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Abstract: Accurately mapping land use/land cover changes (LULCC) and forest disturbances pro-
vides valuable information for understanding the influence of anthropogenic activities on the environ-
ment at regional and global scales. Many approaches using satellite remote sensing data have been
proposed for characterizing these long-term changes. However, a spatially and temporally consistent
mapping of both LULCC and forest disturbances at medium spatial resolution is still limited despite
their critical contributions to the carbon cycle. In this study, we examined the applicability of Landsat
time series temporal segmentation and random forest classifiers to mapping LULCC and forest
disturbances in Vietnam. We used the LandTrendr temporal segmentation algorithm to derive key
features of land use/land cover transitions and forest disturbances from annual Landsat time series
data. We developed separate random forest models for classifying land use/land cover and detecting
forest disturbances at each segment and then derived LULCC and forest disturbances that coincided
with each other during the period of 1988–2019. The results showed that both LULCC classification
and forest disturbance detection achieved low accuracy in several classes (e.g., producer’s and user’s
accuracies of 23.7% and 78.8%, respectively, for forest disturbance class); however, the level of accu-
racy was comparable to that of existing datasets using the same reference samples in the study area.
We found relatively high confusion between several land use/land cover classes (e.g., grass/shrub,
forest, and cropland) that can explain the lower overall accuracies of 67.6% and 68.4% in 1988 and
2019, respectively. The mapping of forest disturbances and LULCC suggested that most forest distur-
bances were followed by forest recovery, not by transitions to other land use/land cover classes. The
landscape complexity and ephemeral forest disturbances contributed to the lower classification and
detection accuracies in this study area. Nevertheless, temporal segmentation and derived features
from LandTrendr were useful for the consistent mapping of LULCC and forest disturbances. We
recommend that future studies focus on improving the accuracy of forest disturbance detection,
especially in areas with subtle landscape changes, as well as land use/land cover classification in
ambiguous and complex landscapes. Using more training samples and effective variables would
potentially improve the classification and detection accuracies.

Keywords: LULCC; Landsat; LandTrendr; disturbance; Google Earth Engine; random forest

1. Introduction

Land use/land cover changes (LULCC), especially in forest areas, can lead to carbon
emissions, result in biodiversity loss, and exacerbate the risk of natural hazards at both the
regional and global scales [1–3]. In addition, forest disturbances, which include changes
that do not cause LULCC (e.g., temporary loss of forest canopy, forest degradation, and
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harvesting followed by replanting), can also affect carbon sequestration and influence the
susceptibility of areas or regions to natural hazards [4]. Regular mapping of LULCC and
forest disturbances by using remote sensing data provides information for understand-
ing the influence of anthropogenic activities on the environment [5,6]. In the context of
climate change, carbon emissions related to LULCC have large uncertainties, which has
yielded conflicting results in global carbon studies [7]. Therefore, accurate mapping of the
spatial and temporal patterns of LULCC and forest disturbances is needed for effectively
monitoring carbon emissions and timely decision-making.

Satellite remote sensing is an efficient tool for monitoring across a large area because
of its cost-effectiveness, wide spatial coverage, and frequent observation intervals [8,9].
Various approaches for mapping land use/land cover (LULC) and forest disturbances have
been proposed using different satellite data (e.g., optical and radar) at varying spatial and
temporal resolutions, extents, and periods. Mapping efforts have led to numerous annual
to decadal LULC/forest disturbance products at both the regional and global scales [10].
For example, Dynamic World is a near real-time high-spatial resolution LULC product
based on Sentinel-2 data and a deep learning architecture that covers the global land
surface [11]. Other examples are ESA WorldCover, a global 10 m LULC dataset for 2020
that is generated by the European Space Agency (ESA) using Sentinel-1 and Sentinel-2
data [12] and Copernicus Global Land Cover at 100 m for 2015–2019 [13]. The accuracies
and information obtained in these maps are unique to the products; therefore, users
are required to select appropriate approaches and satellite data to achieve their specific
objectives. Especially for long-term mapping, which can span more than three decades,
global products are usually not available due to a lack of data for the past. Thus, locally
adjusted products need to be generated.

With significant development in satellite remote sensing algorithms, numerous ap-
proaches have been proposed for LULC mapping and forest disturbance detection, es-
pecially using Landsat data [14]. Change detection algorithms including the breaks for
additive seasonal and trend (BFAST) [15,16], Landsat-based detection of trends in distur-
bance and recovery (LandTrendr) [17], and continuous change detection and classification
(CCDC) [18] have been proposed and applied in many regions (e.g., [19–23]). In particular,
the LandTrendr temporal segmentation is a widely used algorithm for detecting forest
disturbances and recovery that enhances an annual Landsat time series spectral index to
generate temporal segments and eliminate spectral noise by fitting a sequence of straight
lines [17]. LandTrendr is easy to implement in large areas for detecting both abrupt and
gradual changes, and it is less computationally intensive compared to other algorithms
that use all available Landsat data, such as CCDC [24]. Because of these advantages,
LandTrendr has been extensively applied to various forest environments [25,26] and fur-
ther improved by introducing ensemble learning for change detection. Cohen et al. [27]
applied a secondary classification approach using random forest (RF) [28] for segmen-
tation in LandTrendr rather than depending on a fixed threshold for identifying forest
disturbances as in the original algorithm. Similarly, Nguyen et al. [29] used RF to classify
disturbances and recovery based on LandTrendr temporal segmentation. The temporal
segments of LandTrendr represent critical features of spectral trajectories [17] and can be
used to extract key information to characterize changes in land surface (e.g., [30,31]). Such
characteristics of the temporal segmentation are potentially useful for LULCC, but the
applicability of such an approach has not been investigated in detail. More specifically,
there are limited studies that investigated effective approaches for handling a large number
of features derived from temporal segmentation for LULCC, which generally shows more
diverse spectral changes in time series than forest disturbances. In this regard, the use of
machine learning algorithms is suited to predict LULC/LULCC. Numerous studies have
implemented LULC/LULCC classification using machine learning algorithms such as RF,
support vector machines, and deep neural networks (e.g., [32–35]). These previous studies,
however, mostly focused on limited time periods and did not map long-term changes.
Landsat time series analysis is potentially utilized for consistent mapping of long-term
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LULCC that is consistent with forest disturbance at the same time. This mapping approach
provides better insights into land surface dynamics.

The objective of this study was to investigate the applicability of a Landsat time series
segmentation algorithm to map the annual LULCC and forest disturbances for a long-term
period of more than 30 years. We selected the northern part of Vietnam as the study area
and developed RF models using LandTrendr temporal segmentation. Then, we compared
the estimation accuracies of the RF models to investigate the utility of Landsat time series
analysis for mapping LULCC and forest disturbances. Vietnam is a densely populated
country in Southeast Asia, experiencing a high degree of forest loss and reforestation in the
past several decades. In Vietnam, forest areas decreased due to human pressure until the
1980s; however, reforestation activities increased the forest cover since the 1990s [36]. At
the same time, Vietnam experienced significant urbanization in recent years [37]. Rapid
LULCC in the last several decades can exacerbate the risk of natural hazards, such as
flooding and landslides, especially in mountainous areas [38,39]. The increased natural
hazards in the mountainous regions of Vietnam have caused human losses, economic
damage, and abandonment of agricultural land in the rural environment [40,41] Thus,
there is an urgent need to map LULCC and forest disturbances and to understand their
influences in Vietnam. Recently, optical and radar satellite data have been used to map
LULCC (e.g., [42–44]) and forest disturbances (e.g., [45]) in Vietnam and other countries
in Southeast Asia (e.g., [46–48]). However, the long-term trends of LULCC and forest
disturbances are still unclear. To understand the causes and consequences of LULCC
and forest disturbances, a mapping approach that utilizes frequently acquired long-term
satellite observations is needed.

2. Methods
2.1. Study Area

Figure 1 shows the study area, which is the part of Vietnam north of 20◦N and covers
an area of about 12.2 million ha. The topography is characterized by steep terrain in the
northwest inland area and relatively flat terrain in the south eastern coastal area at the Red
River Delta. According to Köppen’s classification, the climate is warm temperate with a
hot summer and a relatively cold season in the mountainous regions. The rainy season
normally starts in April or May and lasts until October. The forests in mountainous and
flat areas are dominated by broadleaf and tropical deciduous species, respectively.
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Figure 1. Study area in northern Vietnam. The tree canopy cover in 2000 from Hansen et al. [49] was
overlaid on a digital elevation model from the Shuttle Radar Topography Mission [50]. The country
boundary dataset was sourced from Global Administrative Areas, v3.4 [51].
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According to the Food and Agriculture Organization (FAO) [52], 47% of Vietnam was
covered by forest in 2020. Despite the forest recovery over the past three decades, there
exist regional variations in deforestation, forest degradation, and recovery [53]. Currently,
plantation forests comprising mainly of acacia, eucalyptus, and rubber account for about
30% of the forest area. Extensive anthropogenic activities have created a mosaic landscape
of primary forests, secondary forests, plantation forests, shrubs, and agricultural land in
the northern upland areas [53]. The agriculture and urban areas are distributed over the
flat coastal region.

2.2. Processing Flow

Figure 2 shows the processing flow of the Landsat time series segmentation and RF
modeling for mapping LULCC and forest disturbances. We first implemented LandTrendr
temporal segmentation [17] by using the annual Landsat time series data in Google Earth
Engine [54]. We collected training data for tuning RF models. Then, we developed separate
RF models for LULC classification and forest disturbance detection based on temporal
segmentation results and collected training data. After LULC and forest disturbances were
predicted for each segment of the study area, post-processing procedures were applied
to correct obviously misclassified LULCC and forest disturbances. We used the final
classification results of each temporal segment to map the annual LULC/LULCC and forest
disturbances for the entire study area.
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Figure 2. Processing flow for mapping land use/land cover changes (LULCC) and forest disturbances.

2.3. Landsat Time Series Data

The primary satellite data for time series analysis in this study was annual composites
of Landsat data. We used the archive of Landsat TM/ETM+/OLI Collection 1 Tier 1 surface
reflectance (SR) data [55,56] from 1987 to 2021 in Google Earth Engine (GEE). We deter-
mined the duration according to whether sufficient Landsat data were available to generate
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annual composites for the study area. To reduce the yearly variations caused by seasonal
changes, we only used images collected between 1 May and 30 November. We determined
this period by considering the green up and down dates in the growing cycle of forests in
the study area from the MODIS land cover dynamics product (MCD12Q2 [57]). We cali-
brated the OLI SR data to TM/ETM+ data by using the regression coefficients provided by
Roy et al. [58]. We removed the pixels affected by clouds, cloud shadows, and snow by
using the quality assessment (QA) bands from CFmask [59,60]. To generate annual Landsat
image composites from the collection of Landsat data, we employed medoid composit-
ing using the LT-GEE code (https://emapr.github.io/LT-GEE/index.html, accessed on
21 December 2021). We performed the image compositing for each year using any Land-
sat sensor. The processing resulted in a single SR composite image for each year from
1987 to 2021.

2.4. LandTrendr Temporal Segmentation

We implemented the LandTrendr algorithm for temporal segmentation [17,61] in
GEE. LandTrendr fits straight-line temporal segments to the trajectory of a spectral index
in a pixel time series. We calculated the normalized burn ratio (NBR) [62] as a spectral
index to determine the temporal segments of LandTrendr owing to its suitability for
characterizing forest dynamics [63]. To run LandTrendr, a set of parameters is required to
identify breakpoints and fit straight lines. We used the same default values for parameters
as Kennedy et al. [61] except for maxSegments (set to 8), recoveryThreshold (set to 1), and
pvalThreshold (set to 0.1, Table S1 in Supplementary Materials). These modifications were
made to capture multiple changes and rapid vegetation recovery based on the findings of
previous studies [29,64–68].

Additionally, we also derived other spectral indices, namely the tasseled cap brightness
(TCB), greenness (TCG), wetness (TCW) [69], and angle (TCA) [70]; enhanced vegetation
index (EVI) [71], normalized difference vegetation index (NDVI) [72,73], and normalized
difference moisture index (NDMI) [74] composites. We then applied them to the fit-to-
vertex (FTV) procedure [75], which forces spectral indices fit the timing of breakpoints
determined by NBR segmentation. As a result of the FTV procedure, each pixel had the
fitted straight-line trajectories of NBR and the other seven spectral indices, which had the
same timing and duration segments but different spectral properties. We included the FTV
procedure because information from different spectral indices for each segment is useful
for describing LULCC and forest disturbances [31,75].

2.5. RF Models for LULC Classification and Disturbance Detection

After the temporal segmentation with LandTrendr, we derived a set of predictor
variables from each segment (Table S2). The two RF models for LULC and disturbance
detection shared the same predictor variables. For NBR, we computed the start value,
end value, spectral magnitude, duration, disturbance signal-to-noise ratio (DNSR) [27],
change rate, and relative change of each segment. In addition, the fitted NBR was used
to calculate the start value, spectral magnitude, duration, DNSR, and change rate of the
pre- and post- segments as predictor variables. For the fitted spectral indices from FTV, we
computed the start value, spectral magnitude, change rate, and relative change. In total,
we extracted 45 predictor variables from each temporal segment. The complete list of the
predictor variables is shown in Table S2.

We collected training data for the RF models of LULC classification and disturbance
detection by visual interpretation of high-spatial-resolution images in Google Earth and
Landsat time series data (Table 1). In this study, we defined a forest disturbance as any
discrete event that causes a reduction of forest canopy visible from high-spatial-resolution
satellite images. We used tree canopy cover for 2000 and forest loss maps for 2001–2019
from Hansen global forest change (GFC) data [49] and a LULC map of Vietnam in 2019 [42]
to sample random locations. First, we used the tree canopy cover and forest loss maps to
generate a map consisting of forest (tree canopy cover ≥ 10%) without forest loss, non-
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forest (tree canopy cover < 10%), forest loss, and forest without forest loss but within
1 pixel from forest loss pixels. Then, we randomly selected pixel locations from each
class of the map. The temporal segment was the primary unit for the RF models in this
study. Thus, we allocated reference labels (both LULC classes and forest disturbance/no-
disturbance) for each temporal segment at the sampling pixel locations, as shown in Figure 3.
After the predictor variables were derived from the temporal segments, we developed
preliminary RF models that we applied to the entire study area. The resultant prediction
was used to generate LULC map for 2019, which we compared against the LULC map from
Phan et al. [42] after adjusting the LULC classes. Then, we collected training data for
locations where the LULC classes disagreed. We iteratively collected training samples by
using updated preliminary maps and the LULC disagreement. Based on the results, we
finally collected training samples comprising 9592 segments at 2210 pixel locations.

Table 1. Land use/land cover (LULC) classes and their descriptions.

Class Description

Cropland Agricultural land such as paddy fields and cultivated areas
Barren Bare soil without vegetation cover or sparse shrub vegetation

Forest Areas with a tree canopy cover of >10% and height potentially taller than 5 m,
including secondary forests and plantation forests

Grass/Shrub Grassland and woody vegetation that is not forest
Settlement Residential and built-up areas including unpaved roads

Water Water bodies including rivers, lakes, ponds, inundations, and sea
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LandTrendr temporal segmentation.

We used the collected training data to train the RF models (i.e., smileRandomForest)
for LULC classification and forest disturbance detection in GEE. We set the number of
variables per split as the square root of the number of predictors with a number of trees of
500. We exported the segments classified by the RF models and applied post-processing pro-
cedures to each segment to correct obvious misclassifications or inconsistent predictions in
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R version 4.1.1 [76]. During the post-processing, we applied a 3 × 3 pixel spatial majority
class filter to the mapped LULC of the first segments. Because forest disturbances that oc-
curred in non-forest areas are not logical, we replaced such detections with no-disturbance.
For LULCC, LULC transitions from forest to other classes without forest disturbance were
eliminated. Finally, we removed forest disturbances of less than six spatially adjacent pixels
to suppress false positives. After the post-processing, we derived annual LULC and forest
disturbance maps. Although the RF prediction of LULC and disturbance detection covered
a slightly longer period, we only used the mapping results for 1988–2019 because the
LandTrendr-like algorithm (i.e., offline change detection, [26]) sometimes causes erroneous
detection at the end of the time series [77].

We used the LULC 1988, LULC 2019, and forest disturbance maps to generate a
combined LULCC and forest disturbance map for 1988–2019. Because we would like to
map LULCC for this period and avoid the emergence of too many LULCC classes, we only
considered LULC in 1988 and 2019 and ignored possible multiple LULCC for a particular
location during this period. In addition, we merged several LULCC classes because of
the large numbers of “from-to” classes. The LULCC and forest disturbance map had
11 classes comprising six classes representing stable LULC during 1988–2019, two classes
representing consolidated LULCC, and three classes representing forest disturbance. These
classes are shown in Table S3.

2.6. Accuracy Assessment

We assessed the accuracies of the maps for LULC 1988, LULC 2019, forest disturbance,
and combined LULCC and forest disturbance for 1988–2019. We assessed the accuracies
of these maps based on the corresponding map classes as explained in the following
paragraphs. Although most previous studies removed non-forest areas when assessing
the accuracy of forest disturbance class (e.g., [78,79]), we included the entire study area
(i.e., both forest and non-forest classes) to consider possible omission errors that occurred
while classifying the non-forest areas, which were actually forest areas. We followed the
recommendation by Olofsson et al. [80] for sampling design, response design, and analysis
protocols for assessing the accuracy and estimating area of mapped classes. We collected
reference samples based on a stratified random sampling. We generated strata by using
the mapped LULC and forest disturbances (i.e., 11 classes in Tables S3 and S4) with an
additional spatial buffer stratum, as given in Table 2. As suggested by Olofsson et al. [81], a
spatial buffer stratum is a simple and useful way to reduce the uncertainty of the producer’s
accuracy (PA) and area of forest disturbance classes that occupy a smaller area than a stable
forest (i.e., forest without experiencing forest disturbance) stratum when stratified random
samples are used. Based on the insight that omission errors of forest disturbances are likely
to occur in proximity to detected disturbance pixels, previous studies have utilized a spatial
buffer stratum that surrounds disturbance pixels with different buffer sizes (e.g., [20,82–85]).
In this study, we assigned pixels of stable forest class within 1 pixel from forest disturbance
pixels as a buffer stratum where the buffer size was determined based on the area weights
of the disturbance (7.4%) and stable forest classes (60.7%). Note that we generated the
strata by using interim mapping results, not the final version. This is because the study
was a part of a project, and accuracy assessment was required at the development stage.
Thus, we carefully implemented the sample collection to not violate the independence of
the reference samples for the assessment of the final maps [85]. This sampling design did
not affect the unbiasedness of the estimators. We determined the sample size for accuracy
assessment as follows [80,86]:

n =

(
∑ WiSi

S
(
Ô
) )2

(1)

Si =
√

Ui(1 − Ui) (2)
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where n is the sample size, Wi is the area weight of class i, Si is the standard deviation
of stratum i, S(Ô) is the standard error of the assumed overall accuracy (OA), and Ui
is the assumed user’s accuracy (UA) of stratum i. We assumed UA as 80% for forest
disturbance classes and 75% for the rest of the classes after trying several potential values,
as suggested by Stehman and Foody [87]. With the 95% confidence interval of OA as 3%,
we obtained a sample size of 792 for the accuracy assessment. We used 30 m pixels as the
spatial assessment unit for accuracy assessment. The sample allocation to the strata was
determined following the allocation procedure suggested by Olofsson et al. [80] with at
least 50 samples for each strata (Table 2).

Table 2. Sample allocation to each stratum in accuracy assessment.

Class Initial Labeling (%) Reinterpretation (%) Final (%)

LULC 1988 65.3 93.2 100
LULC 2019 81.6 94.8 100

Forest disturbance 80.4 92.3 100

We visually interpreted each reference sample by assigning reference classes. Two
independent interpreters labeled the LULC classes as defined in Table 1 for 1988 and
2019 and the occurrence of forest disturbance within the period of 1988–2019 with the
aid of the Collect Earth software developed by FAO [88]. We prepared a time series
NDVI and normalized difference fraction index (NDFI) [89] from all available Landsat
data for 1987–2021 with a CCDC harmonic regression model fitting [83] in Collect Earth.
Prior to the interpretation of the reference samples, we randomly collected 50 samples
independent of the reference samples and used them for training the two interpreters,
along with a class-labeling manual that describes typical spectral characteristics of each
LULC class. Then, the two interpreters independently determined the reference labels of
the 792 reference samples with their confidence in the interpretation (i.e., initial labeling).
The interpreters did not know the stratum for each reference sample while implementing
visual interpretation. After the initial labeling, inconsistent reference samples that had
a disagreement in either LULC 1988, LULC 2019, or disturbance labels were identified
and reinterpreted by both interpreters on whether to change the labels. For the remaining
inconsistent samples after the reinterpretation, the interpreters visually checked the samples
together and determined the reference labels after discussion with a field specialist to allow
for correct label assignment (Table 3). The interpreters had difficulty determining the
reference labels for some of the reference samples for LULC 1988 because of the lack
of high-spatial-resolution data. Thus, the interpretation confidence was also used to
determine the label in such cases. The reference labels of all the reference samples from
the two interpreters were matched by these procedures (Table 3). Because we had the four
maps for accuracy assessment, we converted the labels of the reference samples to be in
accordance with the classes of each map when assessing accuracies and estimating areas.
The classification agreement was defined as the match between the map and reference
classes. Additionally, we manually delineated spatially contiguous forest disturbance
patches that intersected with labeled disturbance in the reference samples by using annual
Landsat RGB composites and rasterized them to calculate disturbance patch size. We
conducted this manual delineation to calculate the PA of disturbance for specific disturbance
size classes. This procedure only added the disturbance patch size information to the pixel-
based reference samples and did not affect the classification agreement.
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Table 3. Proportion of label agreement between two interpreters at each stage of visual interpretation.

Type Stratum Area Weight Sample Size

Stable LULC Cropland 0.134 61
Barren 0.000 50
Forest 0.504 231
Grass/Shrub 0.023 50
Settlement 0.021 50
Water 0.016 50

LULCC Others to Forest 0.080 50
Others to Others (excluding forest) 0.046 50

Forest disturbance Disturbance with forest to forest 0.071 50
Disturbance with forest to others 0.002 50
Disturbance with others to forest 0.001 50

Buffer Buffer on stable forest 0.103 50

We calculated the PA and UA of each class and OA with the estimated population error
matrices [90,91]. As we collected reference samples by using the strata from the interim
maps, the final maps and sampling strata inevitably differed in this study. Therefore, we
used the indicator functions and combined ratio estimator proposed by Stehman [91] to
estimate accuracies and area. The OA and area of each class were estimated as follows:

Ŷ =
1
N ∑H

h=1 Nh ph (3)

where N is the total number of pixels in the population, H is the number of strata, Nh is the
total number of pixels in stratum h, and ph is the sample means of correctly classified pixels
(for OA) or the sample proportions of the specific reference class (for area) in stratum h as
defined in the indicator functions. The variance estimator is given by Stehman [91]:

V̂
(
Ŷ
)
=

1
N2

H

∑
h=1

Nh
2(1 − nh/Nh)s2

yh/nh (4)

where nh is the number of sample pixels in stratum h and s2
yh is the sample variances for yu

in stratum h. The estimates of the PA and UA of each class were calculated as follows [91]:

R̂ =
∑H

h=1 Nhyh

∑H
h=1 Nhxh

(5)

where yh and xh are the sample means of yu and xu, respectively, in stratum h and yu and
xu are the defined indicator functions for each accuracy metric using pixel u. We obtained
the variance of R̂ using the following formulas by Stehman [91]:

V̂
(

R̂
)
=

(
1

X̂2

)[
∑H

h=1 N2
h

(
1 − nh

Nh

)(
s2

yh + R̂2s2
xh − 2R̂sxyh

)
/nh

]
(6)

where s2
xh is the sample variance for xu in stratum h. X̂ and sxyh are defined as follows [91]:

X̂ = ∑H
h=1 Nhxh (7)

sxyh = ∑nh
u=1(yu − yh)(xu − xh)/(nh − 1) (8)

We applied the estimator formulas to the maps of LULC 1988, LULC 2019, forest
disturbance, and combined LULCC/disturbance. We obtained 95% confidence intervals
for each estimate. For the PA of disturbance detection, we also calculated the PA for
disturbance sizes of <1 ha and ≥1 ha to investigate the performance of detecting small
forest disturbances using reference disturbance size information collected through visual
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interpretation. For performance comparison with existing disturbance detection and LULC
classification datasets, the accuracy metrics were calculated for the forest loss map of
Hansen GFC (2000–2019) and LULC map of 2019 for Vietnam of Phan et al. [42] using the
same reference samples and estimators after clipping these maps to our study area.

3. Results
3.1. Accuracy Assessment

The results revealed that the OAs of the LULC classification for 1988 and 2019 were
67.6% (±3.9% in the 95% confidence interval) and 68.4% (±3.8%), respectively (Table 4).
The population error matrices revealed large omission errors for the grass/shrub and forest
classes in both LULC classifications (Tables S5 and S6). The classification errors between
the cropland and grass/shrub classes were also large. Both PA and UA were generally high
for the stable forest class. PA and UA. On the other hand, relatively low accuracies were
achieved for the barren and grass/shrub classes for both LULC 1988 and 2019.

Table 4. Accuracy assessment for the 1988 and 2019 classified LULC maps. The producer’s ac-
curacy (PA) and user’s accuracy (UA) for each class and overall accuracy (OA) are shown with
95% confidence intervals.

Class
LULC 1988 LULC 2019

PA (%) UA (%) OA (%) PA (%) UA (%) OA (%)

Cropland 59.1 (±6.5) 75.7 (±7.6) 67.6 (±3.9) 49.2 (±7.2) 69.4 (±10.4) 68.4 (±3.8)
Barren 0.0 (±0.0) 25.0 (±12.8) 0.2 (±0.4) 4.4 (±10.0)
Forest 96.4 (±2.0) 69.7 (±5.0) 96.7 (±1.8) 69.6 (±4.5)

Grass/Shrub 11.8 (±5.4) 33.3 (±13.3) 9.2 (±4.9) 35.1 (±15.3)
Settlement 41.1 (±20.3) 31.4 (±13.2) 39.4 (±12.3) 74.3 (±12.1)

Water 56.8 (±19.1) 67.6 (±15.4) 60.5 (±18.6) 82.6 (±11.5)

The forest disturbance detection achieved an OA of 80.5% (±3.2%) (Tables 5 and S7).
The PA and UA of forest disturbance were 23.7% (±4.5%) and 78.8% (11.3%), respectively.
When only forest disturbances of ≥1 ha were considered as the reference, the PA of the
forest disturbance class was 36.8%. In contrast, the PA was 14.1% when disturbances of
<1 ha were considered. The accuracy assessment for the LULCC/forest disturbance map
revealed high classification accuracy for the stable cropland, forest, and water classes. Other
classes had a lower PA and UA. In particular, the forest disturbance classes had a PA and
UA of 0.3–20.7% and 9.0–50.7%, respectively (Table S3).

Table 5. Accuracy assessment for forest disturbance detection (1988–2019). The PA and UA for each
class and the OA are shown with 95% confidence intervals.

Class PA (%) UA (%) OA (%)

Disturbance 23.7 (±4.5) 78.8 (±11.3) 80.5 (±3.2)
No-disturbance 98.0 (±1.1) 80.6 (±3.4)

The accuracy assessment for the forest loss map of the Hansen GFC data revealed that
forest disturbances (i.e., forest loss) were mapped with a PA and UA of 30.6% (±7.9%) and
69.4% (±12.1%), respectively, in the study area. The OA of the forest loss map of the Hansen
GFC data (i.e., 80.4% ± 3.3%) was similar to that of the map generated in this study. The
2019 LULC map of Vietnam from Phan et al. [42] achieved a slightly higher classification
accuracy (OA of 73.4% ± 3.7%) after consolidation to the LULC classes and clipping the
extent in this study (Table S8). Substantial improvements were observed in the PA of the
cropland and grass/shrub classes and the UA of the forest and grass/shrub classes.
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3.2. Mapping LULCC and Forest Disturbances

The results showed that the areas of forest and settlement increased throughout the
study period (area changes in Table S9). However, the areas of cropland and grass/shrub
decreased. Based on the forest disturbance and corresponding LULCC results in the
accuracy assessment, forest disturbances that did not result in LULCC (i.e., conversion to
non-forest classes) occupied 66.8% of the total disturbance area, whereas forest disturbance
that resulted in other LULC classes occupied 6.6%. The rest of the disturbances (i.e., 26.7%)
were non-forest classes in 1988 but recovered to forests during the study period.

As shown in Figure 4, the mapping results indicated that cropland class was mainly
distributed in lowland regions. In the mountainous regions, there was a mosaic of forest,
cropland, and grass/shrub classes. In particular, the transition of abandoned cropland to
grass/shrub or forests was visually ambiguous and it was difficult to correctly classify
through visual interpretation. The interpreters showed the most disagreement in the initial
labeling process for the cropland, grass/shrub, and forest classes.
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4. Discussion

LULCC and forest disturbances provide fundamental information on land surface
changes and related vegetation dynamics. A temporally consistent mapping of both LULCC
and forest disturbances (e.g., annual time steps) is important for informing decision-makers
about the potential impacts of these changes. In this study, we examined the applicability
of a LandTrendr temporal segmentation to map the annual LULCC and forest disturbances
based on annual Landsat time series data in northern Vietnam. The accuracy assessment
indicated relatively low accuracy for several LULC classes and disturbance detection, which
we attributed to the complex landscape and environment of the study area. However, the
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accuracy was comparable to that of the existing LULC/disturbance maps, indicating the
importance of LandTrendr temporal segmentation combined with RF modeling. Although
there is room for improvement, this study demonstrated the potential for better mapping
in future research.

The accuracies obtained for LULC classification and forest disturbance detection were
relatively low in this study. The PA of forest disturbances was especially lower than that of
previous studies using LandTrendr in other regions (e.g., [29,92]). However, the accuracy
assessment for the forest loss of the Hansen GFC data also showed lower accuracy with
the same reference samples (i.e., PA of 30.6%). Thus, disturbance detection in the study
area seems more challenging than in other regions. The substantial disagreement between
the independent interpreters in the initial interpretation of reference samples also suggests
that forest disturbances were subtle and small in the study area. Thus, it was difficult
to distinguish disturbances from stable forest classes even in the visual assessment. The
same difficulty was observed for spatiotemporally ambiguous LULCC in the mountainous
regions, e.g., cropland to forest and grass/shrub to forests, which had similar spectral
responses. The main types of forest disturbances observed in this study were temporal
forest loss caused by timber harvesting, shifting cultivation, and conversion to plantation
forests and permanent forest loss caused by forest conversion to non-forest classes, such
as cropland. We assumed that small forest disturbances followed by rapid forest recovery
hindered accurate disturbance detection because such disturbances are more difficult to
detect compared with those that resulted in LULCC. Indeed, forest disturbances that
remained forests, such as those caused by temporal clearing and shifting cultivation, were
dominant in the study area. Small and frequent forest disturbances generated the mosaic
of primary, secondary, and plantation forests, which led to a landscape of different forest
types surrounded by shrub, grassland, and cropland in rural regions. Together with the
heterogeneous landscape, such human-induced ephemeral forest disturbances might have
made the study area complex and challenging to map.

Disturbance detection approaches that applied machine learning algorithms (e.g., RF)
to Landsat time series data have increased in recent years (e.g., [29,30]) because the use of
machine learning algorithms can handle complex temporal dynamics and various types of
forest disturbances [93]. This study combined RF prediction with LandTrendr temporal
segmentation, which has been used in previous studies (e.g., [29,94]), to both LULCC classi-
fication and forest disturbance detection. In this context, our approach is more flexible than
the original LandTrendr algorithm at detecting complex changes to the land cover. How-
ever, the accuracy assessment revealed that the detection accuracy was almost the same as
that of the Hansen GFC data, which is a global dataset. Although globally generated prod-
ucts sometimes have better or similar performance [95], most previous studies have found
that locally calibrated disturbance detection achieved higher accuracies [96–98]. The results
of this study can be attributed to the difficulty of characterizing forest disturbance and re-
covery in the study area. The detection accuracy of the LandTerndr temporal segmentation
depends on the fitting results of the temporal segments. As a previous study showed that
optimal parameter settings can greatly affect the accuracy of disturbance detection using
Landsat time series [99], testing the parameters for the LandTrendr temporal segmentation
might improve predictive performance. Although change detection algorithms that use all
available Landsat observations by fitting a time series model (e.g., CCDC and BFAST) are
computationally demanding, the use of such algorithms is another solution to reducing the
omission error of forest disturbance detection.

This study demonstrated spatially and temporally consistent mapping of LULCC
and forest disturbances. Both forest disturbances and LULCC affect vegetation dynamics
and carbon sequestration. The characteristics of mapped forest disturbances that coincide
with LULCC at each pixel in the time series are desirable for providing spatially explicit
information. Although the LULC classification accuracy in our study was slightly lower
than that of the existing LULC map for entire Vietnam [42], the forest disturbance map
generated in our study has a mutually complementary relationship and thus is useful for
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understanding vegetation dynamics. It was sometimes difficult to distinguish between
forest, grass/shrub, and cropland in this study. The confusion can largely be attributed
to the spectral similarities among these classes and ambiguous transitions that caused
mixed classes in the pixels. One way to improve the classification accuracy is by adding
more training data considering obtained higher accuracy for these classes in the map of
Phan et al. [42]. Using indices from spectral unmixing may also solve the problem of pixels
with mixed LULC classes. Because we classified LULC based on the temporal segments, the
classification accuracy of LULC was also affected by the results of temporal segmentation.
Thus, searching the optimal parameters of LandTrendr temporal segmentation is another
possible solution for improving classification accuracy.

Among LULC classes, the largest increase in area throughout the study period was
observed for the forest class (+710,556 ha, Table S9), followed by the settlement class
(+390,783 ha). The observed increase in these classes between 1988 and 2019 is consistent
with the findings for the entire country of Vietnam [44,100]. The decrease in area of the
cropland and grass/shrub contributed to these changes, which was mainly driven by
the establishment of planted forests. These transitions mainly occurred in mountainous
areas where land abandonment is likely to occur [40]. Agricultural land abandonment
has negative impacts on food security; however, forest regeneration can increase carbon
sequestration and help generate other ecosystem services, such as timber production,
biodiversity conservation, and landslide prevention.

5. Conclusions

In this study, we examined the applicability of LandTrendr temporal segmentation for
mapping LULCC and forest disturbances based on annual Landsat time series data and RF
model predictions. The results revealed that, over the three decades (1988–2019), the areas
of forests and settlements in the study area (i.e., northern Vietnam) increased, whereas the
areas of cropland and grass/shrub decreased. The dominance of forest disturbances that
did not cause LULCC highlighted the importance of characterizing forest disturbances
as well as LULCC. Although the classification accuracy was relatively low in this study
because of the complex mountainous landscape and subtle forest changes, LandTrendr
temporal segmentation is still useful for detecting LULCC and forest disturbances. Tem-
poral segmentation and features derived from LandTrendr were useful for mapping both
LULCC and forest disturbances. The spatially and temporally consistent mapping of
LULCC and forest disturbances can provide a better understanding of landscape dynam-
ics, which is essential for biodiversity conservation and carbon stock monitoring. Future
studies should focus on improving the accuracy of forest disturbance detection, espe-
cially in areas with subtle landscape changes, as well as LULC classification in ambiguous
and complex landscapes.
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