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Abstract: Europe’s mountain forests, which are naturally valuable areas due to their high biodiversity
and well-preserved natural characteristics, are experiencing major alterations, so an important
component of monitoring is obtaining up-to-date information concerning species composition, extent,
and location. An important aspect of mapping tree stands is the selection of remote sensing data that
vary in temporal, spectral, and spatial resolution, as well as in open and commercial access. For the
Tatra Mountains area, which is a unique alpine ecosystem in central Europe, we classified 13 woody
species by iterative machine learning methods using random forest (RF) and support vector machine
(SVM) algorithms of more than 1000 polygons collected in the field. For this task, we used free
Sentinel-2 multitemporal satellite data (10 m pixel size, 12 spectral bands, and 21 acquisition dates),
commercial PlanetScope data (3 m pixel size, 8 spectral bands, and 3 acquisitions dates), and airborne
HySpex hyperspectral data (2 m pixel size, 430 spectral bands, and a single acquisition) with fusion of
the data of topographic derivatives based on Shuttle Radar Topography Mission (SRTM) and airborne
laser scanning (ALS) data. The iterative classification method achieved the highest F1-score with
HySpex (0.95 RF; 0.92 SVM) imagery, but the multitemporal Sentinel-2 data cube, which consisted of
21 scenes, offered comparable results (0.93 RF; 0.89 SVM). The three images of the high-resolution
PlanetScope produced slightly less accurate results (0.89 RF; 0.87 SVM).

Keywords: vegetation mapping; mountain ecosystem; woody plant species; the Tatras; classification;
Sentinel-2; PlanetScope; HySpex

1. Introduction

Mountain areas, due to their serious denivelations and difficult access, often consist of
fragments of old-growth forests, so they are valuable, especially due to their biodiversity
and genetic resources [1]. The elevations of these areas have led to the development
of vegetation belts with high diversity and spatial heterogeneity. Mountain forests also
provide an important refuge for endemic and stenotopic species. Hoffmann et al. [2]
emphasized that climate changes will be detrimental for forests in central Europe, mainly
due to the substantial increase in air temperatures as well as the insufficient amount of
precipitation to counteract the resulting water stress in trees, reducing the abilities of
trees to protect themselves against pathogens, increasing the risk of pest damage and
diseases [3]. These changes also affect the albedo of vegetation cover, which can lead
to further climate alterations through positive feedback [4]. These alterations may affect
mountain forests, causing critical disturbances and irreversible changes [5], as nearly 60%
of this mountainous area is under intense human pressure [6]. The dominant species in
the forests of central Europe is Norway spruce (Picea abies), which is preferred in forest
management due to its fast growth and high productivity [5,6]. Bark beetle outbreaks,
which result in the dynamic dieback of mature spruce trees, have led to the intensive
development of new species below the plant canopy and, as a result, the appearance of
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deciduous tree species [7]. In our previous study [8], we confirmed that in 2015–2018, as a
result of unfavorable phenomena that occurred in the Tatra Mountains, e.g., windthrow,
bark beetle outbreaks, followed by sanitary cuts, approximately 29% (62 km2) of Polish and
Slovak coniferous tree stands died. The dynamics of these phenomena depends on many
factors, such as habitats and vegetation belt (topography, topoclimate, and soils), as well
as on the species composition of trees and their genotypes [9]. The same issues have been
observed in many other places [10] and are expected to globally intensify [11]. However,
the impacts of individual disturbances on forest ecosystems are diverse, depending on
the scale and frequency [12]. Sometimes, these disturbances provide the opportunity to
restore the ecosystem because, in many cases, the prior plantings were inconsistent with
the habitat; after ecological disasters, the soil was protected from erosion by planting often
genetically inappropriate available seedlings [13]. For example, spruce should not be
planted on rich soil in lower vegetation belts, where European beech (Fagus sylvatica) and
silver fir (Abies alba) should dominate [8]. Additionally, intensive disturbances covering
large areas may lead to biotic homogenization [14], limiting the ability of ecosystems to
counteract or recover from negative phenomena, e.g., humus erosion, leaching of valuable
minerals, and dieback of the rhizosphere [15]. An additional threat is air pollution, which
causes leaf chlorosis and weakened vegetation at the beginning of the growing season [16].

The key element in environmental monitoring is the assessment of the changes that
are occurring [17]. In many countries, environmental monitoring is also required by law to
regularly prepare national park management plans considering the dynamics and directions
of these changes. The traditional monitoring methods are based on field verification of
designated circular areas, and the obtained results were extrapolated to the remaining area
being analyzed. However, current high-resolution multispectral images allow detailed
identifications of individual tree species, the assessment of their condition, and observations
for entire research areas with the same accuracy, producing average median F1-scores of
0.67–0.92 depending on the species [18]. The current research problem is the assessment
of classification algorithms, which, due to the high heterogeneity of the analyzed objects,
require a diverse approach to identify selected species. The spatial and spectral resolutions
of modern satellite sensors allow the registration of tree crowns on at least one pixel, which
enables the identification of spectrally pure pixels and considerably facilitates the process
of classification and assessment of individual species, even in mixed forests, achieving F1-
scores of 0.76–0.90 depending on the data set [19]. However, a dozen spectral bands may be
insufficient to capture the spectral properties of individual species; therefore, an appropriate
solution is using multitemporal data that reflect the characteristic features of individual
species during vegetative development, e.g., leaf growth and discoloration [19–21].

National parks protect old-growth forests (OGFs), which, due to their age, constitute
valuable genetic resources [22]. Spracklen and Spracklen [22], based on the 10 and 20 m
bands of Sentinel-2 and a random forest classifier, identified the dominant tree species of
the eastern part of the Carpathians mountain range, which is where we have conducted
our studies, in the western part of the range. For Norway spruce and beech, they achieved
95–98% producer accuracy (PA) and 85–90% user accuracy (UA), but for the rest of the
other 17 species, the PA ranged between 25% and 60% [22]. To differentiate the age of
these species, the authors used a set of six indices and the grey level co-occurrence matrix.
The outcomes allowed the identification of OGFs with an accuracy of approximately 85%
for multitemporal Sentinel-2 images (summer and autumn). The random forest classifier
and Sentinel-2 images were successfully used to identify tree species at the individual-
tree scale of mixed forest in the Veluwe region (The Netherlands) [23]. Based on the
vegetation structure and tree composition, the authors identified 479 plots representing
1743 trees in the field. Sentinel-2 image acquisition focused only on the 10 m pixel size
bands representing different phenological periods. In the first step, the tree tops were
identified from the canopy height model (CHM); the same was applied to delineate tree
crowns as an object-based approach according to the Popescu and Wynne method [24]
using the R-package ForestTools [25]. This allowed the extraction of structural features of
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the crown [23]. The random-forest-based classification process consisted of a few scenarios,
which focused on structural crown variables, one season, and multitemporal spectral
properties. As the results of species classification, an accuracy of 78% was achieved based
on all variables, and 73% was attained using only the spectral features of the multitemporal
Sentinel-2 analyses. With a single image, the most accurate results were obtained in summer
(71%) and the worst in winter (63%) [23]. Bolyn et al. [26] used Sentinel-2 images acquired
from 13 dates (between spring and summer) for classification using a U-shaped neural
network (UNet++) [27]. The authors used 10 bands (10 and 20 m) from the time-weighted
Sentinel-2 images [28] to identify nine tree species in Wallonia (Belgium). The convolutional
neural networks achieved a 73% overall accuracy (OA); the most accurate results were
obtained for the tree species spruce, oak, beech, and Douglas fir, for which the PA and
UA scores were above 70%. For poplars, larches, and birches, the PA was below 50%.
These results are comparable to those produced by machine learning classifiers. However,
the classification accuracy depends on the naturally occurring geographic zones and the
heterogeneity of habitats. For example, Zagajewski et al. [18], based on Sentinel-2 images,
obtained a 74% UA, 67% PA, and 0.70 F1-score for SVM in the case of larch; slightly lower
results were achieved by the random forest and artificial neural network classifiers. The
same observation was obtained by Punalekar et al. [29], who implemented a nonparametric
extra tree classifier for Sentinel-2 images and nine vegetation indices for classifying larch in
the whole of Wales with high accuracy: the F1-score was greater than 0.97.

The high-mountain areas of central Europe are characterized by dynamic weather due
to the influence of the Atlantic and continental climates, which result in the lifting of warm
air masses, where condensation and cloudiness occur, which cause windbreaks, changing
the age and species structure of forest stands. Therefore, obtaining scenes representing
various stages of vegetation development is challenging. Hence, we need to analyze
multiseasonal series to help capture phenology. Additionally, because the growing season
in the mountains is short and the spectral properties of vegetation quickly change, we used
multitemporal Sentinel-2 compositions. As the reference data, we collected field-verified
polygons, representing pixels of all analyzed species located in different topographic
patterns with different elevations, slopes, and aspects. In different topographic locations,
the same species has different spectral signatures as a result of the influences of water
vapor, insolation, wind, and temperature. These factors play key roles in leaf drying, which
forces the plant to adopt protective mechanisms that affect spectral responses. Ecosystem
heterogeneity (plant communities, rocks, dry trunks, branches, and other objects) generates
mixels through the effect of the neighborhood, which influences the spectral responses
registered by airborne and satellite sensors and thereby the classification results [30].
The HySpex reference data have a spatial resolution of 2 m and a spectral resolution of
430 bands, which seems to be an advantage; however, the pixel size is comparable to the
size of a tree crown. Additionally, the availability of long-term Sentinel-2 data substantially
improves the ability to identify tree stands, especially when individual species implement
different growth and development strategies during the vegetative period. Capturing
spectral variation during the phenological season can remarkably increase the accuracy
of the classification results and indicates which data selection scenarios allow us to obtain
satisfactory results.

The use of data and open-source software allows for the constant monitoring of the
environment without incurring burdensome costs, which is especially valuable for NGOs
or nature conservation areas that have teams of several specialists dealing with nature
monitoring, as well as well-qualified foresters who can verify the observed changes on
an ongoing basis. Additionally, Sentinel-2 imaging covers the entire area at once, which
reduces radiometric differences and ensures spectral coherence; the relatively short revisit
time allows for the elimination of gaps created by single clouds. In comparison, airborne
campaign planning is much more demanding due to size of the study area, elevation
differences, and weather dynamics. As such, airborne campaigns often last for several days
and include the acquisition of various fragments in different weather conditions, which
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may change the properties of the spectral analysis of the analyzed objects and thus increase
the imaging cost. Satellite data allow the acquisition of objective and repeatable data for
long-term environmental monitoring [31], and the obtained results can be reliably applied
to other mountain areas, which allows the identification of changes in alpine ecosystems
located in different parts and zones in Europe and around the world.

Our aim in this study was to assess the free Sentinel-2 data with commercial Plan-
etScope and airborne HySpex hyperspectral data for mapping the dominant woody species
of the Tatra Mountains, which is a challenging research objects due to the substantial
elevation differences in the area, as well as its various aspects and slopes, which create a
mosaic of spectral features. Therefore, one of our objectives in this study was to assess the
impact of topographic feature derivatives on the accuracy of the identification of coniferous
and deciduous tree species. Because the greening-up period, maturity, senescence, and
dormancy of individual species depend on elevation, slope, and aspect, the analyses for
the same species depend on the topography. The Tatra forest ecosystem is characterized
by high heterogeneity of species, which form different-sized groups of individual trees.
Additionally, the variability in age, dry tree trunks, and branches causes a large mix of the
signals recorded in individual pixels, which complicates the identification of the dominant
objects; this directly affects the ability to identify individual species. Due to the occurrence
of individual species in hard-to-reach places, e.g., Swiss stone pine (Pinus cembra, where
single individuals are identified on mountain tops), species appear in all topographically
analyzed patterns (elevation, slope, and aspect); therefore, an important issue in this study
was testing different sizes of balanced samples to assess their impact on the classification
result. For this reason, we applied an iterative classification method: we performed each
classification iteration based on randomized selected patterns, which we independently
selected for each iteration, and we repeated the whole process 100 times. This allowed us
to test the spectral variability in the analyzed patterns and the impact of the number of
training pixels on the obtained results. Therefore, the classification process was based on
a large number of field-verified polygons to capture the diversity of forms of individual
species occurring both on homogeneous plots and in the areas where several species coex-
isted. As classifiers, we used the R-based open-source programming libraries for the SVM
and RF algorithms.

The main study question was to assess the classification accuracy of the dominant
woody species in protected mountain areas based on airborne hyperspectral HySpex data
as well as commercial high-resolution PlanetScope and open-access Sentinel-2 satellite
data. We conducted the analyses to assess if investing in commercial imaging is profitable
and if multitemporal Sentinel-2 images can be used to obtain sufficiently accurate spectral
characteristics during the vegetative period to enable the successful identification of woody
species of natural forests, which are much more heterogeneous in terms of tree composition
and age compared with managed forests.

2. Materials and Methods
2.1. Study Area

The study area covered the core and buffer zone of the UNESCO Tatra Transboundary
Biosphere Reserve, occupying nearly 1000 km2 area, which is formed by the Polish Tatra
National Park (TPN) and Slovakian Tatranský národný Park (TANAP), with area shares
of 22% and 78%, respectively (Figure 1). The Tatras are the highest mountain range in the
Carpathians, with some peaks exceeding 1500 m. The High Tatras are characterized by
alpine ecosystems. Erosion-resistant granodiorite is the dominant substrate of the High
Tatras, which are located in the eastern part of the Tatras; the southern part of the western
Tatras consists of the metamorphic rocks; the northern part is characterized by less resistant
formations: carbonate rocks [32]. The climate of the Tatras is highly variable, depending
on the altitude. The average annual temperature varies between 4 and −3 ◦C, whereas
mean temperature in the coldest and warmest month varies from −6 to −11 ◦C and 4 to
15 ◦C, respectively [33]. The number of days with snow cover ranges from 120 to 220 days,
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and annual precipitation varies from 1000 to 1700 mm, increasing with altitude [33]. The
annual mean total cloud cover for 1991–2020 was 68%, which was calculated based on
ERA5 (European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis 5th
Generation) climate reanalysis data [34]. Strong foehn winds cause serious forest stand
damage and windthrow, which accelerate the changes in vegetation cover [35]. The long
snow cover duration, high precipitation, large total cloud cover [36], and short growing
season create challenges for obtaining remote sensing data of vegetation in this area.

Figure 1. Location of study area (right image: Sentinel-2 RGB composition acquired 21 July 2022;
ESA Copernicus Open Access Hub).

The forest stands of the Tatra Mountains are mainly composed of coniferous species [37]
and a smaller share of deciduous species (Figure 2), characterized by altitudinal zonation.
Large elevation and topography changes and the lack of roads [38] hinder research in the
Tatras. The Tatras are a protected area, where the management is different from that for
commercial forests, which influences the proportion of particular species, amount of dead
wood, as well as the compactness and forest gaps caused by numerous disturbances. These
mountains provide a habitat for three large carnivoran species (brown bear, grey wolf, and
Eurasian lynx) that are protected in this area. Currently, large changes are occurring in the
forest stands [39] caused by bark beetles, windthrow, climate change, and air pollution.
Spruce monocultures that were artificially planted have declined and formed snags with
deciduous species growing under them [40].

2.2. Satellite and Airborne Data

For vegetation classification, we used three datasets: open-access satellite Sentinel-
2, commercial satellite PlanetScope, and airborne HySpex data. The Sentinel-2 surface
reflectance processing level-2A products were obtained from ESA’s Copernicus Open
Access Hub service. We acquired 21 images for the years 2018–2022, which we chose
because no substantial changes in the shares of vegetation types occurred in this period.
Although images for the study area are acquired by Sentinel-2 satellites every 2–3 days,
due to the high cloud cover typical of mountainous areas, an average of four cloudless
scenes per year were retrieved (Figure 3). The study area was covered by two tiles (34UCV
and 34UDV) located in the same orbits (track 79 or 36).

We used the twelve Sentinel-2 channels, which we processed in ESA SNAP 9.0 soft-
ware, with resampling performed using the nearest neighbor method for 10 m pixel sizes.
We mosaicked images from the two tiles based on the same date as well as the orbit; next,
we stacked all scenes into a data cube of multitemporal composition. The use of multitem-
poral compositions is especially relevant in mountainous areas where shadows are imposed
on the slopes by the high peaks. On different acquisition dates, images with different solar
elevation and azimuth angles are collected, so the shadows on the slopes can be eliminated.
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Figure 2. Broadleaf (A) and coniferous (B) forest stands in the Tatra Mountains. Photo credit: M.
Kluczek, 2022.

Figure 3. Sentinel-2 cloudless acquisition dates for years 2018–2022, depending on vegetation season;
the start and end dates of vegetation were differentiated in the analyzed years. Source: Calculated
based on ERA5 climate reanalysis data [34]. In the case of the HySpex image, due to a frequent
cloud cover, the size of the area, significant elevation differences (this required flightlines at different
altitudes to acquire comparable pixel sizes for the whole area), the area of the park was acquired in
different periods.

For elevation data, we used the 1 arc-second global product (~30 m pixel size) based on
Shuttle Radar Topography Mission (SRTM) obtained from the USGS Earth Explorer service.
The area included two tiles (N49E019 and N49E020), which we mosaicked and then resampled
to 10 m resolution and matched with the Sentinel-2 pixel grid. We calculated topographic
derivatives, such as slope and aspect metrics, in degree values from the SRTM digital elevation
model (DEM) using the R language raster package [41]. The data were then standardized to a
unified coordinate system (EPSG: 32634) and combined with Sentinel-2 optical imagery.

Additionally, for the whole area of Tatra Mountains, we used PlanetScope data from
three dates of different vegetation periods (19 May 2022, 19 June 2022, and 26 August
2022) [42]. The imagery was derived from the third generation of Super Dove satellites with
an installed PSB.SD instrument (3 m pixel size, 8 spectral bands, and 16-bit radiometric
resolution), which have a spectrum interoperable with those of the Sentinel-2 bands in 6
channels [43]. We used the analytic OrthoScene product (level 3B), which was orthorectified,
geometrically corrected, and radiometrically calibrated to surface reflectance [44], for the
study. Satellite imagery was verified using the QA band for the detection of any potential
distortions. Next, we mosaicked and stacked the images to create a single multitemporal
composition using the GDAL [45] open-source library, which we merged with SRTM
topographic features bands that we had resampled to 3 m (Figure 4).
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Figure 4. Main steps of processing procedure. As input data, we used: (1) airborne hyperspectral
HySpex, thermal images, and LiDAR point cloud data; (2) multitemporal Sentinel-2, PlanetScope
images, and Shuttle Radar Topography Mission (SRTM) satellite data; and (3) field-verified patterns
of dominant tree species as reference data. First, we optimized the parameters of the random forest
and support vector machine classifiers. Second, iterative classification was performed, repeating the
procedure 100 times based on the prepared training and validation (50:50) sets. As output variables,
we determined the importance of the used satellite spectral bands, obtained maps of tree species, and
calculated their classification accuracies.

For the Polish part of the Tatra Mountains, airborne data were acquired in 2019 based
on a multisensor platform mounted onboard a Cessna 402B aircraft owned and operated
by the MGGP Aero company, which acquired and processed the airborne data. A HySpex
VS-720 hyperspectral camera (Norsk Elektro Optikk, Norway) was used (configuration:
1x VNIR-1800 and 2x HySpex SWIR-384 cameras) with two-meter pixels registered in
430 bands in the spectrum range of 400–2500 nm, with a full width at half maximum
of 3.8–6.5 nm and a field of view (FOV) of 34◦. The radiometric resolution was 16 bits
with 30% coverage. Airborne laser scanning (ALS) data were acquired with a Riegl VQ-
780I sensor (by Riegl GmbH), whose spectral range of the full-waveform beam type was
1064 nm, FOV was 50◦, and scanning density was 8 points/m2. The LiDAR data were then
processed using LASTools software [46] and the R lidR package [47], generating topographic
derivatives including digital elevation model, canopy height model, and slope and aspect
maps. Thermal data were acquired with an ImageIR 9400 camera (by InfraTec GmbH)
registering in the middle-wave infrared spectrum range (3600–4900 nm), with a spatial
resolution of 1 m and an average emissivity parameter set to 0.95. Finally, we resampled all
data, which we matched to the HySpex pixel resolution, gridded, and compacted into a
single data set. In addition, we used a high-resolution orthophoto map data in RGB and
CIR (pixel size: 0.12 m) to validate the polygons acquired in the field, but the images were
not used for classification.
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2.3. Reference Data, Classification, and Accuracy Assessment

We focused on the main woody species present in the Tatra Mountains (Table 1) [48].
Other species, such as sparse birches (Betula pubescens, B. obscura, and B. pendula), lime
trees (Tilia cordata and T. platyphyllos), black pine (Pinus nigra), and others, are found here
but they account for only a small proportion of the admixture in the survey area, so are
indistinguishable with satellite methods due to the size of the crowns in the Sentinel-2
pixel. As such, they were excluded from the study. Three field campaigns were conducted
(9–13 September 2021; 29 April–3 May 2022; 15–25 July 2022) on the Polish side (TPN),
because airborne remote sensing data set were provided only for this area. The result of
the field study was the verification of permanent monitoring plots in the park as well as
the identification of additional, large, homogeneous areas, which allowed us to identify
968 patterns of 18 classes, including 13 woody species on 718 polygons (7 coniferous and
6 broadleaf) and 5 other land cover classes (aggregated into a single background class;
Table 1). Within the coniferous species, the snags class was also included because of being
mainly composed of wind throws and dead Norway spruce. For classification, we decided
to use additional background classes that represented the rest of the land cover classes
present in the area, rather than masking no-forest areas using, e.g., a canopy height model.
This was driven by the need to compare two separate data sets where the mask of the more
spatially accurate HySpex data (pixel size: 2 m) did not overlap with the Sentinel-2 mask
(pixel size: 10 m) because of offsets and pixel spatial resolution, which was particularly
important for objective comparisons between the two data sets. Additionally, low-growing
dwarf pine and young trees created complications when applying the mask as these would
not be included. Therefore, introducing background classes was more efficient, which is a
widely used approach [49–52]. Using this method, we could also verify that the tree classes
did not mix with other classes, e.g., low shrubs, which was especially relevant due to the
discontinuity and mosaic characteristics of the vegetation in the study area.

Table 1. Dominant woody species and background classes collected in situ for training and testing.

Class Name
(Common Name)

Type No. of
Polygons

No. of Pixels

HySpex PlanetScope Sentinel-2

Sycamore (Acer pseudoplatanus) broadleaf 104 2042 1298 209
Grey alder (Alnus incana) broadleaf 25 387 342 168

European beech (Fagus sylvatica) broadleaf 108 5673 4343 482
European ash (Fraxinus excelsior) broadleaf 15 47 43 17

Willow (Salix spp.) broadleaf 29 659 516 115
Rowan (Sorbus spp.) broadleaf 42 2078 1376 114
Silver fir (Abies alba) conifer 46 795 757 122

Larch (Larix spp.) conifer 47 438 387 177
Norway spruce (Picea abies) conifer 157 24,102 19,422 10,251

Swiss stone pine (Pinus cembra) conifer 25 114 100 13
Dwarf mountain pine (Pinus mugo) conifer 76 28,092 16,501 5236

Scots pine (Pinus sylvestris) conifer 14 71 67 101
Snags conifer 30 1009 981 893

Alpine grasslands

background

87 3264 2919 1363
Low shrubs 73 4550 4452 4551

Other nonforest 17 6534 4356 633
Rocks and artificial surfaces 59 4324 4228 3754

Water 14 82,188 74716 9519

Total 968 166,367 136,804 37,718

For the three classes of tree species, aggregation was conducted by identifying these
as several species of larch (Larix decidua, Larix kaempferi, and Larix × eurolepis), willows
(Salix silesiaca, Salix aurita, Salix caprea, and others), and rowans (Sorbus aucuparia and Sorbus
intermedia), which, individually, accounted for small proportions of the admixtures, so were
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difficult to detect or they were hybrids. We attempted to ensure that the field-collected
data were equally distributed over the entire park area and at different heights, slopes, and
exposures to avoid autocorrelation and provide high-quality spectral signatures [53] that
most accurately represented the characteristics of the Tatra forest stands for the classification
algorithms (Figure 5). Then, we verified the locations of the woody species obtained in
the field on a high-resolution orthophoto in RGB and CIR (0.12 m) and on the canopy
height model.

Figure 5. Location of polygons acquired during field campaigns (digital elevation model source:
Shuttle Radar Topography Mission, NASA; background image: Sentinel-2 RGB composition 21 July
2022, ESA).

Because of the difficulty of conducting surveys in mountainous areas, we also tested
the effect of pixel size on the classification accuracy to obtain information on the optimal
number of pixels to achieve a given classification accuracy [54]. In addition, balanced sets
have a favorable effect on the classification of rare plant species, where obtaining a sufficient
number of patterns is impossible, so that imbalanced sets may be unrepresented in the
classifier and then poorly classified [55]. Considering the altitudinal zonation characteristics
of mountainous areas, we investigated the influence of topographic variables extracted
from SRTM and LiDAR on classification accuracy. For the presentation and comparison of
results, we mainly relied on the F1-score (F1-score = 2 × (PA × UA)/(PA + UA), where
PA is producer accuracy, and UA is user accuracy) due to its higher objectivity, and the
combination of user and producer accuracy. Concerns have been raised in the literature
about measures such as kappa [56] and overall accuracy [57], which may influence the
outcome and impede the comparability of results between studies. For classification, we
used two algorithms: random forest [58] and support vector machine [59]. We tuned the
hyperparameters of the algorithms using the grid search method for all combinations of
parameters, followed by ten-fold cross-validation. For the SVM with the radial kernel
function (RBF), we tested the cost and gamma parameters based on the mean F1-score
values for all classes; for random forest, we tuned the ntree and mtry parameters based on
the out-of-bag (OBB) error (Table 2).
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Table 2. Selected input hyperparameters of algorithms (random forest and support vector machine)
using grid search method.

Sensor Number of SVM SVM RF RF
Bands Cost Gamma ntree mtry

HySpex 430 100 0.1 500 240
Sentinel-2 252 10 0.01 500 120

PlanetScope 24 100 0.01 500 10

Subsequently, we assessed the iterative accuracy 100 times on the optimized classifiers,
where, for each iteration, the training and test sets were randomly split by polygons in
50:50 ratio using stratified random sampling to ensure the test and validation set indepen-
dence [60]. Then, the classifier was trained, and the achieved classification accuracy was
verified. We also checked the effects of the variable importance of the individual Sentinel-2
channels and the acquisition dates of the images on classification accuracy during classifica-
tion. We used the classifiers with the highest mean F1-scores to predict the output images,
which we then filtered with a 3 × 3 median filter. Classifications on HySpex data were
performed for the Polish Tatra area, and classifications with Sentinel-2 and PlanetScope
imagery were performed for the entire Tatra area (Poland and Slovakia).

3. Results

In the first stage, we aimed to determine the effect of the number of pixels on classifi-
cation accuracy (from 50 to 700 pixels; Figure 6). We obtained the highest median F1-score
for the maximum number of pixels used (700): Sentinel-2 (0.93 RF; 0.89 SVM), PlanetScope
(0.89 RF; 0.87 SVM), and HySpex (0.95 RF; 0.92 SVM). The results for the HySpex data were
characterized by a high interquartile range (0.15–0.38), with a particularly large difference
between the SVM and RF algorithms (by 0.06–0.15), followed by the PlanetScope data
(0.17–0.31). We observed the narrowest range for the Sentinel-2 data (0.11–0.23); however,
in this case, we found no difference between RF and SVM (0.01–0.05). As the number
of pixels increased, the interquartile ranges of the results tended to decrease, by 0.03 per
100 pixels on average. The range increased by an average of 0.02 for every 100 pixels,
with the largest increase observed between 50 and 200 pixels (by 0.04–0.09), whereas the
difference between 50 and 700 pixels was 0.09–0.13. The results stabilized between 500
and 700 pixels and then changed little (0.01–0.02). Therefore, we considered the value of
700 pixels as optimal, which we used for further classification and analysis.

The average F1-score for the topographic features data (Figure 7) oscillated around
0.77–0.86: Sentinel-2 (0.86 RF; 0.82 SVM), PlanetScope (0.83 RF; 0.84 SVM), and HySpex
(0.84 RF; 0.77 SVM). The random forest algorithm performed better on the Sentinel-2
(by 0.04) and HySpex (by 0.07) data, whereas the SVM was more accurate on PlanetScope
imagery (by 0.01). As shown by the results, using only spectral data, without any additional
data, produced less accurate performance of 0.10 (range: 0.69–0.77) on average. Analyzing
the influence of individual topographic variables (Figure 7), the most accurate results were
achieved by digital elevation model, which improved the results (by 0.04–0.10) in relation
to the spectral data, followed by slope (by 0.01–0.03). Aspect least affected the result,
only slightly increasing the classification accuracy (0.01–0.02), because the occurrence of
forest stands in this area is only slightly influenced by direction. As such, aspect is more
important in nonforest communities (shaded areas with accumulated snow affecting the
type of vegetation). For hyperspectral data, we used airborne laser scanning derivatives,
for which additional input was provided by the canopy height model, which increased the
accuracy by 0.04, and thermal data, by 0.03. The combination of all topographic variables
provided the best results, which increased the accuracy on average by 0.10 compared with
those using spectral data. We found the smallest differences for Sentinel-2 imaging with
the SVM algorithm, where the impact was small (by 0.05); we found the biggest differences
for PlanetScope data with the RF classifier (by 0.14).
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Figure 6. F1-score aggregated for all tree species (background classes excluded) depending on
number of training pixels per class: random forest (RF) and support vector machine (SVM) classifiers;
100 iterations. IQR, interquartile range; Q1, lower quartile; Q3, upper quartile; TF, topographic
features (digital elevation model, canopy height model, and slope and aspect maps).

Figure 7. Impact of variables on improvement in mean F1-score values for 100 iterations. Explanation:
TF, topographic features (digital elevation model, canopy height model, and slope and aspect maps);
TIR, thermal infrared.

The next step was checking the relevance of the individual dates and channels of the
PlanetScope (Table 3) and Sentinel-2 (Table 4) multitemporal composites. Comparing the
influence of individual bands on the classification result using the mean decrease in accuracy
(MDA) value, we observed the following: the most important period for the identification
of forest stands is spring (month of May); this is when fully formed leaves of conifers can be
observed. However, depending on the species, young leaves, needles, and shoots develop
at difference paces; their color, shape, and size depend on the species as well. Another
important observation was the usefulness of the red-edge bands, in the case of PlanetScope:
the red-edge (B8), green (B3), red (B7; Table 3), and for the Sentinel-2 the most informative
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were the 20 m channels B6, B5, B7, 10 m B2, and 60 m B9 (SWIR; Table 4). This was expected
because, due to plant pigments, the visible and red-edge range as well the cell structures
in NIR play key roles in vegetation analyses. Notably, the red-edge range, which provides
information about the condition of vegetation, played a key role in both cases.

Table 3. Relationship of variable importance (mean decrease in accuracy) between PlanetScope bands
and acquisition dates (values for topographic features; DEM: 94.4; slope: 30.7; aspect: 9.3). The
importance of the bands was confirmed by the intensity of the green color.

Date B1 B2 B3 B4 B5 B6 B7 B8 Mean
2022-05-19 24.4 28.8 35.7 28.1 19.5 41.1 29.9 72.8 35.1
2022-06-19 16.5 13.8 24.9 38.2 22.8 28.4 36.8 45.0 28.3
2022-08-26 20.1 27.1 22.7 25.3 28.0 18.2 19.3 20.5 22.7

Mean: 20.4 23.2 27.8 30.5 23.5 29.2 28.7 46.1
Score 8 7 5 2 6 3 4 1

Central
wavelength (nm) 443 490 531 565 610 665 705 865

Interoperable with
Sentinel-2 S-2 B1 S-2 B2 No

equivalent S-2 B3 No
equivalent S-2 B4 S-2 B5 S-2 B8A

Table 4. Relationship of variable importance (mean decrease in accuracy) between Sentinel-2 bands
and acquisition dates (values for topographic features; DEM: 54.8; slope: 12.7; aspect: 5.4). The
importance of the bands was confirmed by the intensity of the green color.

Date B1 B2 B3 B4 B5 B6 B7 B8 B8A B9 B11 B12 Mean
2018-08-03 5.8 3.5 3.7 6.1 5.6 4.4 4.6 5.4 5.5 6.3 5.0 5.3 5.1
2018-10-12 4.8 3.4 2.5 3.4 3.4 3.4 3.2 4.4 4.0 2.8 4.2 4.0 3.6
2018-10-15 4.6 3.8 3.5 1.7 6.9 3.6 11.0 4.9 3.5 1.3 4.3 4.1 4.4
2018-11-06 5.2 3.5 4.3 3.8 3.5 4.8 9.6 2.9 3.3 2.8 3.1 4.0 4.2
2019-07-04 5.7 9.9 4.7 9.5 9.6 7.5 5.2 5.4 6.6 9.6 4.6 3.6 6.8
2019-09-15 5.2 14.4 5.1 3.9 2.4 4.9 3.8 6.9 9.5 8.5 5.4 4.8 6.2
2019-09-22 4.9 6.2 8.3 6.0 4.6 4.1 4.5 3.9 7.8 4.3 3.7 6.4 5.4
2019-10-17 4.8 2.9 3.5 3.8 4.5 9.1 4.6 2.4 3.2 3.6 3.0 3.9 4.1
2019-10-25 5.6 4.3 3.8 3.0 9.5 4.8 12.0 3.8 3.6 2.9 3.8 3.7 5.1
2020-08-22 5.5 2.5 4.1 5.9 7.7 4.3 4.7 7.7 4.5 6.6 5.6 4.0 5.2
2020-09-04 5.2 8.5 6.3 4.1 4.1 3.4 3.2 5.9 7.2 6.5 6.2 4.6 5.4
2020-09-09 4.6 3.6 5.8 3.3 4.2 2.3 4.0 5.3 3.5 4.1 5.7 3.3 4.1
2020-09-21 6.7 2.0 3.3 1.8 2.9 2.5 2.1 3.2 3.4 4.1 2.9 3.5 3.2
2021-09-09 4.2 7.4 3.4 4.2 4.2 4.2 4.9 7.8 5.0 4.1 5.0 4.0 4.9
2021-10-09 8.1 3.7 3.7 2.9 6.2 4.5 3.9 2.3 2.0 1.7 2.7 4.0 3.8
2021-10-29 5.6 6.4 5.3 3.4 5.8 6.3 8.1 4.2 3.7 3.2 3.7 3.6 5.0
2021-10-31 3.5 5.5 4.8 3.5 7.0 6.9 6.9 2.7 2.1 4.1 4.0 2.5 4.4
2021-11-10 5.5 6.1 5.2 5.0 4.0 5.8 3.8 3.0 1.7 3.9 2.3 4.8 4.2
2022-05-19 4.2 6.0 5.1 7.8 10.4 17.3 7.2 10.9 9.3 10.4 10.4 4.8 8.7
2022-07-03 3.4 8.3 5.9 8.1 11.4 14.3 5.4 9.5 9.0 10.1 6.0 3.6 7.9
2022-07-21 5.5 5.1 4.2 9.4 9.2 15.1 4.9 6.9 4.7 9.2 6.0 2.3 6.9
Average: 5.2 5.6 4.6 4.8 6.1 6.4 5.6 5.2 4.9 5.3 4.6 4.0

Score 7 4 10 9 2 1 3 6 8 5 11 12
Central wavelength

(nm) 443 490 560 665 705 740 783 842 865 940 1610 2190

Spatial resolution
(m) 60 10 10 10 20 20 20 10 20 60 20 20

We conducted an iterative assessment of classification accuracy for each class depending
on the dataset used based on the random forest (Figure 8) and support vector machines
(Figure 9) classifiers. We obtained the highest median scores (above 0.90) for all remote
sensing sets for the following classes: silver fir (Abies alba; 0.91–0.95), European beech (Fagus
sylvatica; 0.92–0.96), Norway spruce (Picea abies; 0.97–0.98), dwarf mountain pine (Pinus
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mugo; 0.95–0.99), and grey alder (Alnus incana; 0.87–0.92). We obtained the lowest ones
for European ash (Fraxinus excelsior; 0.44–0.72), Swiss stone pine (Pinus cembra; 0.58–0.78),
and Scots pine (Pinus sylvestris; 0.67–0.85), which were also characterized by wide median
differences (0.02–0.25) among the results obtained between the different remote sensing
datasets. The widest interquartile range (IQR) was obtained for rare classes: European
ash (Fraxinus excelsior; 0.10–0.32), Swiss stone pine (Pinus cembra; 0.20–0.27), and Scots pine
(Pinus sylvestris; 0.12–0.38); we obtained the narrowest IQR for silver fir (Abies alba; 0.03–0.05),
sycamore (Acer pseudoplatanus; 0.04–0.08), European beech (Fagus sylvatica; 0.01–0.05), Norway
spruce (Picea abies; 0.01–0.02), and dwarf mountain pine (Pinus mugo; 0.01–0.02). We observed
similar patterns for the SVM classifier, but these interquartile ranges for most classes were
notably wider (by 0.01–0.07). Analyzing various classification scenarios, we found that
random forest produced the most accurate classification results on Sentinel-2 and PlanetScope
images, whereas support vector machine was more appropriate for HySpex data.

Figure 8. F1-score values for classes based on 100 iterations for 700 pixels using random forest as the
classifier. IQR, interquartile range; Q1, lower quartile; Q3, upper quartile; TF, topographic features;
(digital elevation model, canopy height model, and slope and aspect maps).

Figure 9. F1-score values for classes based on 100 iterations for 700 pixels with support vector machine
as the classifier. IQR, interquartile range; Q1, lower quartile; Q3, upper quartile; TF, topographic
features; (digital elevation model, canopy height model, and slope and aspect maps).

We also compared the classifications between PlanetScope and Sentinel-2 for the same
acquisition date (19 May 2022) and time (approximately 9:00 UTC), allowing for the same
conditions of solar irradiance and incidence angle (Figure 10). Sentinel-2 spectral data out-
performed PlanetScope data for both the random forest (0.58 vs. 0.47 F1-score) and support
vector machine (0.53 vs. 0.45 F1-score) classifier. The differences between the classifiers
substantially decreased when topographic derivatives were included, by an average of
0.23 points. However, the results obtained using Sentinel-2 data still scored higher (RF: 0.78,
SVM: 0.76) than those obtained using PlanetScope data (RF: 0.74, SVM: 0.73), indicating the
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importance of including topographic product data in mountain vegetation analyses. Even
with a single scene, high accuracy can be achieved.

Figure 10. Comparison of single date classification (19 May 2022) between Sentinel-2 and PlanetScope
data. F1-score values for dominant tree species based on 100 iterations. TF, topographic features based
on Shuttle Radar Topography Mission data: digital elevation model, and slope and aspect maps.

Based on the best classification results according to the mean F1-score for tree species
classes, we classified the tree species in the Tatra Sentinel-2 area (Figure 11; Table 5), as
well as for PlanetScope and HySpex imagery, the locations of which were compared
with each other (Figure 12). For this purpose, we selected three areas (dimensions:
1.5 km × 1.5 km = 225 ha) at different elevations and with different stand characteristics
to reflect the diversity of the Tatra stands (deciduous, coniferous, and forests undergoing
large-scale transformations) and to check the repeatability of the results. The obtained
maps and error matrices (Table 5 and Appendix A) showed high convergence and a pattern
of tree stand occurrence, with differences mainly due to the spatial resolution of the data (2,
3, and 10 m), the angle of sunlight incidence, and the effect of shadows. The maps were
compared with a very-high-resolution orthophoto map (pixel size: 0.12 m).

Figure 11. Map of occurrence of dominant woody species in study area. Classification based on
multitemporal Sentinel-2 data with Shuttle Radar Topography Mission derivatives (digital elevation
model, and slope and aspect maps) and random forest classifier.
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Table 5. Error matrix of obtained Sentinel-2, with topographic features and Random Forest classification
results presented on Figure 11. S.f.—silver fir (Abies alba); Syc.—sycamore (Acer pseudoplatanus); G.a.—grey
alder (Alnus incana); E.b.—European beech (Fagus sylvatica); E.a.—European ash (Fraxinus excelsior); Lar.—
larch (Larix spp.); N.s.—Norway spruce (Picea abies); S.s.p.—Swiss stone pine (Pinus cembra); D.m.p.—dwarf
mountain pine (Pinus mugo); S.p.—Scots pine (Pinus sylvestris); Wil.—willow (Salix spp.); Row.—rowan
(Sorbus spp.); AG—alpine grasslands; LO—low shrubs; ON—other nonforest; RS—rocks and artificial
surfaces; WA—water; UA—user accuracy; F1—F1-score; PA—producer accuracy.

S.f. Syc. G.a. E.b. E.a. Lar. N.s. S.s.p. D.m.p.S.p. Wil. Snags Row. AG LO ON RS WA Σ UA F1

S.f. 45 1 0 0 0 1 8 0 0 0 0 0 0 0 0 0 0 0 55 0.82 0.81
Syc. 0 70 0 8 0 0 1 0 0 0 1 0 0 0 0 0 0 0 80 0.88 0.86
G.a. 2 1 103 1 0 6 13 0 0 0 0 0 0 0 0 0 0 0 126 0.82 0.90
E.b. 3 10 0 390 0 6 0 0 0 0 0 0 1 0 0 0 0 0 410 0.95 0.95
E.a. 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 8 1.00 1.00
Lar. 0 0 0 1 0 94 0 0 0 0 0 0 0 0 0 0 0 0 95 0.99 0.87
N.s. 6 0 0 2 0 15 4909 0 1 1 2 24 11 0 27 0 36 2 5036 0.97 0.98

S.s.p. 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 6 1.00 0.86
D.m.p. 0 0 0 0 0 0 0 0 2744 0 0 0 2 1 153 0 4 0 2904 0.94 0.93
S.p. 0 0 0 0 0 0 0 0 0 51 0 0 0 0 18 0 2 0 71 0.72 0.83
Wil. 0 0 0 0 0 0 0 0 15 0 85 0 0 0 29 0 0 0 129 0.66 0.74

Snags 0 0 0 0 0 0 0 0 0 0 0 582 0 0 4 0 24 0 610 0.95 0.93
Row. 0 0 0 2 0 0 1 0 188 0 8 33 72 0 26 0 0 0 330 0.22 0.34
AG 0 0 0 0 0 0 0 0 0 0 0 0 0 755 39 0 34 0 828 0.91 0.93
LO 0 0 0 3 0 0 0 2 1 0 4 0 7 24 2779 0 0 0 2820 0.99 0.94
ON 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 249 0 0 252 0.99 0.99
RS 0 0 0 0 0 0 0 0 30 0 0 0 0 10 5 0 882 0 927 0.95 0.92
WA 0 0 0 0 0 0 32 0 0 0 0 0 0 0 0 0 0 4635 4667 0.99 1.00

Σ 56 82 103 410 8 122 4964 8 2979 52 100 639 93 790 3080 249 982 4637
PA 0.80 0.85 1.00 0.95 1.00 0.77 0.99 0.75 0.92 0.98 0.85 0.91 0.77 0.96 0.90 1.00 0.90 1.00

Figure 12. Comparison of obtained classification maps based on HySpex hyperspectral images,
PlanetScope, and Sentinel-2 data, with topographic features (digital elevation model, canopy height
model, and slope and aspect maps).
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4. Discussion

The results of our analyses confirmed the high potential of remote-sensing-based
methods for the identification of forest species in protected areas. Despite the heterogeneity
of the environment and topographic features, we successfully identified all dominant
woody species of the Tatras, and the results should be considered satisfactory: for 10 out of
13 species, we obtained an average F1-score above 0.80, 6 of which were above 0.90. The
accuracy of coniferous species identification was slightly higher on average (F1: 0.87) than
for broadleaf species (F1: 0.84). Even these rarer species were well-identified on the Sentinel-
2, PlanetScope, and HySpex images, allowing their successful identification on larger
polygons in some areas of the TPN. However, in general, as they did not create compact
and homogeneous surfaces, most of the identified patterns had error (IQR values were high)
resulting from the share of other species, which created mixed tree crowns. Comparing
our outcomes with those of other authors (Table 6), our results obtained from HySpex
images are a few percentage points higher than those of Shi et al. [61], who used the same
algorithm (RF). Our results are similar to those of Raczko et al. [62], who used ANN and
280 spectral channels from APEX aerial imaging for the Karkonosze Mountains (mountain
forests on the border of Poland and the Czech Republic). The proposed method of using
multitemporal Sentinel-2 scenes (252-band data cube from 21 scenes representing different
vegetation periods), allowed us to identify the studied species with higher accuracy than
if we had used deep neural classifiers (CNN [26] and XGB [63]). Xi et al. [64], comparing
different algorithms, confirmed the dominance of RF over three other types of deep neural
network (Conv1D, AlexNet, and LSTM) for a few species, which we identified (Table 6),
as well as for Manchurian ash classification. Additionally, RF produced results similar
to those of Conv1D, AlexNet, LSTM, and SVM for Dahurian larch and white birch. RF
scored worse than the best Conv1D classifier by approximately 6–8 percentage points in
identifying Amur linden, Korean pine, and aspen [64].

Waser et al. [65], in mapping the dominant leaf type based on Sentinel-1/-2 data, found
that UNet convolutional neural networks and RF obtained similar results; in some cases,
UNet obtained worse results, depending on stand characteristics, type, and heterogeneity.
Additionally, mapping a relatively low number of species (aspen, birch, pine, and spruce)
on Sentinel-2 imagery, despite testing different types of CNN architectures, resulted in
moderate F1-score of 0.68–0.76 using UNet with a ResNet encoder [66] or 0.42–0.85 for
feature pyramid network (FPN) with EfficientNet infrastructure [67]. This demonstrates
the difficulty of using deep learning methods to classify stands from medium-resolution
satellite imagery (such as Sentinel-2), where spectral features are mainly relevant, especially
for complex forest areas with diverse tree stands. Here, capturing the spatial patterns that
occur in high-resolution imagery is difficult.

The identification of individual species mainly depends on the homogeneity and
size of the analyzed patches. Notable analyses were published by Illarionova et al. [67],
who, using various methods of aggregation of individual patches, obtained classification
accuracies (F1-score) in the range of 0.42–62 for aspen, 0.72–0.83 for birch, 0.81–0.84 for
pine, and 0.74–0.76 for spruces. For the same species, but for compact and homogeneous
patches, the accuracies were 0.77 for aspen, 0.90 for birch, 0.94 for pine, and 0.88 for spruce.
We obtained similar observations from our analysis of our study area, where the species
were well-known and well-identified, as shown in the box plots (Figures 8 and 9). For
example, ash, larch, pine, maple, and willow were clearly visible during field verification
because, in areas covered by homogeneous and compact trees, the range of classified
patterns coincided with the actual range of occurrence of these species. In situations where
single trees formed a mix with other species of equal size, the classification result was
incorrect. Based on Sentinel-2 images, we achieved the following average F1-score for the
dominant tree species, which formed heterogeneous patches (Table 6): ash, 0.81; larch,
0.84; pine, 0.83; and willow, 0.78. For comparison, other researchers obtained the following
results: pine, 0.79–0.92; larch, 0.75 [63]; larch, 0.93 [29]; ash, 0.82; willow, 0.96 [68]; pine,
0.78 [69]; and larch, 0.70 [18]. The resulting differences in the classification accuracies for
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woody species may be due to classes such as larch, Scots pine, or silver fir growing in small
groups and often as admixtures in Norway spruce tree stands, which occupy the largest
area and form compact homogeneous forests. Similar patterns were observed with rowan
and willow, which coexist with dwarf pine, which form continuous, uniform areas. We
encountered no difficulties in identifying these. We achieved high accuracies in identifying
European beech trees and slightly lower accuracy in maple trees, which co-occur in stands
due to their similar habitats, which could mutually influence the accuracies. Raczko and
Zagajewski [62] also obtained lower accuracies for a large mixture of woody species. The
lower scores for European ash were likely due to this species growing linearly along streams
and rivers, hindering identification due to mixing with water pixels. High accuracies were
also obtained for snags, with only the PlanetScope data showing lower accuracies, which
may have occurred because its sensor does not have a short-wave infrared (SWIR) channel
that interacts with water content and distinguishes dry trunks. The results obtained for
Pinus cembra and Fraxinus excelsior showed that despite the presence of single specimens,
they were identifiable, but the scores were not high, but demonstrated the possibility of
classifying rare species.

Table 6. Comparison of obtained classification results (mean F1-score) for dominant tree species with
those in the literature. S.f.—silver fir (Abies alba); Syc.—sycamore (Acer pseudoplatanus); G.a.—grey
alder (Alnus incana); E.b.—European beech (Fagus sylvatica); E.a.—European ash (Fraxinus excelsior);
Lar.—larch (Larix spp.); N.s.—Norway spruce (Picea abies); S.s.p.—Swiss stone pine (Pinus cembra);
D.m.p.—dwarf mountain pine (Pinus mugo); S.p.—Scots pine (Pinus sylvestris); Wil.—willow (Salix
spp.); Row.—rowan (Sorbus spp.). Results for same genera are marked in bold.

Author Sensor Classifier No. of
Classes S.f. Syc. G.a. E.b. E.a. Lar. N.s. S.s.p. D.m.p. S.p. Wil. Snags Row.

Present
paper

S-2
RF

13

0.90 0.80 0.88 0.91 0.68 0.84 0.97 0.52 0.93 0.83 0.78 0.97 0.75
SVM 0.90 0.78 0.88 0.92 0.81 0.80 0.98 0.32 0.95 0.75 0.76 0.97 0.79

Planet
Scope

RF 0.91 0.81 0.91 0.96 0.48 0.76 0.95 0.62 0.99 0.81 0.82 0.83 0.84
SVM 0.94 0.83 0.86 0.96 0.47 0.79 0.93 0.73 0.99 0.64 0.88 0.86 0.86

HySpex RF 0.93 0.90 0.94 0.93 0.69 0.76 0.97 0.65 0.97 0.83 0.71 0.89 0.86
SVM 0.94 0.84 0.78 0.95 0.39 0.82 0.97 0.56 0.97 0.60 0.72 0.89 0.83

[61] HySpex RF 5 0.83 0.81 - 0.80 - - 84 - - - - - -
[62] APEX ANN 6 - - 0.86 0.90 - 0.77 0.92 - - 0.78 - - -
[63] S-2 XGB 7 - - - 0.85 - 0.75 0.92 - - 0.86 - - -
[26] S-2 CNN 8 - - - 0.73 - 0.51 0.84 0.58 0.58 0.58 - - -

[65] S-2
AlexNet

8
- - - - 0.79 0.81 0.77 0.58 0.58 0.58 - - -

RF - - - - 0.79 0.83 0.73 0.68 0.68 0.68 - - -
[70] S-2 RF 8 0.80 - 0.83 0.89 - 0.76 0.77 - - 0.80 - - -
[71] S-2 SVM 11 0.90 0.69 0.90 0.93 - 0.73 0.92 - - 0.78 - - -
[72] S-2 RF 12 - 0.65 0.83 0.82 0.72 0.76 0.94 - - 0.87 - - -
[73] S-2 RF 12 - 0.59 0.91 0.90 0.77 0.94 0.97 0.95 0.95 0.94 - - -
[74] S-2 RF 17 0.67 0.25 0.87 0.93 - 0.83 0.80 - - 0.99 - - -

Considering the impact of individual topographic variables, the DEM was the most
influential for the Sentinel-2 and PlanetScope satellite data, increasing the accuracy of
the datasets by an average of 0.06 on the F1-score. Waśniewski et al. [75], for Sentinel-2
data, and Ye et al. [50], with PlanetScope data, showed the feature importance value of the
DEM. The other variables, slope and aspect, marginally contributed to the classification
accuracy (by 0.01–0.03 F1-score), which was confirmed by Bhattarai et al. [76]. When using
a dense series of multitemporal satellite data, the effect of individual variables must be
determined to identify the most important spectral bands and acquisition dates for image
classification. Shirazinejad et al. [77] used, multitemporal compositions to increase the
overall classification accuracy by an average of 0.28 compared with that of single Sentinel-2
scenes. Waśniewski et al. for Sentinel-2 obtained the highest variable importance values
for Sentinel-2 channels B2, B5, B6 which also reached high values in our analyses. For
mountain forest communities, Kovačević et al. [78], using Sentinel-2 imagery, determined
that the B11, B2, and B12, as well as B1 and B9, were most relevant for classification,
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which especially matched the B2 and B9 results in our analyses. In our case, all spectral
bands obtained on May 19 scored high MDA values; the second highest MDA scores were
obtained from the July 4 imagery (in mountain ecosystems, this is still the beginning of
the vegetation period). The same observation was reported by Plakman et al. [23], but the
authors focused only on the original 10 m pixels. So, for them, the most important spectral
bands were B4 (spring and winter), B2 (spring), B4 (autumn and summer), and then B8
(spring and summer). In our case, the most important bands were also near-infrared bands:
B6, B5, B7, B2, and then B9 (Table 3). This means that the pixels resampled down to 10 m
still contain important spectral characteristics, allowing the identification of plant species.
Based on our results of the influence of individual periods, we observed that deciduous and
coniferous trees show large differences in color in many months, which applies in particular
to months with decreasing MDA values: May, July, November, August, September, and
October (in our analyses, we did not obtain any high-quality June Sentinel-2 image). The
following topographic factors with the highest scores were relevant: digital elevation model
(134), slope maps (22), and aspect maps (10). Gan et al. [79], based on Gaussian process
regression (GPR, which determines the similarity between samples) and random forest
regression (RFR; which determines the degree of reduction of mean square error (MSE)
of feature variables) and using nine vegetation indices, confirmed that early April, late
June, mid-July, and late October are the key phenological periods for vegetation analysis.
Excluding April, the rest of these periods were confirmed in our study. Similar observations
were noted for the Sentinel-2 bands, which allowed to identify woody species of the Giant
Mts.; the three best were from spring acquisition: B6, (NDVI created on the basis of autumn
imagery), B4 and B5, followed by 9 autumn spectral bands (in order of informativeness:
B8A, B12, B7, B11, B3, NDWI, B6, B5, B8), and summer scenes offered about 50% lower
informativeness than the spring acquisitions [18]. Further investigating the impact of
individual dates, the highest MDA values were obtained for acquired imagery from May
to July for both Sentinel-2 and PlanetScope datasets, with values gradually decreasing
subsequently. Moreover, Shirazehad et al. [77] for complex broeadleaf tree stands obtained
the highest values for May and June which was also confirmed in both the Xi et al. [64] and
Karasiak et al. studies [68]. This indicates the high relevance of acquiring imagery during
the period of full vegetation development, which allows better differentiation of woody
species classes than discolored forest stands during the autumn period. Analyzing the
effect of the number of pixels, we found that the optimal value was 700 pixels; comparable
values were obtained by Hamrouni et al. [80] on a dense series of Sentinel-2 imagery
(26–36 scenes) for 6 classes of tree species and types, where 750 samples were optimal;
when increasing to 1000 pixels, the OA results increased by one percentage point for the
random forest classifier. Additionally, in our previous study [81] of land cover mapping
for both Sentinel-2 and Landsat 8 data, we found that the 700 pixels produced acceptable
results for both the RF and SVM classifiers. The obtained classification accuracies were
satisfactory for any spatial resolution (2, 3, or 10 m), as also reported by Xu et al. [82], where
the effect of spatial resolution on classification accuracy was measured. Four data sets were
used: Gaofen-2 (4 m), Sentinel-2 (10 m), Gaofen-1 (16 m), and Landsat 8 (30 m), to classify
four tree species using NDVI and forest phenological metrics with random forest as the
classifier. The overall accuracy for 10 m Sentinel-2 was higher (86%) than for 4 m resolution
(84%); at 16 and 30 m resolution, the OA gradually decreased to 79%. Similar results were
obtained for airborne hyperspectral AISA-Eagle II (with 2 m resolution with 256 spectral
bands) with a 0.78–0.80 mean F1-score and 0.84–0.85 for Sentinel-2 satellite data [30].

Heterogeneity, both in terms of composition and age of the analyzed forest communi-
ties, is a major challenge. This applies in particular to mountain national parks, which, due
to the height differences, different terrains are exposed to the influence of strong winds and
a wide range of incoming sun rays [83,84]. Due to the area being protected, a large part of
the forest stand dies naturally or falls victim to wind throws. An additional complication is
that humans have introduced fast-growing species, such as spruce, into the lower parts of
the mountains, where deciduous trees, such as beeches with an admixture of fir, should
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naturally occur. Also important is the impact of anthropogenic pressure in the form of the
construction of water-related recreation centers, which absorb groundwater, but gases are
emitted through the exhaust of watercraft, affecting the acidification of the air, which leads
to chlorosis. Acidified rains wash out valuable mineral substances from the soil, which
then has limited ability to neutralize the effects due to the geological structure, i.e., the
presence of granite in the substrate. Hence, the identification of individual woody species
in mountainous national parks faces different challenges than that in species-homogenous
managed forests growing in lowlands. Over time, suitable tools can be used to guide the
development of effective methods of monitoring vegetation.

The obtained results are valuable as they confirm the future ability to continuously
monitor the environment, both due to the open access to Sentinel-2 data and the algorithms,
which do not require commercial software. The proposed methods should be developed
for monitoring the lower belts of mountain areas, which are undergoing ecosystem recon-
struction, as artificial spruce plantings have been eliminated by bark beetle outbreaks and
windthrows, and suitable deciduous species, e.g., beech and fir, naturally resume their
place in the ecosystem, which are desirable changes. However, this process is hindered
by the long-occurring spruce; the dropping of their needles, which contain tannins that
acidify the soil, has limited the ability of the soil to neutralize these substances through
the granite substrate. This acidification has substantially affected soil microorganisms,
including mycorrhiza, which markedly hinders the development of suitable plant species,
increasing the risk of the appearance of alien invasive or native expansive species. The
second challenge is spruce monitoring, which should even be conducted at sites in the
upper belt, which is a natural habitat for this species. However, due to climate change,
reduced snow thickness, faster snow melting, and the subsequent soil dehydration that
leads to an increase in air temperature inside the stand, water stress is created. These
phenomena also improve the conditions for bark beetle outbreaks, which has two or even
three breeding cycles per season, exposing spruce stands to new insect attacks.

Global changes in the environment are leading to another negative consequence: the
occupation of new habitats by species only previously existing in the lower belts, e.g.,
mountain pine shrubs, which outcompete the species on many valuable grasslands.

5. Conclusions

All the remote sensing data that we used in this study allowed us to create a detailed
map of the tree species on the Tatra Mountains. Our observations were as follows:

• The multitemporal Sentinel-2 data cube produced comparable classification results (two
percentage points worse) comparable to those of a single airborne hyperspectral image.

• The species differences in physiological (e.g., content of pigments, waxes, and cell
structures) and morphological features allowed us to identify 12 woody species, e.g.,
cones, which differ both in color and in their location (in the case of spruce, cones hang
down under the branches and are masked by needles; fir cones are directed vertically
upward, absorbing another part of the electromagnetic spectrum). These differences
generate differences in the reflection of signals in different growing seasons.

• Due to the high cloud cover during the spring acquisitions of satellite images, we had
only one spring Sentinel-2 and one spring PlanetScope scene, which showed the most
information potential, even more than the autumn images. This information was also
confirmed by other researchers cited in this paper.

• As the study area was located in a high mountain area, DEM (elevation, slope, and
aspects) derivatives increased the classification results by 30% for two algorithms
and data scenarios because the location of a habitat affects the inflow of sunlight
(faster/later snow melting and vegetation period; during the summer, the sun appears
earlier and sets later).

• The DEM derivatives generated from SRTM increased the accuracy of the classifica-
tion using Sentinel-2 data by an amount similar to that of LiDAR-based data using
HySpex images.
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• The most accurate classification results were obtained with Sentinel-2 images and the
random forest algorithm (the average F1-score 0.85; with HySpex data, the F1 score
reached 0.85, also with the RF algorithm). However, this is different than expected as
the SVM algorithm is generally thought to produce better results for sets consisting of
large sets of training pixel samples.

• The best classification results of spectral bands without any additional features were
obtained with the Sentinel-2 imagery and the SVM classifier (the average F1-score
was 0.80), which was better than that achieved with the HySpex images and the
RF classifier.

• Comparing the efficiency of the used classifiers, the maximal achieved accuracy values
were comparable for RF and SVM. The median accuracies of the Sentinel-2- and
HySpex-based classifications were few percentage points higher with the random
forest classifier, whereas SVM produced slightly better for PlanetScope images. In
terms of the worst results, the RF algorithm performed better in each case.

• The classifications results confirmed that the minimum number of pixels should not
be lower than 300 for each class, because the increases in the values of the median and
Q1 are insignificant (single percentage points). However, comparing the classification
results obtained for 50 and 500 pixels in the pattern, we found that the median values
of the results based on 50 training pixels were comparable to the Q1 values obtained
for the classification based on 500 pixels.

• Species creating compacted and homogeneous canopies, e.g., beech, spruce, mountain
pine, fir, and alder, were accurately identified. However, varied results were obtained
for large but individually occurring trees; one such example is the pine (Pinus cembra),
which is large and easily identifiable in the field (appearing as single trees on the tops
of mountains). In situations where there were two or three large individuals next
to each other, the identification was correct; otherwise, the mix with other species
hindered correct classification.
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Appendix A

Table A1. Error matrix of obtained Sentinel-2, with topographic features and Support Vector
Machine classification results. S.f.—silver fir (Abies alba); Syc.—sycamore (Acer pseudoplatanus);
G.a.—grey alder (Alnus incana); E.b.—European beech (Fagus sylvatica); E.a.—European ash (Frax-
inus excelsior); Lar.—larch (Larix spp.); N.s.—Norway spruce (Picea abies); S.s.p.—Swiss stone pine
(Pinus cembra); D.m.p.—dwarf mountain pine (Pinus mugo); S.p.—Scots pine (Pinus sylvestris);
Wil.—willow (Salix spp.); Row.—rowan (Sorbus spp.); AG—alpine grasslands; LO—low shrubs;
ON—other nonforest; RS—rocks and artificial surfaces; WA—water; UA—user accuracy; F1—F1-
score; PA—producer accuracy.

S.f. Syc. G.a. E.b. E.a. Lar. N.s. S.s.p. D.m.p. S.p. Wil. Snags Row. AG LO ON RS WA Σ UA F1

S.f. 53 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 56 0.95 0.95
Syc. 0 69 0 27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 96 0.72 0.78
G.a. 0 1 103 1 0 5 2 0 0 0 0 0 1 0 0 0 0 0 113 0.91 0.95
E.b. 0 8 0 378 0 5 6 0 0 0 2 5 0 0 0 0 0 0 404 0.94 0.93
E.a. 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 8 1.00 1.00
Lar. 0 0 0 2 0 107 0 0 0 1 0 0 0 0 0 0 0 0 110 0.97 0.92
N.s. 3 0 0 0 0 5 4953 0 38 1 2 26 0 0 7 0 0 1 5036 0.98 0.99
S.s.p. 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 6 1.00 0.86
D.m.p. 0 0 0 0 0 0 0 0 2771 0 0 0 5 0 113 0 19 0 2908 0.95 0.94
S.p. 0 0 0 1 0 0 0 0 0 50 0 0 0 0 11 0 0 0 62 0.81 0.88
Wil. 0 0 0 0 0 0 0 0 56 0 87 0 0 0 33 0 0 0 176 0.49 0.63
Snags 0 0 0 0 0 0 2 0 0 0 0 584 0 0 0 0 1 0 587 0.99 0.95
Row. 0 2 0 1 0 0 0 0 111 0 3 24 81 0 62 0 0 0 284 0.29 0.43
AG 0 0 0 0 0 0 0 0 0 0 0 0 0 642 61 0 0 0 703 0.91 0.86
LO 0 0 0 0 0 0 0 2 1 0 3 0 6 27 2702 30 0 0 2771 0.98 0.92
ON 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 197 0 0 197 1.00 0.88
RS 0 0 0 0 0 0 0 0 2 0 3 0 0 121 91 22 962 0 1201 0.80 0.88
WA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4636 4636 1.00 1.00
Σ 56 82 103 410 8 122 4964 8 2979 52 100 639 93 790 3080 249 982 4637

PA 0.95 0.84 1.00 0.92 1.00 0.88 1.00 0.75 0.93 0.96 0.87 0.91 0.87 0.81 0.88 0.79 0.98 1.00

Table A2. Error matrix of obtained PlanetScope, with topographic features and Random Forest
classification results. S.f.—silver fir (Abies alba); Syc.—sycamore (Acer pseudoplatanus); G.a.—grey
alder (Alnus incana); E.b.—European beech (Fagus sylvatica); E.a.—European ash (Fraxinus ex-
celsior); Lar.—larch (Larix spp.); N.s.—Norway spruce (Picea abies); S.s.p.—Swiss stone pine
(Pinus cembra); D.m.p.—dwarf mountain pine (Pinus mugo); S.p.—Scots pine (Pinus sylvestris);
Wil.—willow (Salix spp.); Row.—rowan (Sorbus spp.); AG—alpine grasslands; LO—low shrubs;
ON—other nonforest; RS—rocks and artificial surfaces; WA—water; UA—user accuracy; F1—F1-
score; PA—producer accuracy.

S.f. Syc. G.a. E.b. E.a. Lar. N.s. S.s.p. D.m.p. S.p. Wil. Snags Row. AG LO ON RS WA Σ UA F1

S.f. 455 0 9 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 478 0.95 0.96
Syc. 0 650 7 59 5 0 11 0 0 1 0 0 45 0 0 210 0 0 988 0.66 0.74
G.a. 0 5 253 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 262 0.97 0.92
E.b. 0 78 0 2617 0 0 0 0 0 0 0 0 18 0 0 0 0 0 2713 0.96 0.97
E.a. 0 0 6 0 21 0 0 0 0 0 0 0 0 0 0 0 4 0 31 0.68 0.66
Lar. 10 15 0 0 0 236 37 0 0 0 0 0 0 0 0 0 0 0 298 0.79 0.83
N.s. 1 0 8 0 0 13 5852 0 287 1 0 11 0 0 0 0 1 0 6174 0.95 0.96
S.s.p. 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 7 1.00 0.56
D.m.p. 0 0 0 0 0 5 56 6 8569 0 7 0 3 0 108 0 0 0 8754 0.98 0.97
S.p. 0 1 0 0 2 0 0 0 0 31 0 0 0 0 0 0 5 0 39 0.79 0.86
Wil. 0 0 0 0 0 0 0 0 2 0 460 0 0 0 12 0 0 0 474 0.97 0.95
Snags 0 1 0 0 0 0 51 1 0 0 0 626 0 0 0 0 23 0 702 0.89 0.94
Row. 0 27 4 0 0 1 45 0 0 0 0 0 1063 0 6 0 0 0 1146 0.93 0.92
AG 0 0 0 0 0 0 0 0 0 0 0 0 0 1440 85 0 0 0 1525 0.94 0.95
LO 0 0 0 0 0 4 2 4 89 0 24 0 44 66 2472 0 0 0 2705 0.91 0.92
ON 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2120 0 0 2120 1.00 0.95
RS 0 1 4 0 1 0 0 0 0 0 0 0 0 2 0 0 1559 0 1567 0.99 0.99
WA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 43,291 43,291 1.00 1.00
Σ 466 778 291 2676 33 273 6054 18 8947 33 491 637 1173 1508 2683 2330 1592 43,291

PA 0.98 0.84 0.87 0.98 0.64 0.86 0.97 0.39 0.96 0.94 0.94 0.98 0.91 0.95 0.92 0.91 0.98 1.00
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Table A3. Error matrix of obtained PlanetScope, with topographic features and Support Vector
Machine classification results. S.f.—silver fir (Abies alba); Syc.—sycamore (Acer pseudoplatanus);
G.a.—grey alder (Alnus incana); E.b.—European beech (Fagus sylvatica); E.a.—European ash (Frax-
inus excelsior); Lar.—larch (Larix spp.); N.s.—Norway spruce (Picea abies); S.s.p.—Swiss stone pine
(Pinus cembra); D.m.p.—dwarf mountain pine (Pinus mugo); S.p.—Scots pine (Pinus sylvestris);
Wil.—willow (Salix spp.); Row.—rowan (Sorbus spp.); AG—alpine grasslands; LO—low shrubs;
ON—other nonforest; RS—rocks and artificial surfaces; WA—water; UA—user accuracy; F1—F1-
score; PA—producer accuracy.

S.f. Syc. G.a. E.b. E.a. Lar. N.s. S.s.p. D.m.p. S.p. Wil. Snags Row. AG LO ON RS WA Σ UA F1

S.f. 464 0 6 0 0 9 3 0 0 0 0 0 0 0 0 0 0 0 482 0.96 0.98
Syc. 0 641 0 51 2 3 0 0 0 0 0 0 38 0 0 4 0 0 739 0.87 0.85
G.a. 0 2 281 0 6 0 7 0 0 0 0 0 0 0 0 0 3 0 299 0.94 0.95
E.b. 0 71 0 2623 0 0 0 0 0 0 0 0 35 0 0 0 0 0 2729 0.96 0.97
E.a. 0 0 0 0 23 0 0 0 0 0 0 0 0 0 0 7 0 0 30 0.77 0.73
Lar. 1 0 0 0 0 233 11 0 0 0 0 0 0 0 0 0 0 0 245 0.95 0.90
N.s. 1 0 0 0 0 19 5924 0 57 0 0 5 0 0 1 0 0 0 6007 0.99 0.98
S.s.p. 0 0 0 0 0 0 0 16 3 0 0 0 0 0 0 0 0 0 19 0.84 0.86
D.m.p. 0 0 0 0 0 5 41 0 8826 0 1 0 0 0 71 0 0 0 8944 0.99 0.99
S.p. 0 0 0 0 0 0 47 0 0 32 0 0 0 0 0 0 2 0 81 0.40 0.56
Wil. 0 0 0 0 0 0 0 0 3 0 478 0 5 0 0 0 0 0 486 0.98 0.98
Snags 0 6 0 0 0 0 21 0 4 1 0 630 0 0 0 0 17 0 679 0.93 0.96
Row. 0 57 0 2 0 2 0 2 13 0 0 2 1091 0 0 17 0 0 1186 0.92 0.92
AG 0 0 0 0 0 0 0 0 6 0 6 0 0 1401 36 0 0 0 1449 0.97 0.95
LO 0 0 0 0 0 2 0 0 35 0 6 0 4 107 2575 6 0 0 2735 0.94 0.95
ON 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2296 0 0 2297 1.00 0.99
RS 0 0 4 0 2 0 0 0 0 0 0 0 0 0 0 0 1570 0 1576 1.00 0.99
WA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 43,291 43,291 1.00 1.00
Σ 466 778 291 2676 33 273 6054 18 8947 33 491 637 1173 1508 2683 2330 1592 43,291

PA 1.00 0.82 0.97 0.98 0.70 0.85 0.98 0.89 0.99 0.97 0.97 0.99 0.93 0.93 0.96 0.99 0.99 1.00

Table A4. Error matrix of obtained HySpex, with topographic features and Random Forest clas-
sification results. S.f.—silver fir (Abies alba); Syc.—sycamore (Acer pseudoplatanus); G.a.—grey
alder (Alnus incana); E.b.—European beech (Fagus sylvatica); E.a.—European ash (Fraxinus ex-
celsior); Lar.—larch (Larix spp.); N.s.—Norway spruce (Picea abies); S.s.p.—Swiss stone pine
(Pinus cembra); D.m.p.—dwarf mountain pine (Pinus mugo); S.p.—Scots pine (Pinus sylvestris);
Wil.—willow (Salix spp.); Row.—rowan (Sorbus spp.); AG—alpine grasslands; LO—low shrubs;
ON—other nonforest; RS—rocks and artificial surfaces; WA—water; UA—user accuracy; F1—F1-
score; PA—producer accuracy.

S.f. Syc. G.a. E.b. E.a. Lar. N.s. S.s.p. D.m.p. S.p. Wil. Snags Row. AG LO ON RS WA Σ UA F1

S.f. 585 1 0 30 0 0 0 0 0 0 0 0 1 0 0 0 0 0 617 0.95 0.90
Syc. 5 1528 15 164 0 1 0 0 0 2 0 0 20 0 0 5 0 0 1740 0.88 0.89
G.a. 0 0 217 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 220 0.99 0.96
E.b. 86 147 0 3525 2 17 133 0 0 1 0 0 3 0 0 0 0 0 3914 0.90 0.92
E.a. 0 1 0 3 10 2 0 0 0 0 0 0 0 0 0 0 0 0 16 0.63 0.71
Lar. 0 0 0 1 0 260 49 0 0 0 0 7 0 0 0 0 0 0 317 0.82 0.79
N.s. 1 3 0 18 0 48 10,753 0 0 3 0 107 8 0 0 2 0 1 10,944 0.98 0.98
S.s.p. 0 0 0 0 0 0 0 45 1 0 0 0 0 0 0 0 0 0 46 0.98 0.98
D.m.p. 0 0 0 0 0 0 0 1 10,696 0 17 0 0 0 75 0 0 0 10,789 0.99 0.99
S.p. 0 1 0 0 0 0 0 0 0 30 0 0 0 0 0 4 0 0 35 0.86 0.85
Wil. 0 0 0 0 0 0 0 0 23 0 506 0 0 0 48 0 0 0 577 0.88 0.90
Snags 0 0 0 0 0 2 20 0 0 0 0 591 0 0 0 0 0 0 613 0.96 0.88
Row. 0 2 0 1 0 8 85 0 0 0 0 15 1048 0 541 3 0 0 1703 0.62 0.75
AG 0 0 0 0 0 0 0 0 0 0 1 0 0 2288 17 48 3 0 2357 0.97 0.95
LO 0 0 0 0 0 0 0 0 21 0 22 0 5 154 2552 0 0 0 2754 0.93 0.83
ON 0 0 0 0 0 0 0 0 0 0 0 1 0 1 148 3648 2 0 3800 0.96 0.97
RS 0 0 0 0 0 0 1 0 1 0 0 2 0 3 0 0 3386 0 3393 1.00 1.00
WA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14,024 14,024 1.00 1.00
Σ 677 1683 232 3745 12 338 11,041 46 10,742 36 546 723 1085 2446 3381 3710 3391 14,025

PA 0.86 0.91 0.94 0.94 0.83 0.77 0.97 0.98 1.00 0.83 0.93 0.82 0.97 0.94 0.75 0.98 1.00 1.00
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Table A5. Error matrix of obtained HySpex, with topographic features and Support Vector
Machine classification results. S.f.—silver fir (Abies alba); Syc.—sycamore (Acer pseudoplatanus);
G.a.—grey alder (Alnus incana); E.b.—European beech (Fagus sylvatica); E.a.—European ash (Frax-
inus excelsior); Lar.—larch (Larix spp.); N.s.—Norway spruce (Picea abies); S.s.p.—Swiss stone pine
(Pinus cembra); D.m.p.—dwarf mountain pine (Pinus mugo); S.p.—Scots pine (Pinus sylvestris);
Wil.—willow (Salix spp.); Row.—rowan (Sorbus spp.); AG—alpine grasslands; LO—low shrubs;
ON—other nonforest; RS—rocks and artificial surfaces; WA—water; UA—user accuracy; F1—F1-
score; PA—producer accuracy.

S.f. Syc. G.a. E.b. E.a. Lar. N.s. S.s.p. D.m.p. S.p. Wil. Snags Row. AG LO ON RS WA Σ UA F1

S.f. 662 0 0 28 0 0 3 0 0 0 0 0 0 0 0 0 0 0 693 0.96 0.97
Syc. 4 1558 17 149 0 1 13 0 0 0 0 5 18 0 0 56 0 0 1821 0.86 0.89
G.a. 0 7 213 0 0 0 5 0 0 0 0 0 0 0 0 206 1 0 432 0.49 0.64
E.b. 0 82 0 3538 5 7 18 0 0 0 0 3 0 0 1 0 0 0 3654 0.97 0.96
E.a. 0 0 0 1 6 0 0 0 0 0 0 0 0 0 0 26 0 0 33 0.18 0.27
Lar. 0 0 0 4 0 303 9 0 0 0 0 7 0 0 2 1 0 0 326 0.93 0.91
N.s. 11 14 2 14 0 21 10,927 0 0 1 0 32 18 0 3 0 0 0 11,043 0.99 0.99
S.s.p. 0 0 0 0 0 0 0 43 1 0 0 0 0 0 4 0 0 0 48 0.90 0.91
D.m.p. 0 0 0 0 0 0 0 3 10,703 0 6 0 2 5 309 0 0 0 11,028 0.97 0.98
S.p. 0 2 0 0 0 2 8 0 0 34 0 3 1 0 1 7 0 0 58 0.59 0.72
Wil. 0 0 0 0 0 0 0 0 13 0 517 1 2 0 110 0 0 0 643 0.80 0.87
Snags 0 1 0 0 0 2 17 0 1 1 0 635 0 0 1 0 4 0 662 0.96 0.92
Row. 0 18 0 11 0 1 41 0 0 0 5 11 1042 0 202 8 0 0 1339 0.78 0.86
AG 0 0 0 0 0 0 0 0 0 0 0 0 0 2368 131 23 0 0 2522 0.94 0.95
LO 0 0 0 0 0 0 0 0 23 0 17 5 2 53 2616 26 0 0 2742 0.95 0.85
ON 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 3357 0 0 3360 1.00 0.95
RS 0 0 0 0 0 0 0 0 1 0 1 21 0 20 1 0 3386 0 3430 0.99 0.99
WA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14,025 14,025 1.00 1.00
Σ 677 1683 232 3745 12 338 11,041 46 10,742 36 546 723 1085 2446 3381 3710 3391 14,025

PA 0.98 0.93 0.92 0.94 0.50 0.90 0.99 0.93 1.00 0.94 0.95 0.88 0.96 0.97 0.77 0.90 1.00 1.00
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