interval
of 100 g m−2. Data count and surface snow contribution of each group is presented in
Figure 7. More than 12,000 snow water content profiles are associated with CPR snow
water paths smaller than 100 g m−2. Even though this group only contains snow water
profiles associated with very light snowfall events, it can still contribute more than 20% to
total surface snow water content of all CPR snow water content profiles due to its large
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data count. Data count and surface snow contributions of each group are then dramatically
decreased with increasing CPR snow water paths. When the CPR snow water path is
larger than 300 g m−2, the data count of each group is smaller than 500, and its surface
snow contribution is smaller than 10%. Nevertheless, the remaining groups of snow water
content profiles can contribute 48% to total CPR surface snow water content.
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Figure 7. Data count (bar) and surface snow contribution (line) of snow water content profiles
grouped by CPR snow water paths under the condition that only CPR detects the falling snow.

There are only about 2300 snow water content profiles under the second condition
that both CPR and DPR detect the falling snow. CPR and DPR snow water content profiles
are also grouped based on DPR snow water paths at an interval of 100 g m−2. Since snow
water content profiles are associated with moderate and heavy snowfall events under this
condition, CPR measurements tend to contain some biases. Therefore, the DPR snow water
path is employed to group snow water content profiles. Figure 8 shows the mean surface
snow water content and data count of each group for CPR and DPR. From the second group
with DPR snow water paths larger than 100 g m−2, surface snow water contents from DPR
exceed those from CPR. Differences in surface snow water contents between CPR and DPR
increase with increasing DPR snow water paths. When DPR snow water paths are larger
than 700 g m−2, the DPR surface snow water content is about 0.29 g m−3, while the CPR
surface snow water content can only reach about 0.1 g m−3. As mentioned before, CPR is
not suitable for heavy snowfall events due to its decreased backscattering efficiency of large
particles and significant hydrometeor attenuation. On the other hand, when DPR snow
water paths are smaller than 200 g m−2, a large portion of snowfall events are not detected
by DPR. After that, the number of DPR snow water content profiles without surface snow
water contents is decreased dramatically. At small DPR snow water paths, snow clouds may
produce light solid precipitation near the surface, possibly misdetected by DPR. Besides,
CPR may also partly overestimate surface-falling snow due to its surface clutter.

To directly compare the snowfall detection capability between CPR and DPR, occur-
rence frequencies of CPR and DPR surface snow water contents are displayed in Figure 9a.
It is clearly seen that DPR is not able to measure surface snow water contents smaller
than 0.05 g m−3 due to its large minimum detectable reflectivity. The peak of occurrence
frequencies of CPR surface snow water contents is about 16% at 0.07 g m−3. After that, the
occurrence frequencies decrease quickly with increasing CPR surface snow water contents,
implying that CPR performs poorly in detecting moderate and heavy snowfall events.
When CPR surface snow water contents are larger than 0.21 g m−3, the corresponding
occurrence frequencies are smaller than 1%. In contrast, the peak of occurrence frequencies
of DPR surface snow water contents is located at 0.11 g m−3 with a value of about 13%. The
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occurrence frequencies remain above 5% until DPR surface snow water contents increase
above 0.25 g m−3, indicating that DPR is suitable for detecting heavy snowfall events.
In Figure 9b, the impact of DPR surface clutter layer height on snow water retrievals is
explored. The subset refers to the central beams of DPR Ku NS (20 to 28) with low surface
clutter layer heights. Differences in occurrence frequencies of CPR and DPR surface snow
water contents between DPR full scan and its subset are comparably small. At small surface
snow water contents, differences in occurrence frequencies of CPR and DPR surface snow
water contents are confined to 2%. When CPR and DPR surface snow water contents
increase, differences in occurrence frequencies generally decrease. Since the surface clutter
layer for CPR is the constant 1 km layer, it implies that the impact of DPR surface clutter
layer height on snow water retrievals is not evident.
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(b) differences in occurrence frequencies between DPR full scan and its central beams under the
condition that both CPR and DPR detect the falling snow.

From the analysis above, it seems that DPR underestimates surface snow water con-
tents for small snow water paths, while CPR underestimates surface snow water contents
for large snow water paths. Consequently, zonally mean CPR and DPR snow water paths
and their occurrence frequencies under the second condition that both CPR and DPR detect
the falling snow are shown in Figure 10. DPR mean snow water paths are larger than
CPR ones in both hemispheres. In the northern hemisphere, CPR and DPR mean snow
water paths increase towards lower latitudes. In the southern hemisphere, DPR mean
snow water paths increase with decreasing latitudes, while CPR mean snow water paths
gradually decrease towards lower latitudes. Since CPR snow water paths may contain
large biases in moderate and heavy snowfall events, DPR snow water paths can better
characterize snowfall events under this condition. It seems that heavy snowfall events
are more frequent at lower latitudes, which is physically reasonable because convective
clouds that likely produce more intense falling snow are more frequently formed at lower
latitudes. Moreover, the difference in mean snow water paths between CPR and DPR
reaches its maximum value at latitudes below 50◦ in both hemispheres, implying that CPR
is subject to more hydrometeor attenuation and reduction in backscattering efficiency of
large particles at lower latitudes. On the other hand, occurrence frequencies of snow water
paths are generally small in a range from 9% to 16%, since a large amount of snow water
content profiles only detected by CPR exist in each 10◦ latitude band and can substantially
contribute to surface snow water contents. Therefore, mean surface water contents from
CPR are much larger than those from DPR at latitudes above 60◦, likely due to snow water
content profiles associated with light snowfall events misdetected by DPR, while mean
surface water contents from DPR exceed those from CPR at latitudes below 50◦ likely
due to snow water content profiles associated with heavy snowfall events underestimated
by CPR.
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Figure 10. Zonally mean snow water paths (line) and their occurrence frequencies (bar) for CPR
and DPR in 10◦ latitude band over oceans under the condition that both CPR and DPR detect the
falling snow.

Besides surface snow water content, we explored vertical profiles of snow water
content for CPR and DPR. Figure 11 presents CPR and DPR mean snow water content
profiles over oceans. Snow water contents in the surface clutter layer are copied from
those of the near-surface bin. CPR snow layers generally extend to about 6 km above the
ground regardless of DPR snow water paths, while DPR snow layers become deeper with
increasing DPR snow water paths and can only extend to about 4 km. At large DPR snow
water paths, CPR snow water content profiles may contain negative biases, leading to
decreased snow layer depths. On the other hand, most falling snow at high altitudes is light
and not detected by DPR. Therefore, DPR snow water depths are significantly restricted by
its low sensitivity. In addition, DPR snow water content profiles tend to have a different
vertical structure compared with CPR ones for group 1. DPR snow water contents near
the surface are extremely small, while CPR ones can still reach above 0.05 g m−3. This
discrepancy in snow water contents near the surface between CPR and DPR for group 1
is also likely caused by DPR large minimum detectable reflectivity. When snow clouds in
group 1 produce light solid precipitation near the surface, DPR is not able to detect most of
them near the surface.
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4. Conclusions

In this study, snow water retrievals over oceans from coincident CloudSat CPR and
GPM DPR Ku-band measurements for more than 3 years are assessed. The main factors
contributing to differences in snow water retrievals between CPR and DPR are carefully
considered, including instrument sampling, surface precipitation phase classification, in-
strument sensitivity, attenuation and multiple scattering as well as surface clutter. Moreover,
a set of Ze-SWC relationships for CPR and DPR is developed using the same microphysical
assumptions including snow particle-size distribution and backscattering properties of
nonspherical snow particle models.

Annual mean surface snow water content distributions over oceans for one year are
firstly derived from CPR and DPR reflectivities as well as the GPM 2B Combined product.
It is seen that surface snow water contents from the GPM 2B Combined product are much
smaller than those from DPR, possibly due to different retrieval methods. On the other
hand, surface snow water contents from CPR are much larger than those from DPR at
latitudes above 60◦, while surface snow water contents from DPR exceed those from CPR
with small differences at latitudes below 50◦. Zonally mean surface snow water contents
over oceans from coincident CPR and DPR measurements also display similar features.
Coincident CPR and DPR snow water content profiles are further explored by dividing into
two conditions. One condition is that only CPR detects the falling snow. Another condition
is that both CPR and DPR detect the falling snow.

Several conclusions can be drawn from the results. First, about 88% of all snow water
content profiles are under the condition that only CPR detects the falling snow. A large
portion of them is associated with light snowfall events, contributing more than 20% to
total surface snow water content of all CPR snow water content profiles. Second, only
about 12% of all snow water content profiles are under the condition that both CPR and
DPR detect the falling snow. DPR surface snow water contents are significantly larger
than CPR ones in moderate and heavy snowfall events. Total surface snow water content
of all DPR snow water content profiles is about 60% of total CPR surface snow water
contents. Third, occurrence frequencies of surface snow water contents for DPR generally
shift to larger surface snow water contents compared with those for CPR, indicating that
CPR is sensitive to light snowfall events, while DPR is suitable for moderate and heavy
snowfall events. Overall, mean surface water contents from CPR are much larger than
those from DPR at latitudes above 60◦ likely due to light snowfall events misdetected by
DPR, while mean surface water contents from DPR exceed those from CPR at latitudes
below 50◦ likely due to heavy snowfall events underestimated by CPR. The discrepancy
in snowfall detection capability between CPR and DPR is closely related to different
instrument sensitivity, backscattering efficiency of large particles as well as attenuation
and multiple scattering between CPR and DPR. In addition, it is found that DPR large
minimum detectable reflectivity prevents its detection of snow water contents at high
altitudes, causing a noticeable decrease in snow layer depth.

It is admitted that this study is subject to some limitations. The coincident snowfall
profiles between CPR and DPR are not abundant and mainly concentrated at latitudes
above 50◦ due to different satellite and instrument characteristics. Consequently, smaller
latitudes bands (e.g., 5◦) are not considered for snowfall statistical results. Since snow
water content values cover a wide range from 0.001 to 1 g m−3, the standard deviations of
snow water contents at different latitude bands are generally large. Nevertheless, the mean
value of snow water content can be related to total snow water amount at each latitude
band. The surface clutter also impedes the better assessment of CPR and DPR surface snow
water retrievals.

Spaceborne radars with comparable specifications at Ku- and W-bands on the same
satellite are essential for global snowfall estimates. The addition of Ka-band radar can
further improve global snowfall retrievals by promoting estimates of snow particle-size
distributions. This configuration is realized in the upcoming ACCP mission [35,36]. ACCP
architectures also carry a sub-millimeter passive microwave radiometer that can provide the
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important information on cloud ice and liquid water. The results in this study are beneficial
for future snowfall retrieval algorithms using spaceborne multi-sensors including multi-
frequency radar and microwave radiometer.
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