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Abstract: As drought vulnerability assessment is fundamental to risk management, it is urgent to
develop scientific and reasonable assessment models to determine such vulnerability. A vulnerability
curve is the key to risk assessment of various disasters, connecting analysis of hazard and risk. To
date, the research on vulnerability curves of earthquakes, floods and typhoons is relatively mature.
However, there are few studies on the drought vulnerability curve, and its application value needs
to be further confirmed and popularized. In this study, on the basis of collecting historical disaster
data from 52 drought events in China from 2009 to 2013, three drought remote sensing indexes
were selected as disaster-causing factors; the affected population was selected to reflect the overall
disaster situation, and five typical regional drought vulnerability curves were constructed. The
results showed that (1) in general, according to the statistics of probability distribution, most of the
normalized difference vegetation index (NDVI) and the temperature vegetation drought index (TVDI)
variance ratios were concentrated between 0 and ~0.15, and most of the enhanced vegetation index
(EVI) variance ratios were concentrated between 0.15 and ~0.6. From a regional perspective, the
NDVI and EVI variance ratio values of the northwest inland perennial arid area (NW), the southwest
mountainous area with successive years of drought (SW), and the Hunan Hubei Jiangxi area with
sudden change from drought to waterlogging (HJ) regions were close and significantly higher than
the TVDI variance ratio values. (2) Most of the losses (drought at-risk populations, DRP) were
concentrated in 0~0.3, with a cumulative proportion of about 90.19%. At the significance level, DRP
obeys the Weibull distribution through hypothesis testing, and the parameters are optimal. (3) The
drought vulnerability curve conformed to the distribution rule of the logistic curve, and the line
shape was the growth of the loss rate from 0 to 1. It was found that the arid and ecologically fragile
area in the farming pastoral ecotone (AP) region was always a high-risk area with high vulnerability,
which should be the focus of drought risk prevention and reduction. The study reduces the difficulty
of developing the vulnerability curve, indicating that the method can be widely used to other regions
in the future. Furthermore, the research results are of great significance to the accurate drought risk
early warning or whether to implement the national drought disaster emergency rescue response.

Keywords: remote sensing index; vulnerability curve; drought risk; historical disaster dataset; China

1. Introduction

Drought is one of the most common agricultural natural disasters in the world. It is
characterized by frequent occurrence and long-term persistence [1,2]. Drought refers to
the phenomenon of water shortage caused by the imbalance of income and expenditure
or supply and demand of water resources due to the reduction of precipitation [3,4]. Due
to China’s vast territory, diverse topographic and geomorphic features, and large climate
differences, the occurrence of natural disasters often presents different characteristics in
space [5–8]. The characteristics of disasters can manifest as multiple disasters in one place,
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that is, multiple disasters coexisting in the same area, such as drought-fire-vegetation
degradation-living environment deterioration; they can also appear as the same disaster
in many places, that is, the same natural disaster occurring in different regions, such as
the same drought occurring in many places in a period of time; or they can manifest
as different disasters in different places, that is, different natural disasters occurring in
different regions at the same time, such as waterlogging in the south and drought in the
north, or waterlogging in the north and drought in the south. In China, most natural
disasters originate from climate change and meteorological disasters. The meteorological
disasters caused by climate change account for more than 70% of the total losses from all
natural disasters [9]. Drought is the most serious meteorological disaster in China, and its
large-scale distribution makes it harmful to a wide range of people. Once drought happens,
it will have a large-scale and long-term impact [10–12].

The research on drought vulnerability mainly focuses on the formation mechanism,
regional vulnerability assessment, and vulnerability zoning of drought disaster-affected
bodies. Relevant assessment methods include traditional statistical reporting methods,
disaster assessment based on various drought indexes, vulnerability assessment based on
disaster-affected bodies, and disaster assessment based on historical cases. Assessment
based on drought indexes can be subdivided into the assessment of remote sensing drought
indexes (e.g., ATI, CWSI, AVI, and VTCI) [13–15] and the assessment of non-remote sensing
drought indexes (e.g., SPI and Palmer) [16]. The basic idea is to establish various drought
indexes, determine the drought threshold on this basis, and then divide the crop planting
area into different disaster levels; thus, the area of affected crops is finally calculated [17,18].
Most drought risk assessment methods are to multiply the loss rate under the intensity of a
certain consistent disaster factor by the number of disaster-affected bodies exposed within
its influence range. The core and difficulty in risk assessment is to build vulnerability
curves [19]. The purpose of assessing drought vulnerability [20,21] is to minimize disaster
losses, give early warning, or launch a national natural disaster emergency response
as necessary. In practical work, disaster rapid assessment is an important part of risk
assessment of drought disaster. In the absence of timely disaster data, a preliminary
judgment is given to facilitate the organization of post-disaster relief work in advance.

The quantitative analysis of vulnerability is mainly to quantify the system factors
leading to regional drought and its impact, using an integrated assessment model. From
the perspective of vulnerability assessment scales of drought disaster-affected bodies, the
assessment is mainly concentrated on small- and medium-sized scales, and there is little
research on the dynamic change of drought vulnerability in different regions [22].

Most Chinese scholars pay more attention to the northern region when studying the
spatial and temporal distribution characteristics of drought. The change rate of meteo-
rological drought has been on the rise in the past 50 years in China [23,24]. Under the
background of increasing extreme weather events, precipitation in southern China shows a
weak increasing trend, and temperature is increasing significantly [25]. Due to the differ-
ence of disaster-prone environments in different regions, the types and disaster-causing
intensity of extreme climate events are also different, especially in China, which is affected
by its monsoon climate and has a vast land area with obvious regional differentiation.
The economic and social development levels of different regions are different, leading to
varied drought-resistance investment. Therefore, the mechanism of drought formation and
the degree of drought in different regions are very different. Five regions—the northwest
inland perennial arid area (NW), the arid and ecologically fragile area in farming pastoral
ecotone (AP), the high-temperature and summer drought area in the middle and lower
reaches of the Yangtze River (YR), the southwest mountainous area with successive years
of drought (SW), and the Hunan Hubei Jiangxi area with sudden changes from drought to
waterlogging (HJ)—basically cover the main types of drought in China.

Compared with system vulnerability, measuring individual vulnerability is more
accurate. The vulnerability curve mainly describes the relationship between a series of
intensities and the affected degree of various disaster-affected bodies, which is expressed in
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the form of tables or curves. A vulnerability curve is the key to risk assessment of various
disasters, connecting analysis of hazard and risk. To date, the research on vulnerability
curves of earthquakes, floods and typhoons is relatively mature [26–29]. However, there
are few studies on the drought vulnerability curve, and its application value needs to be
further confirmed and popularized. The disaster loss curve reflects the overall vulnerability
characteristics at the regional scale through the vulnerability of disaster-affected individu-
als [30]. In the face of disaster-affected individuals, problems such as the rough and weak
operability of vulnerability assessment results are fundamentally solved.

Research on the vulnerability assessment of drought disaster-affected bodies, which is
mainly qualitative and semi-quantitative, is relatively scarce, and the research accuracy is
low. Because there is no standardized disaster loss investigation and assessment system,
it is difficult to obtain disaster data and build a mature and practical vulnerability curve
database. Therefore, building vulnerability curve models under different regional drought
intensities is an important topic and trend of current research. To date, most studies are
limited to the applicability of individual drought indexes in individual regions. In this study,
three drought remote sensing monitoring indexes are selected as disaster-causing factors.
To tie in with the natural disaster statistics system, the drought at-risk populations (DRP)
is selected to represent the loss. Agricultural drought relates to agricultural production.
The people with difficulties in drinking water concerned in this study can reflect the
scope and degrees of drought impact on agriculture. Therefore, agricultural drought was
discussed in our study. Based on a large number of historical cases of drought events,
the quantitative function relationship between disaster intensity and loss is quantitatively
fitted, and vulnerability loss curves of different regions are constructed.

The purposes of this study are as follows: (1) to explore the differences of drought
monitoring by three remote sensing drought indexes from the whole country and sub-
regions; (2) to analyze the distribution patterns of disaster loss from the perspective of
probability; and (3) to fit the vulnerability curves in each region to determine which drought
index is more suitable to indicate vulnerability under the same conditions.

2. Materials and Methods
2.1. Study Area

China is one of the major arid countries in the world (Figure 1). The arid and semi-arid
areas in the country are mainly distributed in the western region of China, and account
for about half of its total land area, of which the arid and semi-arid areas in the northwest
account for about 83% of the land area of the region [31].

• The northwest inland perennial arid area (NW): the climatic characteristics are mainly
characterized by scarce precipitation, sparse vegetation, large surface evaporation,
severe agricultural water deficit, and frequent drought disasters [32].

• The arid and ecologically fragile area in farming pastoral ecotone (AP): With the rapid
decline of annual rainfall in western China, the climate type has changed from semi-
humid and semi-arid to an arid climate zone, and the natural landscape has changed
from forest grassland and dry grassland to semi-desert grassland, thus forming the
farming pastoral transition zone [33]. The basic factor promoting the transition of
agriculture and animal husbandry is drought and water shortage.

• High-temperature and summer drought area in the middle and lower reaches of the
Yangtze River (YR): With developed agriculture and a dense population, this region is
one of the most economically developed regions in China, and also a representative
region of socially dependent water shortage [34]. It is dominated by continuous
drought in summer and autumn, especially in midsummer. High temperature and
little rain have a serious impact on grain production and even crop failure.

• The southwest mountainous area with successive years of drought (SW): Due to the
intensification of El Niño and the thermal impact of the Qinghai Tibet Plateau, extreme
precipitation events in southwest China are increasing, which aggravates the drought
risk there [35]. In recent years, drought in Southwest China has become more serious.
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For example, five provinces (districts and cities) in Southwest China suffered from a
historically rare drought from September 2009 to May 2010. It led to the destruction of
regional agriculture, society and ecology [36].

• The Hunan Hubei Jiangxi area with sudden change from drought to waterlogging (HJ):
Affected by monsoon precipitation and the change of the subtropical high pressure in
the western Pacific Ocean, this region is a typical area with frequent drought and flood
disasters [37]. During the occurrence and development of drought and flood, not only
will each have an impact on people’s production, life, and natural ecosystems, but
also the rapid change of drought and flood will cause the superimposed loss of both
factors, which is more serious than a single drought or flood disaster.

Figure 1. Location of the study area.

2.2. Materials

Based on the needs of drought vulnerability analysis, this paper collects a series
of basic data required for the study (Table 1). The basic data mainly include historical
disaster data and drought index data. The historical drought event data include process
data recorded by 1176 counties in total for 52 drought events in 2009–2013, reported by
the Chinese government (Table 2). After a drought, the national emergency response
will be started according to the number of people affected by the drought. Considering
the integrity and continuity of the data, our research focuses on the drought-affected
population. The 2009–2013 MOD13Q1 and MODIS11A2 data were downloaded from
NASA’s official website. Using the Google Earth Engine (GEE) platform, the MOD13Q1
and MODIS11A2 were each processed according to the relevant scale factor, and the image
data within the study area were clipped and downloaded according to a vector boundary
map of the study area. Other data were provided by the China National Basic Geographic
Information Center.
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Table 1. Datasets used in this study.

Data Set Sub-Data Set Data Source Years

Historical disaster data Drought event data, 1176 counties,
for the five regions in China

National Disaster Reduction
Center of the Ministry of

Emergency Management of China
2009–2013

Remote sensing indices data for
drought

MODIS vegetation indices, LST
(land surface temperature)

https://ladsweb.modaps.eosdis.
nasa.gov

accessed on 21 January 2022.
2009–2013

Basic geographic data County administrative division
boundaries, rivers, etc.

China National Basic Geographic
Information Center 2015

2.3. Methods

A drought disaster database can provide decision support for disaster risk manage-
ment. Multiple drought cases are integrated to form a digital drought disaster regional
information system with spatial and temporal correlation, so as to realize the auxiliary
research on the temporal and spatial differentiation and transfer pattern of drought systems.
The hazard indicators are used to reflect the intensities and characteristics of the disaster,
mainly including the occurrence time, the spatial scope of the disaster impact, and the
disaster intensity. The disaster indicator system is used to evaluate the potential losses,
reflecting economic or property losses. A disaster event includes the description of the
attribute information and loss indicators. Based on the National Standard for Statistical
Indicators of Natural Disasters, the drought disaster indicator selected in this study is DRP.
In this study, disaster events are sorted, images are reprogrammed using MRT (MODIS
Reprojection Tool), and images of the same date are spliced, cropped, and calculated in
combination with ENVI, ARCGIS, and vector files.

The NDVI index has the advantage of using satellite data to monitor the vegetation
health related to drought events, with very high resolution and large spatial coverage. The
disadvantage is that it is greatly affected by the soil background, which has lower sensitivity
to high vegetation area. EVI can minimize the impact of vegetation canopy background
and maintain high sensitivity under dense vegetation conditions. The disadvantage is that
the stress of plant canopy may be caused by factors other than drought, and it is difficult
to identify using EVI only. The advantage of TVDI is that it combines visible and near
infrared data, has clear physical meaning and is easy to operate. It does not rely on any
atmospheric or surface data or any special land surface model. The disadvantage is that the
applicability in different climatic regions will vary due to different vegetation conditions
and soil temperatures. Each index has its own advantages and disadvantages. Taking
data availability into consideration primarily, the above three indexes are selected in this
study. The GEE platform is used to directly read the MODIS dataset for NDVI and EVI
downloading, sampling, and clipping. TVDI, namely, the temperature vegetation drought
index, is mainly applicable to building NDVI-LST space. Among them, NDVI is sometimes
replaced by the enhanced vegetation index (EVI), which is often used to study the role
of TVDI in drought monitoring in different actual regions. For the calculation formula of
TVDI, one can refer to [38].

A statistic is a function of a sample. It is well known that the cumulative distribution
function (CDF) of a random variable X, or just a distribution function of X, evaluated at x,
is the probability that X will take a value less than or equal to x. If a scalar conforms to the
continuous distribution, CDF gives the area under the probability density function (PDF)
from negative infinity to x. For multivariate random variables, we can use CDFs to describe
their distribution [39]. In probability theory and mathematical statistics, a probability distri-
bution is the mathematical function that provides the probabilities of occurrence of different
possible results for an event. A probability distribution is a mathematical description of
the probabilities of events, subsets of the sample space, which can be described in various
forms. On this basis, the probability density and cumulative probability function are used
to statistically analyze the distribution of drought loss data.

https://ladsweb.modaps.eosdis.nasa.gov
https://ladsweb.modaps.eosdis.nasa.gov
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Table 2. Statistics of historical drought event data and remote sensing monitoring indicators.

Year Start Time End Time Duration/Day Occurrence
Season

Affected
Area/Province

Average
NDVI during

Drought
Period

Average
EVI during

Drought
Period

Average
TVDI
during

Drought
Period

Average
Rainfall
during

Drought
Period

Population
with

Difficulty in
Drinking

Water/10,000
Persons

2009

21 June 2009 16 August 2009 56 Summer drought Liaoning 0.48 0.49 0.15 0.95 120.49

1 July 2009 30 September 2009 91
Drought from

summer to
autumn

Hunan 0.65 0.42 0.15 0.94 170.62

12 July 2009 14 September 2009 64
Drought from

summer to
autumn

Guangxi, Guizhou 0.68 0.48 0.16 1.29 226.69

1 July 2009 31 August 2009 61 Summer drought
Gansu, Ningxia,
Inner Mongolia,

Shanxi, Jilin
0.47 0.24 0.14 0.65 278.13

2 February 2009 26 June 2009 144
Drought from

winter, spring to
summer

Heilongjiang,
Gansu, Ningxia 0.20 0.18 0.15 0.38 131.12

2010

1 July 2009 2 February 2010 216
Drought from

summer, autumn,
to winter

Guangxi,
Guizhou, Yunnan 0.49 0.25 0.16 0.72 837.62

1 October 2009 31 March 2010 180
Drought from

winter, spring, to
summer

Sichuan, Gansu 0.21 0.12 0.14 0.18 371.79

2011

31 March 2011 26 June 2011 117 Drought from
spring to summer

Gansu, Inner
Mongolia,
Ningxia

0.19 0.11 0.15 0.19 252.65

7 April 2011 25 May 2011 48 Spring drought Hunan, Jiangsu,
Jiangxi 0.49 0.29 0.14 1.37 276.03

1 April 2011 12 July 2011 102 Drought from
spring to summer

Sichuan, Guizhou,
Yunnan 0.45 0.33 0.15 1.09 708.21

2012 25 June 2012 12 August 2012 37 Summer drought Hubei 0.65 0.41 0.15 0.97 116.97
3 December 2011 18 February 2012 77 Winter drought Yunnan 0.52 0.25 0.16 0.28 476.02
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Table 2. Cont.

Year Start Time End Time Duration/Day Occurrence
Season

Affected
Area/Province

Average
NDVI during

Drought
Period

Average
EVI during

Drought
Period

Average
TVDI
during

Drought
Period

Average
Rainfall
during

Drought
Period

Population
with

Difficulty in
Drinking

Water/10,000
Persons

2013

12 July 2013 13 August 2013 32 Summer drought Guizhou 0.48 0.44 0.15 1.03 80.15
12 July 2013 29 August 2013 48 Summer drought Hunan 0.70 0.47 0.15 1.19 33.48

28 July 2013 24 September 2013 58
Drought from

summer to
autumn

Jiangxi, Hubei 0.58 0.48 0.14 1.23 453.24

13 September 2013 18 December 2013 96 Drought from
autumn to winter Sichuan, Yunnan 0.52 0.31 0.14 0.18 709.68

1 October 2013 18 February 2014 140 Drought from
autumn to winter Gansu 0.11 0.14 0.18 0.07 115.37
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Vulnerability can typically reflect the damage or loss of exposure by hazard. On
the whole, we can estimate the loss by reported statistical historical event data. Popula-
tion vulnerability of drought is estimated by the statistical population with difficulties in
drinking water and population exposure. Finally, the three remote sensing drought index
data and DRP are fitted with the vulnerability curves and analyzed in different regions.
Each vulnerability curve is applied to each region to map the drought-affected population
risk (Figure 2).

Figure 2. Flow chart of the methodology of this research.

3. Results
3.1. Monitoring Drought by Remote Sensing Index

To reveal the pattern of drought disaster, this paper uses PDF and CDF to perform the
mathematical description on NDVI, EVI, and TVDI variance ratio indicators (Figure 3). N
in this study represents the number of data excluding the abnormal value of drought index
variance ratio and corresponding loss of zero (DRP = 0). We found that most NDVI variance
ratios are concentrated between 0 and ~0.15, and the cumulative proportion is 56.72%, of
which the cumulative probability of 0~0.05 is 44.35%, and the cumulative probability of
more than 0.60 is 5.65%. For the EVI variance ratio, we can see that most EVI variance
ratios are concentrated between 0.15 and ~0.6, and the cumulative proportion is about
63.19%, of which the cumulative probability of 0.15~0.4 is 58.26%, and the cumulative
probability of more than 0.75 is 4.05%. In addition, for the TVDI variance ratio, we can see
that most TVDI variance ratios are concentrated between 0 and ~0.15, with a cumulative
proportion of about 77.97%, of which the cumulative probability of 0~0.08 is 68.36%, and
the cumulative probability of more than 0.45 is 3.67%. From Figure 3, the degree and
scope of drought reflected by NDVI and TVDI index are not as obvious as EVI. In the
period of vigorous vegetation growth, NDVI quickly saturates with the increase in leaf area.
Therefore, NDVI has lower sensitivity to high vegetation area. TVDI is calculated based on
LST and NDVI, which is closely related to land surface parameters and vegetation coverage.
Therefore, the NDVI and TVDI vegetation indexes reflect a close drought degree. EVI can
minimize the impact of vegetation canopy background and maintain high sensitivity under
dense vegetation conditions. It will be noted that Figure 3 shows the overall situation
of multi-year drought events in all typical regions, which may be related to the spatial-
temporal differences in soil moisture, soil temperature, land surface temperature, and
vegetation conditions.
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Figure 3. Probability density and cumulative probability function (a) PDF for NDVI; (b) CDF for
NDVI; (c) PDF for EVI; (d) CDF for EVI; (e) PDF for TVDI; (f) CDF for TVDI.

It can be seen from Figure 4 that the NDVI and EVI variance ratio values of NW, SW,
and HJ are close and significantly higher than the TVDI variance ratio values. However, the
high NDVI variability of the AP and YR regions is greater than EVI, and still significantly
higher than the TVDI variance ratio.
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Figure 4. Probability plot of variance ratio of NDVI, EVI, and TVDI in sub-regions of China: (a) NW;
(b) SW; (c) HJ; (d) AP; and (e) YR.

3.2. DRP Analysis

The population index with DRP was used to reflect the overall disaster situation of
drought. DRP data standardization is to eliminate the impact of multi-source data units.
As a part of probability and statistics, parameter estimation is associated with obtaining
information about features of stochastic processes, random variables, and systems on the
basis of samples.

The properties include Lognormal, Exponential, Gamma, and Weibull distribution
forms; the estimation parameters and probability distribution map (Figure 5) of DRP are
obtained. We find that the p value of Exponential, Gamma, and Weibull distribution is
greater than 0.05, except Lognormal. For AD values, the order is Lognormal (2.397) >
Exponential (0.552) > Gamma (0.412) > Weibull (0.377). At the significance level, DRP obeys
the Weibull distribution through hypothesis testing, and the parameters are optimal.

Most of the losses (drought at-risk populations) are concentrated in 0~0.3, a cumulative
proportion is up to 90.19%, the proportion of 0~0.15 is 78.26%; the cumulative probability of
0.3~0.45 is about 7.84%, and the cumulative probability of more than 0.5 is 1.17% (Figure 6).
It can be seen that the drought has a certain impact on the population, of which about 80%
of the population with difficulty in drinking water due to drought are below 0.25.

3.3. Vulnerability Analysis

The drought vulnerability curve is established to reflect the overall vulnerability char-
acteristics of a homogeneous region. From a regional perspective, the drought vulnerability
curves for the five regions were constructed (Figure 7). The drought vulnerability curve
conforms to the distribution rule of the Logistic curve, and the line shape is the growth of
the loss rate from 0 to 1.
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Figure 5. Probability plot of DRP. (a) Lognormal > 95% confidence interval; (b) Exponential > 95%
confidence interval; (c) Gamma > 95% confidence interval; (d) Weibull > 95% confidence interval.

Figure 6. Probability density and cumulative probability of the standardized DRP: (a) Probability
density; and (b) Cumulative probability.
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Figure 7. Vulnerability curves for the five regions of China: (a) NW; (b) SW; (c) HJ; (d) AP; and (e) YR.
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It can be seen from Figure 7 that the EVI variance ratio of the fixed horizontal axis is 0.5,
and the DRP loss rate of each region is compared: the drought loss rate is 0.05–0.1 in NW;
0.15–0.2 in SW; 0.25–0.3 in HJ; 0.2–0.25 in AP; and 0.18 in YR (close to 0.2). Therefore, the
drought vulnerability in each subarea from highest to lowest is HJ > AP > YR > SW > NW.
Similarly, the fixed horizontal axis NDVI variance ratio is 0.5, and the DRP loss rate of
each region is compared: the drought loss rate is 0.4–0.45 in NW; 0.4–0.42 in SW; 0.25–0.3
in HJ; 0.55–0.6 in AP; and 0.5–0.55 in YR. Therefore, the vulnerability of drought in each
subarea from highest to lowest is AP > YR > NW > SW > HJ. When the horizontal axis
TVDI variable rate is 0.5, the drought loss rate is 0.35–0.4 in NW; 0.75–0.8 in SW; 0.45–0.5 in
HJ; 0.65–0.7 in AP; and 0.3–0.35 in YR. Therefore, the drought vulnerability of each subarea
from highest to lowest is SW > AP > HJ > NW > YR.

Although the vulnerability fitted by different remote sensing indexes is quite different,
it can be found that the AP region is always a high-risk area with high vulnerability, which
should be the focus of drought risk prevention and reduction.

The statistical parameters of the vulnerability curve of the five sub-regions are sum-
marized in Table 3. When comparing the coefficient of determination (R2) between the
different vulnerability curves, in case of the same event, for AP and YR, the NDVI is more
suitable for fitting vulnerability than that based on EVI and TVDI. For the NW area, EVI
is more suitable for fitting vulnerability, with a higher accuracy. For the SW and HJ areas,
TVDI is more suitable for fitting vulnerability than NDVI and EVI.

Table 3. Statistical parameters of fitting vulnerability curves of five sub-regions.

Statistical
Parameters Sub-Region EVI NDVI TVDI

Standard Error

NW 0.0696 0.0739 0.0687
SW 0.0855 0.1481 0.1276
HJ 0.0838 0.0778 0.0592
AP 0.0432 0.01229 0.0685
YR 0.0164 0.0743 0.0494

Coefficient of
Determination

NW 0.9488 0.8409 0.5021
SW 0.3515 0.3682 0.4039
HJ 0.5352 0.3089 0.8809
AP 0.4879 0.8298 0.4588
YR 0.8997 0.9001 0.4829

Correlation
Coefficient

NW 0.9741 0.9171 0.7086
SW 0.5929 0.6068 0.6355
HJ 0.7315 0.5558 0.9386
AP 0.6985 0.9109 0.6774
YR 0.9486 0.9487 0.6949

4. Discussion
4.1. Regional Applicability of Remote-Sensed Drought Index

The traditional drought monitoring and vulnerability analysis are mostly based on
the observation records of meteorological stations. In this study, multiple drought remote
sensing monitoring indexes are selected as the disaster-causing factors to realize the quanti-
tative characterization of large-scale drought conditions. The advantages of establishing
a drought index based on remote sensing technology include the continuity of a large
range of spatial data, the availability of relevant data in areas with sparse or non-existent
ground stations, the high playback rate of data acquisition, the ability to review and analyze
historical data, and meaningful historical drought analysis and modeling [40].

A large number of drought index remote sensing models developed at present provide
the possibility of drought monitoring at the regional scale. However, these indexes are also
subject to different restrictions in practical applications. The selection and application of
drought indicators should be judged according to the actual conditions of the monitoring
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area, the appropriate time scale, and the practicality [41–44]. For example, simple drought
indexes such as NDVI and EVI can be calculated by combining different bands of remote
sensing images, and they can be used for long time series analysis. However, the expression
of drought is not intuitive, as it cannot directly express distribution and intensity, and it
is vulnerable to various noises from remote sensing images. Another type is the drought
index obtained by the two-dimensional scatter method, such as TVDI. Because it is difficult
to completely process all kinds of noise in remote sensing images, and also because it does
not take into account the impacts of regional climate and ecology, the two-dimensional
scatter map is highly unstable; thus, the precision of the drought index calculated is also
unstable, and it is difficult to conduct a more accurate drought analysis of long time series.
Therefore, for the spatial and temporal distribution characteristics of the same drought
event (e.g., duration, impact range, and intensity), different drought indexes will give
different results [45,46]. Therefore, it is of great scientific significance to study the regional
applicability of different drought indexes. In addition, it should also be considered that
different drought indexes have different thresholds, and the threshold of the same drought
index in different regions may also need to be adjusted.

4.2. Vulnerability Curves Analysis

With the intensification of the global drought trend, extreme drought events have
occurred frequently in recent years, which have attracted global attention [47]. China
is a country with frequent drought disasters. The severe drought situation has brought
challenges to drought relief and disaster reduction, and there is a need to shift from crisis
management to risk management. The vulnerability reflects the sensitivity of populations
in different regions to droughts: low vulnerability illustrates that a severe drought may
not cause catastrophic losses, while in areas of high vulnerability, even a light or medium
drought could easily lead to catastrophic losses. It is urgent to develop scientific and
reasonable assessment models to determine the vulnerability.

The vulnerability assessment of intensity loss (rate)—mainly through post-disaster in-
vestigation, experimental simulation, and other methods—builds the relationship between
the intensity parameters of different disaster-causing factors and the losses, and is usually
expressed as a table or curve [48,49]. It is a widely used vulnerability quantitative research
method. The assessment results are more accurate than those of indicator methods, but
they only represent the measurement of the vulnerability of absolute physical quantities,
ignoring a societal assessment of economic and environmental vulnerability as well as re-
gional disaster response, prevention, and mitigation capabilities. Multivariate vulnerability
curves have been completed by The United Nations Development Programme (UNDP)
taking different social vulnerability factors into account, including urbanization rate, social
development index, GDP, and so on [50]. The vulnerability of disaster-affected bodies can
be divided into population, social economy, residential buildings, agricultural economic
land, and public infrastructure. This paper only studies the population suffering from
drought and drinking water difficulties, which can be improved to study the multiple
factors as much as possible on the basis of available data.

Mortality-related risks and economic risk resulting from six categories of natural
hazards are considered in the Hotspots index. Its designers analyzed the vulnerability by
calculating the loss rates for each hazard from historical records from 1981 to 2000 acquired
from the Emergency Events Database [51]. A weak point of the Hotspots index is that
the vulnerability curves of economic losses and mortality at a national level are fitted in
this project, which causes inadequate accuracy with respect to the evaluation result for
states or counties with large area and prominent environmental differences. What we have
improved is that our results provide a scientific basis for national and local governments to
take effective measures by showing spatial differences at a smaller scale—the regional scale.

The vulnerability results obtained via quantitative assessment methods usually represent
the quantitative relationship, and the results are often of physical significance. Quantitative
evaluation methods include statistical fitting, machine learning, and model simulation. On
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the basis of field investigation, expert experience, statistical analysis, computer simulation,
and other technical means further improve the accuracy of the evaluation model. For a single
disaster, the result is usually a vulnerability curve; when two disaster-causing factors act
on the same disaster-affected body, a three-dimensional vulnerability surface can be drawn.
The horizontal axes (x-axis and y-axis) of the vulnerability surface are the intensities of two
different disaster-causing factors, and the vertical axis (z-axis) represents the damage level
or damage percentage of the disaster-affected body. Using the vulnerability matrix, the
vulnerability surface transforms the discrete and discontinuous relationship into a continuous
relationship through computer fitting. In the future, multi-hazard vulnerability surfaces could
be further studied based on machine learning algorithms.

5. Conclusions

Vulnerability is characterized by increasing the sensitivity of individuals, communities,
assets, or systems to hazardous impacts. On the basis of collecting historical disaster data
from 52 drought events in China from 2009 to 2013, this study constructs the vulnerability
curves of typical drought regions in China, and systematically compares the regional
applicability of different drought indexes. The key conclusions of this paper are as follows:

(1) In general, Most NDVI and TVDI variance ratios are concentrated between 0 and
~0.15, and most EVI variance ratios are concentrated between 0.15 and ~0.6.

(2) In terms of the degree of loss, most values are in the range 0 ~ 0.3, with a cumulative
proportion of about 90.19%.

(3) The drought vulnerability curve conforms to the distribution rule of the logistic curve.
It can be found that the AP region is always a high-risk area with high vulnerability,
which should be the focus of drought risk prevention and reduction.
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