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Abstract: High spatiotemporal flood monitoring is critical for flood control, mitigation, and manage-
ment purposes in areas where tectonic and geological events significantly exacerbate flood disasters.
For example, the rapid lake shrinkage resulting from the transformations of enclosed seas into lakes
by the rapid land movement in the collision zone dramatically increases the flood risks in Indonesia,
which requires frequent and detailed monitoring and assessment. This study primarily quantified the
detailed flood disasters associated with the rapid lake shrinkage in Gorontalo Regency in Gorontalo
Province, Indonesia using high spatiotemporal monitoring with a combination of PlanetScope small-
sat constellations, Sentinel-1, and surface water datasets. Based on the findings that indicated its
volume, distribution, pace, and pattern, the flood event that occurred in Gorontalo in November
2022 was demonstrated within a short interval of 2–12 days. The results also indicate both direct
and indirect floodwater overflow from different water resources. Combining these results with the
surface water occurrences from 1984 to 2021, our findings reveal the historical major flood-prone
areas associated with the rapid lake shrinkage. These findings are expected to aid in the timely
high spatiotemporal monitoring of rapid environmental change-induced flood disasters, even in
tropical regions with high cloud coverage. Furthermore, these are also expected to be integrated into
the flood hazard mitigation and management strategies associated with local-specific tectonic and
geological systems.

Keywords: flood mapping; high spatiotemporal monitoring; Planet smallsat constellations; rapid
lake shrinkage; Sentinel-1 SAR

1. Introduction

The combinations of natural environmental degradation and human activities and
decisions have inextricably influenced the capacities of the world’s ecosystems [1–3], such
as lake systems [4–9]. Flood is an overflow of water that temporarily submerges land [10],
and it is one of the most destructive environmental hazards, costing human lives and
displacement, loss of livelihood, infrastructural damage, and agricultural losses [11,12].
Therefore, quantifying the spatiotemporal dynamic distribution of floodwater is critical
for damage assessment, disaster preparedness, mitigation, management, and recovery
activity purposes [13–16]. Meanwhile, local tectonic and geological systems also cause
rapid changes in the lake systems [4,17], thereby significantly accelerating flood risks.

Indonesia lies on the contact point between the Eurasian–Australian plates, which
still experience an uplift movement that results in various unusual geological pheno-
mena [17,18]. For example, Limboto Lake on Sulawesi Island is rapidly shrinking [17,19,20]
as a result of rapidly induced erosion of the inner bay sediments formed during the plate
collision due to the pre-Pleistocene uplift [17]. The overgrowth and massive distributions of
invasive floating plants, such as the water hyacinth, have also contributed to lake siltation
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and land conversion [17,21]. Furthermore, this substantial lake shrinkage has decreased
the lake’s water-storing capacity and increased its high vulnerability to floods, especially in
converted lands (land that is converted from the lake for other purposes such as agricultural
activities). Even if a lake returns to its previous extent during the ongoing and postflood
stages, it is regarded as a flooded area in this study.

As remote sensing techniques advance, an increasing number of Earth observation
satellites are available to monitor natural hazards and disasters over time at various
spatiotemporal scales [22–32]. This technology provides a basis for rapid and effective
responses to natural hazards and disasters (e.g., floods) by capturing Earth’s surface
information, even in remote, inaccessible, and dangerous areas [23]. Previous studies
investigated the time-series surface water distribution using passive optical sensors, active
microwave radar sensors, their combination, or remote sensing techniques and hydraulic
modeling. The passive optical systems provide unique data on the land surface, which
is appropriate for land use or landcover (LC) classification because of their exceptional
spatial, spectral, and temporal resolution [33] and quick and precise retrieval capacity [16].
However, they are easily affected by the cloud cover, particularly in tropical regions, which
experience a high cloud coverage [34–39]. The active microwave radar systems acquire the
backscattered intensity information of the surface using cloud-penetrating properties [40],
thereby overcoming the weather-related limitations of passive sensors. In previous studies,
moderate resolution imagery, such as the moderate resolution imaging spectroradiometer
(~250 m, twice a day) [24–26], Landsat (~30 m, 16 days) [27,28], Environmental Satellite
(~150 m, 35 days) [41], Radarsat-2 [a Synthetic Aperture Radar (SAR) operation system,
~100 m, 24 days] [41], and Sentinel-1 (S-1) [SAR, 10 m, 12 days) [29,30], are widely used
with various flood detection methodologies. Although timely and detailed flood maps
are required for effective flood management, none of them can be solely implemented for
the timely investigation of disaster and relief supply [31,32]. A combination of optical and
SAR sensors has been used to overcome these limitations [15,16,31,33]. This remote sensing
technique has been used in various applications such as flood mapping [27,29,30,33,41],
impact assessment on vegetation [24,33,42], and monitoring spatiotemporal dynamics of
flood water [13,16,26,31,43]. Although the number of flood surface observations has im-
proved, high spatiotemporal, detailed information is still essential to analyze the dynamics
of an ongoing flood and postflood recovery processes [33], particularly in regions of high
flood vulnerability resulting from rapid environmental changes.

Previous studies on flood monitoring largely relied on areas where floods occurred
due to climate change, human-induced activities, or combinations of these factors [4–9].
However, the complexity of flood disasters associated with rapid lake shrinkage caused
by unique tectonic and geological systems, such as inner bay creations under land uplifts
and rapid erosion of the inner bay sediments, has not yet been well explored. Limited
studies conducted in such important areas revealed the details of flood inundation areas
with more than two-month intervals [44], flood detection using before and postflooding
imageries [45], and flood simulation [46]. However, a dramatic increase in flood hazard
threats resulting from such local tectonic and geological systems urgently necessitates a
considerable amount of detailed spatiotemporal analyses. Challenges related to the dense
cloud cover remain in tropical regions experiencing heavy rainstorms. Therefore, using
high spatiotemporal observations combined with SAR-based information may be the key
to identifying details such as floodwater distribution, postflood recovery, and high-risk
areas over time. In line with this, applying high spatiotemporal commercial observation
smallsats, such as PlanetScope’s (PS) smallsat constellations (SSCs), comprising multiple
satellite groups with approximately 3 m spatial resolutions [47], is critical in identifying
details on daily, weekly, and monthly bases.

This study primarily investigates the flood disasters associated with the rapid lake
shrinkage under unique tectonic and geological systems in Gorontalo Regency in Gorontalo
Province, Indonesia. Particularly, specific objectives are to (1) investigate the converted
lands associated with the rapid lake shrinkage from 1978 to 2020 using Landsat series,
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(2) assess the detailed floodwater distribution and recovery processes from 2021 to 2022
using a combination of the PS-SSC and S-1 series, and (3) characterize major flood-prone
areas associated with historical water occurrences from 1984 to 2021 and the world LC map
2020 datasets.

Here, the novelty of our study includes developing a novel spatiotemporal flood
monitoring system in flood-prone areas due to unique tectonic and geological systems
using a combination of multiple sensors and data sources.

2. Materials and Methods
2.1. Overall Methodological Workflow

Figure 1 shows the methodological workflow used in this study, which is organized
into four main steps to achieve its primary objective of investigating the flood disasters
associated with the rapid lake shrinkage. First, the converted lands were identified using a
supervised classification method using the Landsat series (1978–2020). Second, the flood-
inundated areas and their recovery processes along major river areas and converted lands
identified from Step 1 were analyzed using a combination of the PS-SSC and S-1 series
(2021–2022). Here, the supervised classification and unsupervised image thresholding
methodologies were applied to the PS-SSC and S-1 series, respectively. Third, the potential
flood-inundated areas were extracted using water occurrence datasets (1984–2021). Fourth,
major flood-prone areas were identified by overlaying the results generated from Steps 1–3.
This study presents a discussion based on its findings. The numbers in Figure 1 correspond
to the specific objectives mentioned in the Introduction section. The methods used in each
step are described in the subsequent sections.

Figure 1. Overall methodological workflow.

2.2. Study Area

Limboto Lake plays a remarkable hydrological, ecological, socioeconomic, and cultural
role at the local and regional levels [17,38,48]. It receives water from 23 rivers, of which
Alopohu River is the major contributor of river sediments, creating a delta in the lake’s
western part [17,38]. Unfortunately, it is one of the 10 critically endangered lakes in
the country [49] due to various factors, such as geological characteristics [17], human
activities [50], and climate change. Our study area is located in the Gorontalo flat lowland
plain, particularly on the western side of the lake (Figure 2). Lowland agriculture, such as
crop cultivation, is mainly practiced in this area.
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Figure 2. Study area: (a,b) overview of the study area and (c) Limboto Lake and flowing rivers.

The high-intensity precipitation in this region caused river overflows on 6 November
2021, which influenced several subdistricts and affected 3634 people and 1262 houses with
a maximum flood depth of 1 m [51].

2.3. Satellite Imagery and Data Processing
2.3.1. Landsat Series

Landsat surface reflectance products from 1978 to 2020 were used to investigate the
converted lands resulting from the rapid lake shrinkage. Imagery was chosen based on
seasons (April and May) and cloud coverage (<30%) to minimize the potential impacts
from meteorology and agricultural activities. Subsequently, cloud-masking functions
were applied to the acquired Landsat 3, 5, 7, and 8 imageries. Indices, such as the bare
soil index (BSI), modified normalized difference water index (MNDW), built-up index
(NDBI), and normalized difference vegetation index (NDVI), were then generated using
Equations (1)–(4). The elevation and slope data acquired from the Advanced Land Obser-
vation Satellite World 3D-30 m were also added to each median composite together with
the above-generated indices to increase the classification quality. Subsequently, the data
were normalized to the 0–1 range.

BSI = ((Red + SWIR) − (NIR + Blue))/((Red + SWIR) + (NIR + Blue)) (1)

MNDWI = (Green − SWIR)/(Green + SWIR) (2)

NDBI = (SWIR − NIR)/(SWIR + NIR) (3)

NDVI = (NIR − Red)/(NIR + Red) (4)

2.3.2. PlanetScope Series

PlanetScope’s SuperDove (PS-SD) surface reflectance products (Ortho Scene–Analytic
Level 3B) [52] from 2021 to 2022 were used to investigate the detailed flood inundation
extents and recovery processes in the ongoing and postflood stages. After applying
a cloud-masking function, the NDVI, elevation, and slope were added to each image
and normalized.

2.3.3. Sentinel-1 Series

The S-1 C-band SAR level-1 grand range detected datasets (interferometric wide-
swath mode, descending, vertical–vertical polarization) were used to supplement the
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PS-SD datasets. The S-1 image acquired on 28 July 2021 was selected as a preflood stage
by referring to the Climate Hazards Group InfraRed Precipitation with Station (CHIRPS)
data. Image processing, including speckle filtering, terrain correction, and conversion of
the intensity value of σ0, was applied.

2.3.4. Surface Water and World Landcover Datasets

The European Commission (EC) Joint Research Center (JRC) Global Surface Water
Mapping Layers (GSWML) v1.4 (1984–2021) and the European Space Agency (ESA) World-
Cover 10 m 2020 (WC2020) products were also used to determine the long-term changes in
the surface water occurrences (SWOs). The GSWML product contained different surface
water data facets generated based on Landsat 5, 7, and 8 products with a 30 m ground
resolution [53]. The WC2020 dataset provided a global LC map of 2020 with a 10 m ground
resolution generated by the S-1 and Sentinel-2 datasets [54]. First, the GSWML dataset’s
water occurrence band representing the surface water frequency from 1984 to 2021 was
primarily used to investigate the areas that floods may historically have caused. We primar-
ily considered the SWOs less than 20% (SWO < 20) as flood-affected surface water extents.
Second, the open water and herbaceous wetland classes were extracted from the WC2020
product. Third, the resulting images generated from Step 1 were masked by the results
from Step 2. Postclassification was applied, thereafter.

2.3.5. Climate Hazards Group InfraRed Precipitation with Station Dataset

The time-series precipitation in the study area was simultaneously assessed using the
CHIRPS data to regard vulnerability to the flood hazards. The precipitation trends were
also statistically evaluated using the nonparametric Mann–Kendall test with significance at
the 95% confidence level, followed by Sen’s slope test if any trend existed.

The Landsat, PS-SD, S-1, GSWML, WC2020, and CHIRPS datasets were processed via
Google Earth Engine. Consequently, four medium Landsat images, five PS-SD, eight S-1
images, and one water occurrence image were generated. Table 1 summarizes the main
specifications of the imagery and sensors used in this work [47].

Table 1. Main specifications of the satellite imagery used in the study.

Instrument
(Sensor) Acquisition Date Spatial Res.

(m)
Temporal Res.

(Days)

Operational Mode
and Pass

(Polarization)

Space
Agency

Landsat3 (TM) 23 May 1978 30–60 16 USGS
Landsat7 (ETM+) 14 April 2002, 16 May 2002 15–30

Landsat8 (OLI) 10 April 2015, 12, 28 May 2015 15–30
23 April 2020, 9, 25 May 2020

Planet smallsat 7 November 2021 3 1 Planet
(SuperDove) 13 November 2021 Scope

23 November 2021
12 December 2021

27 January 2022

Sentinel-1(C-SAR) 28 July 2021 10 12 Interferometric
Wide ESA

13 November 2021 swath mode
25 November 2021 Descending
7 December 2021 (vertical–vertical)

19 December 2021
31 December 2021

12 January 2022
24 January 2022
5 February 2022

2.4. Landcover Classification and Accuracy Assessment

The LC classes were categorized into agriculture/barren, built-up, vegetation, and
water in the Landsat and PS-SD series. A supervised classification was applied to the
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results generated from Sections 2.3.1 and 2.3.2 for the time-series LC transformation (LCT)
analysis. Moreover, the ground control points were determined at the pixel level. A
simple random forest classifier with 50 decision trees was used. The overall accuracy was
employed to evaluate the accuracy of the produced maps. Various SAR-based techniques
for flood detection were used; however, threshold-based methods are commonly applied in
unsupervised classification owing to their simplicity and flexibility [13]. For the S-1 datasets
generated from Section 2.3.3, the Otsu thresholding algorithm, which is an exhaustive
algorithm for searching the global optimal threshold [55], was applied to generate binary
images of water and nonwater areas. The results obtained from the S-1 were validated
using the PS-SD image acquired on 13 November 2021 as a reference. Thereafter, this
accuracy level was applied to all S-1 results due to the unavailability of data captured on
the same date. The resulting water classes from the PS-SD and S-1 were then masked by
the trees, built-up, open water, and herbaceous wetland classes extracted from the WC2020
dataset. The ground control point, classifier, accuracy assessment, and masking results
were implemented in Google Earth Engine. The total floodwater areas were calculated
and graphed.

2.5. Identification of Major Flood-Prone Areas

Major flood-prone areas were visualized by overlaying the results of the Landsat
(23 May 1978) generated from Section 2.3.1, S-1 (7 December 2021) generated from
Section 2.3.2, and SWOs < 30 imageries generated from Section 2.3.4.

2.6. Investigation of Lake Surrounding Areas

Field survey and observation was conducted using a Garmin Oregon 750 handheld
Global Positioning System in January 2020 to investigate the environment surrounding
the lake and the geology of the Gorontalo lowland plain area. A total of 130 points were
investigated in terms of sedimentary structure, riverside environment, and converted lands.
Additionally, interviews were conducted with local villagers on the worksites.

3. Results
3.1. Time-Series Landcover Transformations Associated with Lake Shrinkage and Emergence of
Converted Lands

The four LC maps had overall accuracies of 93.8% (1978), 93.3% (2002), 100.0% (2015),
and 100.0% (2020) (Figure 3a–d). The decreases in the water surface extent were particularly
remarkable, that is, 40.3 km2 (1978), 32.6 km2 (2002), 15.7 km2 (2015), and 11.8 km2 (2020).
However, the following notable increases in the built-up and agriculture/barren extents
were also observed: 1.1 km2 (2002), 4.9 km2 (2015), and 6.8 km2 (2020) in the built-up
area and 7.4 km2 (1978), 18.5 km2 (2002), 33.7 km2 (2015), and 29.6 km2 (2020) in the
agriculture/barren area. The vegetation extents were 36.2 km2 (1978), 31.5 km2 (2002),
29.3 km2 (2015), and 35.9 km2 (2020). According to the time-series LCT analysis, the lake
shrinkage was critical, even in the study period. Vegetation, such as water hyacinths, has
been widely spread in the lake and its edge since 2015 (Figure 3c–g), transforming them
into agricultural/barren extents (Figures 3a–d and 4). The emergence of converted land is
remarkable on the west side of the lake, particularly in Teratai Village (Figure 4), which
receives water from the Alopohu, Galian Tiga Hari, Marisa, and Meluopo rivers.



Remote Sens. 2023, 15, 1099 7 of 16Remote Sens. 2023, 15, x FOR PEER REVIEW 7 of 16 
 

 

 
Figure 3. Landcover transformations in the lake’s surrounding areas: (a–d) landcover classification 
using Landsat series (1978–2020) and (e–g) water hyacinth growth on/at the lake in 2020. 

 

Figure 4. Landcover changes in Teratai Village. 

(a) 1978 (b) 2002 (c) 2015

(d) 2020

(e) (f) (g) 

Village boundary
Major river
Teratai Village

Landcover
Class
Built-up
Agriculture/barren
Water
Vegetation

Legend

Figure 3. Landcover transformations in the lake’s surrounding areas: (a–d) landcover classification
using Landsat series (1978–2020) and (e–g) water hyacinth growth on/at the lake in 2020.

�

���

�

���

�

���

�

���

�	�� �	�� �	�� �		� �		� ���� ���� ���� ���� ����

�
�


�
��
�
� �

�������� ����������
��
��
� 	
�
� �
�
�
����

Figure 4. Landcover changes in Teratai Village.



Remote Sens. 2023, 15, 1099 8 of 16

3.2. Time-Series Precipitation Trend

The monthly precipitation from 1981 to 2022 was computed using the CHIRPS Pentad
dataset (Figure 5). The maximum monthly precipitation in June 2017 was 357.9 mm,
whereas the average value was 126.6 mm. The statistical test described in Section 2.3.5
showed a positive increasing trend with a 0.085 slope (p = 0.00002).
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Figure 5. Monthly precipitation trend in the study area (1981–2022).

3.3. Time-Series Flood Inundation Areas Using Multiple Satellite Dataset Series

Figure 6 demonstrates the time-series LC transformations (LCTs) and the detected
water extents using the PS-SD and S-1 datasets. The five LC maps had overall accura-
cies of 91.3% (7 November 2021, Figure 6b), 90.9% (13 November 2021, Figure 6c), 92.9%
(23 November 2021, Figure 6d), 95.5% (12 December 2021, Figure 6g), and 95.2% (27 Jan-
uary 2022, Figure 6l), whereas S-1 had an accuracy of 90.0%. As described in Section 2.2,
the high-intensity precipitation caused river overflows on 6 November 2021 [51]. Ex-
treme water extents were observed on 7 November 2021 in the northwestern part of the
study area, widely spreading across the Galian Tiga Hari, Marisa, and Meluopo rivers
(Figure 6b). Moreover, the water overflow reached the lake by 13 November resulting in
barren/agricultural lands (Figure 6c). However, the water observed in the northwestern
and western parts of the lake remained until the middle of December (Figure 6d–h) and
gradually cleared as usual (Figure 6i–m). Small pixels in the northwestern part of the lake
corresponded to the cropland (Figure 6e–h), where water remained similar to that in the
northwestern and western parts of the lake. Lake vegetation, such as water hyacinths, was
mobile and is associated with the massive water inflow.

The potential flood-affected surface water extent computed based on Section 2.4 was
graphed together with the precipitation amount (Figure 7). The water extent observed on
28 July 2021 was 1.5 km2. A peak change was significantly observed on 7 November 2021
(19.6 km2), which was followed by those on 13 November 2021 (14.7 km2), 23 November
2021 (11.5 km2), 25 November 2021 (7.9 km2), 7 December 2021 (7.3 km2), 12 December
2021 (8.4 km2), and 19 December 2021 (5.5 km2). Water extents <4 were observed from the
end of December 2021 to early February 2022. High precipitation >15 mm was observed on
8 (31.9 mm), 9 (33.1 mm), 19 (17.1 mm), 27 (16.7 mm), and 28 (25.4 mm) November 2021.
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(a)	28	July	2021 (b)	7	November	2021 (c)	13	November	2021

(d)	23	November	2021 (e)	25	November	2021 (f)	7	December	2021

(g)	12	December	2021
(h)	19	December	2021 (i)	31	December	2021

(j)	12	January	2022 (k)	24	January	2022 (l)	27	January	2022

.
Built-up
Agriculture/
Barren

.
Water
Tree

.
Water

	(n)	ESA	2020

(m)	5	February	2022

PlanetScope Sentinel-1 .
Tree	cover
Shrubland
Grassland

.
Cropland
Built-up
Bare/sparse	vegetation

.
Permanent	water	bodies
Herbaceous	wetland

ESA	Landcover	2020

Figure 6. Landcover transformations and water areas using PlanetScope’s SuperDove and Sentinel-1
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series: (a,e,f,h–k) and (m) water extents extracted from the Sentinel-1 datasets using the Otsu
thresholding algorithm; (b–d,g,l) landcover classification using PlanetScope’s SuperDove datasets;
and (n) ESA 2020 landcover.
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Figure 7. Potential flood-affected surface water extents after the flood on 6 November 2021 and the
precipitation amount.

3.4. Surface Water Occurrence at the Lake’s Surrounding Areas

SWOs < 30 observed from 1984 to 2021 were extracted (Figure 8a). The total area of
SWOs < 30 was 22.3 km2. The large portion comprised SWOs 1 < 10 (83.1%), followed by
10 < 20 (10.7%) and 20 < 30 (6.2%). Higher SWOs 20 < 30 were notably observed at the
western edge of the lake, bordering the northeastern part of Teratai Village, which is mainly
covered with grassland (Figure 8b). Conversely, a lower SWO 1 < 10 was observed along
the Galian Tiga Hari River and the northern part of Teratai Village, where croplands are
widely distributed (Figure 8b).

SWOs 10 < 20 at the riverside village level are as follows: Teratai (0.12 km2), Hung-
galuwa (0.04 km2), and Bolihuangga and Tenilo (0.01 km2) Villages. SWOs 1 < 10 were
largely found in Teratai (1.21 km2), followed by the Bolihuangga (0.29 km2), Limehe
Timur (0.26 km2), Tenilo and Tunggulo (0.20 km2), Hunggaluwa (0.15 km2), Hutabohu and
Yoosonegoro (0.05 km2), and Padengo (0.01 km2) Villages (Figure 9). Excluding Teratai
Village, the following remarkable villages that showed lower SWOs also comprised several
rivers: Bolihuangga (Galian Tiga Hari, Marisa, and Meluopo rivers) and Tenilo and Tung-
gulo (Galian Tiga Hari and Marisa rivers) Villages (Figure 8a). Conversely, the lower SWOs
in Limehe Timur Village were observed slightly away from Alopohu River.
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Figure 8. (a) Surface water occurrence from 1984 to 2021. (b) ESA’s World Cover 2020.
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Figure 9. Area identified with surface water occurrences by villages (1984–2021).

The extracted SWOs < 30 were further overlapped with the imagery of 23 May 1978
and 7 December 2022 (Figure 10). Although a higher SWOs 20 < 30 was observed in the
lake water area, a lower SWO was observed in inland areas (Figure 10b). The lower SWOs
<10 in inland areas were largely found in floodwater-detected areas (Figure 10d).
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Surface	Water	Occurrence	(%)

Water	extent
1																																												29		

(a) (b)

(c) (d)

Figure 10. (a) Water extents (23 May 1978) extracted by the Landsat; (b) overlay of surface water
occurrence on (a); (c) water extents (7 December 2021) extracted by the Sentinel-1; (d) overlay of
surface water occurrence on (c).

4. Discussion
4.1. Time-Series Analysis of Flood Inundation Using Multiple Satellite Datasets

The highly influential spatiotemporal time-series analysis presented here quantified
the floodwater extent and the recovery phase (Figure 6) in areas where significant land
conversions were observed due to the rapid lake shrinkage under unique tectonic events
and geological systems (Figures 3 and 4). Climate change and human-induced activities
are largely considered the key driving factors causing dynamic floods [13,43]. Therefore,
only a few studies have focused on the fundamental tectonic and geological systems that
exacerbate flood threats. Integrating local tectonic and geological perspectives into flood
assessments will provide local-specific flood mitigation and management strategies. In this
work, we quantified the flood events that occurred in areas where a typical phenomenon
associated with the transformation of enclosed seas into lakes by the rapid land uplift in
the collision zone and rapid erosion of the inner bay sediments were observed.

Only a few studies quantified the ongoing and postflood hazard impacts using high
spatiotemporal observations, particularly at regions with unique tectonic and geological
characteristics. The combination of optical and SAR remote sensing datasets quantified
a comprehensive understanding of the flood hazard impacts associated with the rapid
environmental changes. A recent study [45] conducted flood inundation mapping using
SAR imagery at Tempei Lake in Indonesia. However, this study relied only on two images
from preflood (2 May 2018) and postflood (26 May 2018) events (15–19 May 2018). The uti-
lization of SAR imagery could overcome the challenges of optical medium spatiotemporal
resolution satellites, particularly in tropical regions with a high cloud frequency [36,37].
By comparison, our study quantified detailed changes in the floodwater extents with a
long time frame and a short interval (2–12 days), combining multiple high spatiotemporal
datasets of the PS-SD and S-1 series (Figure 6).
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While a previous investigation [17] focused on a study area comparable to ours, and
explored the mechanisms behind the rapid lake shrinkage in the Limboto area in terms of
geological characteristics using a time-series Landsat series and conducting a river outcrop
investigation, the LCTs of the lake’s surrounding areas and their considerable effect on
flood hazards were not focused. Conversely, we quantified detailed flood hazard impacts
in a shorter interval with combined high spatiotemporal datasets (Figure 6).

4.2. Implication of the Time-Series Analysis

Combining the PS-SD series with the SAR datasets helps perform a more systematic
analysis of natural hazards in shorter time frames by overcoming meteorological limitations.
A high spatiotemporal observation with various satellite datasets considering the local
tectonic and geological characteristics may provide a useful insight for characterizing
the pace/pattern/effect in ongoing and postflood stages. These will further develop
local-specific and effective disaster mitigation, risk reduction, and management strategies
in the future. The analysis showed that with the continuous lake shrinkage, the lake’s
surrounding areas will have high vulnerability to flooding with increased precipitation.
Floodwater was observed after high-intensity precipitation with a peak on 7 November
2021 (Figures 6b and 7). It widely overflowed from the main rivers to the surrounding
croplands (Figure 6). Floodwater was also observed away from the main rivers, and it
sometimes remained. This floodwater appearance may directly and indirectly be caused
by different water resources. Direct floodwater overflows can come from the main rivers.
The indirect overflows mainly observed in Limehe Timur Village can come from the lake
overflowing beyond its water storage capacity. These indirect overflows appeared during
the heavy inundation period and remained for more than a month. The ESA’s SWOs also
characterized this pattern, demonstrating that notable SWOs < 20 were largely observed
both along the major inflow rivers and Limehe Timur Village (Figures 8 and 9). Using
a combination of historical Landsat imagery, water extents resulting from the rapid lake
shrinkage is separable (Figure 10). Thus, these areas can be typical major flood-prone
areas due to various overflows. Our work expanded upon a previous study [17] to reveal
the flood patterns and the major flood-prone areas associated with tectonic and geolog-
ical characteristics.

4.3. Limitations

This study has certain limitations associated with the characteristics of the datasets
used. First, although the PS series comprised daily products, the cloud-free data availability
is still limited by the region’s high cloud coverage. Second, although the SAR data help in
the weather-independent active observation, the mountain shadows caused by the SAR’s
side looking would result in a notable misclassification during the flood event. Third, the
differences in the spatial resolution of the datasets used here would result in mixed pixels,
which may possibly cause an overestimation or a miscalculation of the water extent. Fourth,
the SWOs and the world LC map applied in this study relied on the EC’s JRC GSWML v1.4
(1984–2021) and ESA’s WC2020. Finally, due to the operation period of the PS-SD series,
the methodologies applied herein were limited only to the period after 2020.

5. Conclusions

This study quantified the flood disasters in Gorontalo, Indonesia that are associated
with the rapid lake shrinkage caused by tectonic and geological events by using high
spatiotemporal time-series and SWO datasets. The measures used allowed us to character-
ize the distinct floodwater distribution, pace, pattern, and major flood-prone areas in the
ongoing and postflood stages. In a region where the spatiotemporal monitoring of flood
events is challenging due to the limited availabilities of optical cloud-free imagery, our
methodology supported high spatiotemporal monitoring. Our findings also broadened
our understanding of the major flood-prone areas associated with the rapid lake shrinkage,
created by the uplifting of the land due to plate tectonics and rapid erosion of the inner bay
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sediments. We expect our findings to aid in the high spatiotemporal flood monitoring and
the local tectonic and geological systems to be integrated into flood hazard mitigation and
management strategies.
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