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Abstract: Timely and quantitatively evaluating regional eco-environmental quality (EEQ) is of great
significance for realizing regional sustainable development goals. Especially for cloudy areas, it was a
great challenge to construct a regional EEQ dataset with high quality and high resolution. However,
existing studies failed to consider the influence of land surface and season elements in evaluating regional
EEQ. Therefore, this study aimed to promote an accurate EEQ-evaluating framework for cloudy areas.
Zhaotong city, a typical karst and cloudy region, was chosen as the study area. First, we integrated multi-
source spatiotemporal datasets and constructed a novel eco-environmental comprehensive evaluation
index (ECEI) to assess its EEQ from 2000 to 2020. Next, standard deviation ellipse (SDE) and trend
analysis methods were applied to investigate regional EEQ’s change trends. Finally, ecological index (EI)
values for different years were calculated to validate the effectivity of the ECEI. The main findings were
as follows: (1) The EEQ of Zhaotong showed an upward-fluctuating trend (0.0058 a−1), with average
ECEI values of 0.729, 0.693, 0.722, 0.749, and 0.730. (2) The spatial distribution pattern of the EEQ showed
high values in the north and low values in the south, with Zhaoyang district having the lowest ECEI
value. (3) From 2000 to 2020, the standard deviation of the major axis of the ellipse moved northeast
of Zhaotong city with θ of SDE changing from 57.06◦ to 62.90◦, thus, indicating the improvement of
northeastern regions’ EEQ. (4) The coefficients of the determinant (R2) between the EI and ECEI were
0.84, which was higher than that of EI–RSEI (R2 = 0.56). This indicated that our promoted framework and
the ECEI could acquire more accurate EEQ results and provide suggestions for relevant policymakers.

Keywords: eco-environmental comprehensive evaluation index; ecological index; spatiotemporal
analyses; Zhaotong

1. Introduction

Since the Industrial Revolution, the urbanization of the whole world has increased
dramatically [1]. Based on the United Nations report issued in 2014, the world’s urbaniza-
tion rate is expected to reach 66% in 2050 [2]. Especially in China, since the implementation
of the reform and opening-up policy, the urbanization rate has increased from 17.92% in
1978 to 64.72% in 2021, with an average annual growth rate of 103.03% [3]. However, with
the rapid development of urbanization, a series of problems have arisen, for example,
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degradation of land quality and soil erosion [4,5], decrease in biodiversity and vegetation
coverage [6,7], intensification of heat island effect [8,9], a decline of air quality [10,11],
and deterioration of eco-environment [12]. In response to these problems, the Chinese
government carried out a regional, coordinated development strategy in 2017 [13], aiming
to decrease the gap between different regions and promote coordinated development be-
tween the eco-environment and urbanization. Specifically, it is necessary to improve these
eco-environment issues from the perspective of green infrastructure and urban sprawl.
Urban green infrastructure is defined as “a strategically planned network of natural and
semi-natural areas with other environmental features designed and managed to deliver
a wide range of ecosystems services” [14]. Marando et al. used European functional ur-
ban areas to study the influence of the implementation of urban green infrastructure in
mitigating the urban heat island effect, and they found that a tree cover of at least 16%
was required to achieve a l °C drop in urban temperatures [14]. Donati et al. found that
the planning of blue-green infrastructure could promote the permeability and availability
of “stepping stone” habitats in densely populated landscapes, indicating that the blue
and green infrastructure construction was of great help in maintaining regional habitat
connectivity [15]. When Chanchipricha and Fischer evaluated the impact of developing
urban green infrastructure, they suggested that environmental impact assessment should
consider green infrastructure [16]. Barbosa et al. concluded that there was a disconnect and
disarticulation between public spaces and green areas [17]. In general, green infrastruc-
ture construction could provide some influence on promoting an urban eco-environment,
including the mitigation of the urban heat island effect and the maintenance of regional
habitat connectivity.

As for urban sprawl, its influence on the regional EEQ is complicated. Ewing and
Hamidi found that sprawling areas had higher ozone levels than compact areas [18]. Poli-
doro et al. found that urban sprawl could lead to the consequences of territorial ordering
and the egalitarian spatial distribution of essential services [19]. Tian et al. concluded
that planning was strongly correlated with urban sprawl, which was kind of a “planned
sprawl” [20]. Huang et al. took eight landscape metrics to analyze the spatiotemporal
changes in landscape patterns, indicating that a guiding plan was required to integrate
planning in both urban and non-urban planned districts [21]. Barbosa and Pradilla con-
cluded that the degree of vulnerability encountered by the social urban spatial structure
was higher in expansion areas than in central areas [22]. Generally, urban sprawl, to some
extent, could influence the regional EEQ. Thus, it is important to integrate planning to
guide the direction of urban sprawl. Therefore, to realize this goal, it is urgent to evaluate
the regional eco-environmental quality (EEQ) timely and quantitatively.

The definition of an eco-environment is the total quantity and quality of water re-
sources, land resources, biological resources, and climate resources that affect human
survival and development [23]. Evaluation of the EEQ normally consisted of two parts,
which were the construction of a scientific index system and an accurate assessment of
the regional EEQ [24]. To date, many scholars have promoted numerous novel indexes to
evaluate the regional EEQ. For example, Fu developed a comprehensive index system to
evaluate the regional EEQ at the provincial scale; this index system included water and soil
loss, land salinization, agricultural natural disasters, land resources, water resources, forest
resources, air pollution, water pollution, solid waste pollution, population, economic devel-
opment, and township enterprises. However, all used datasets were acquired from national
statistical yearbooks [25]. He et al. combined fine particulate matter (PM2.5) concentration,
land surface temperature (LST), and vegetation cover (VC) to develop a comprehensive
evaluation index (CEI), and he found that the increase of PM2.5 concentration had a great
influence on the regional EEQ. Specifically, degraded regions were mainly distributed in
expanded urban areas with an increased PM2.5 concentration [26]. Wei et al. integrated the
normalized difference vegetation index (NDVI), wetness index, albedo, index-based built-
up index, salinization index, and LST to construct an environmental quality index. In their
study, weights of multiple indicators were objectively determined by the eigenvalues of all
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principal components. In addition, they found that the EEQ of urban regions displayed
a damaging trend [27]. Chang et al. used the average annual precipitation, net primary
productivity (NPP), elevation, biological abundance index (BAI), highway net density, and
other nine indexes to establish an ecological environmental index (EEI). In their study, four
climate aspects, such as soil–terrain, biological resources, and human factors were used to
evaluate the regional EEQ. They also found that human factors had a negative influence on
the regional EEQ [28]. Sun et al. calculated the NDVI, habitat quality index, normalized
difference moisture index (NDMI), and normalized difference soil index (NDSI) to promote
an eco-environmental quality index (EQI). Among them, threshold values were set to
divide each index into different types. In addition, they also came to the conclusion that
residential regions had poor EEQ [29]. Wei et al. selected twenty-three indices from hydro-
meteorological, socioeconomic, soil, biological, and topographical aspects to construct an
environmental vulnerability distance index (EVDI). Similar to the aforementioned studies,
land use changes and human activities indirectly influenced the results of environmental
vulnerability [30]. Chai and Lha chose sixty-six indexes from aspects of human activity
and the natural environment to evaluate different regions’ EEQ; however, it took a long
time to collect these data [31]. Ariken et al. built an index system from level, pollution,
and protection aspects to evaluate the regional EEQ. Numerous indexes were calculated or
acquired by statistical yearbooks [32]. To sum up, the data sources used in existing studies
could be divided into two types: statistical data and non-statistical data [33]. Statistical
data has the advantage of high authority. However, its data is mainly at the administrative
scale, which fails to acquire the index value of any location [34]. Hence, in the previous
studies, the regional EEQ was evaluated qualitatively. At the same time, it failed to detect
EEQ changes at the grid level. Among non-statistical data, remote sensing data are one
of the most widely used due to the advantages of wide space coverage and strong time
continuity [35]. EEQ’s evaluation based on remote sensing datasets provided a useful
way to detect EEQ changes at multi-dimensions, such as degradation of the EEQ caused
by urban sprawl and human negative activities. To date, numerous indexes have been
proposed to evaluate the regional EEQ, such as NDVI for vegetation detection [36] and LST
for urban heat islands [37]. However, a single index could only reflect one aspect of the
regional eco-environment, which fails to evaluate the regional comprehensive EEQ [38].
Compared with a single index, the aggregated index showed great potential. Especially, the
remote sensing ecological index (RSEI) integrated four aspects, such as greenness, wetness,
dryness, and heat, to evaluate the regional EEQ [39]. Since its promotion in 2013, numerous
studies have applied this index to evaluate the regional EEQ at various scales [40–44].
However, the RSEI had some limitations in practical applications, including the influence
of season, the effect of water bodies, lack of consideration for the land surface difference,
and lack of application in cloudy areas. In response to the first three shortcomings, Xu et al.
combined the land use data to develop the RSEI-2 to assess China’s EEQ [45]. Zhang et al.
assessed Tianjin’s EEQ by combining the RSEI and season [46]. Xu and Deng suggested
that it was not suitable to name these indexes as RSEI or use RSEI-related names when
considering non-ecological factors [47]. Moreover, existing studies failed to consider both
land surface and season differences. As for the fourth shortcoming, numerous studies
adopted Google Earth Engine (GEE) platform to evaluate the regional EEQ by filtering
satisfied images [48–50].

Generally, EEQ evaluation achieved fruitful results; however, cloudy regions’ EEQ
evaluation considering both land surface and season differences has not been reported.
This study aimed to promote an accurate EEQ-evaluating framework for cloudy areas and
provide constant regional EEQ datasets with high quality and high resolution. Zhaotong
city, a typical cloudy and karst area in China, was chosen as a study area to evaluate its
EEQ from 2000 to 2020 as, during this period, the economic and social level of Zhaotong
increased significantly. In addition, several high-accuracy datasets, such as land use
datasets, have been available since 2000. First, Zhaotong’s cloudy-free Landsat series
images from different seasons were filtered based on the GEE platform. Then, the results
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from the abundance index (AI) and four other indexes obtained in different seasons were
integrated to establish a novel eco-environmental comprehensive evaluation index (ECEI).
Finally, the ECEI results of were analyzed based on standard deviation ellipse (SDE) and
trend analysis methods and compared with the ecological index (EI) developed by the
Ministry of Ecology and Environment. This study is organized as follows: the Section 2
presents the general situations of the study area and adopted methodologies, which include
calculation methods of the ECEI, EI, SDE, and trend analysis; the Section 3 describes the
spatiotemporal distribution of the ECEI at different scales and the spatiotemporal change
trend of the ECEI based on SDE and trend analysis methods; the Section 4 analyzes the
spatial principal component analysis (SPCA) results, compares the ECEI results with the EI,
and displays the implications and limitations of this study; the Section 5 shows this study’s
main results and findings.

2. Materials and Methods
2.1. Study Area

Zhaotong is located in the northeastern part of Yunnan Province in China and the
hinterland of the Wumeng Mountains on the border of Yunnan, Guizhou, and Sichuan
provinces (Figure 1). It is also a typical karst region [51]. Zhaotong has a highland
monsoon climate, with 96% of its territory covered by mountainous areas. It is rich
in water resources, with an average annual precipitation of about 1120 mm and an
uneven spatial and temporal distribution of rainfall, with the flood season concentrated
in May–October. In 2020, the population and gross domestic product of Zhaotong were
5.09 million people and 128.87 billion yuan [52].
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2.2. Data Sources and Processing

The study adopted multiple remote sensing datasets and administrative boundary
data to evaluate Zhaotong’s EEQ. A brief introduction of each dataset is shown in Table 1.

Table 1. Brief introduction of datasets.

Name Resolution Data Availability Brief Description

Landsat series 30 m
https://www.usgs.gov/landsat-missions/

landsat-collection-2-level-2-science-products
accessed on 1 May 2022

A product of land surface
spectral reflectance

GLC_FCS30 30 m https://data.casearth.cn/
accessed on 15 May 2022

A product of global land cover with fine
classification system

ASTER GDEM 30 m http://www.gscloud.cn/home
accessed on 22 May 2022

A product of global digital
elevation model

Precipitation 1000 m http://www.geodata.cn
accessed on 5 July 2022 A product of monthly precipitation data

CHAP 1000 m https://weijing-rs.github.io/product.html
accessed on 20 June 2022

Products of China’s high-spatial
air pollutants

HWSD 30 arc-second

https://www.fao.org/soils-portal/soil-survey/
soil-maps-and-databases/harmonized-world-

soil-database-v12/en/
accessed on 20 June 2022

A product of harmonized world
soil database

Statistical yearbook \ http://www.zt.gov.cn/
accessed on 20 June 2022

Statistical data of regional
socio-economic aspects

Administrative
boundary data \ http://www.ngcc.cn/ngcc/html/1/index.html

accessed on 5 May 2022
A vector dataset for data mask and

spatial analysis

Based on Table 1, Landsat 5, 7, and 8 images, land surface reflectance products of
different seasons in the years 2000, 2005, 2010, 2015, and 2020 were obtained by using
the GEE platform and median method. Due to the cloud pollution problem, it was
difficult to get cloud-free images for each target year. Therefore, images from adjacent
years were also included when filtering. Specifically, spring is from 1 March to 31 May,
summer is from 1 June to 31 August, autumn is from 1 September to 30 November, and
winter is from 1 December to 28 February [53]. GLC_FCS30 datasets were acquired
from the Data Sharing and Service Portal website at a resolution of 30 m. ASTER GDEM
data were obtained from the Geospatial Data Cloud website at a resolution of 30 m.
Precipitation data were downloaded from the National Earth System Science Data
Center with a 1000 m resolution. CHAP datasets were acquired from Weijing’s website
at a resolution of 1000 m. HWSD data were derived from the Food and Agriculture
Organization of the United Nations by selecting surface soil texture attributes with a
30-arc-second resolution. All raster datasets (Table 1) were resampled to 30 m resolution
and converted to WGS_1984_48N coordinate system using ArcGIS 10.8 software.

2.3. Methods

The framework of this study is shown in Figure 2, which consists of three main
parts: (1) ECEI construction; (2) EI construction; (3) ECEI accuracy assessment, spa-
tiotemporal and trend analysis. Among them, SDE was used to present the change di-
rection at the city scale. Sections 2.3.1–2.3.4 describe the calculation formulas in detail.

https://www.usgs.gov/landsat-missions/landsat-collection-2-level-2-science-products
https://www.usgs.gov/landsat-missions/landsat-collection-2-level-2-science-products
https://data.casearth.cn/
http://www.gscloud.cn/home
http://www.geodata.cn
https://weijing-rs.github.io/product.html
https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
https://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
http://www.zt.gov.cn/
http://www.ngcc.cn/ngcc/html/1/index.html
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2.3.1. Calculation of ECEI

The ECEI integrates NDVI, wetness (WET), normalized difference build-up and soil
index (NDBSI), LST, and AI. After calculating each index for the four seasons, average ECEI
values of different years were calculated. To reduce the influence of outliers, the values
of the first 0.1% and last 0.1% in the histogram were removed. Equations (1)–(14) were
utilized to obtain Zhaotong’s ECEI in 2000, 2005, 2010, 2015, and 2020, respectively [54,55].
All equations were calculated using the GEE platform and ArcGIS 10.8 software.

NDVI = (ρnir − ρred)/(ρnir + ρred) (1)

WETTM = 0.03× ρblue + 0.20× ρgreen + 0.30× ρred + 0.16× ρnir
−0.68× ρswir1 − 0.61× ρswir2

(2)

WETETM+ = 0.26× ρblue + 0.21× ρgreen + 0.09× ρred + 0.07× ρnir
−0.76× ρswir1 − 0.54× ρswir2

(3)

WETOLI = 0.15× ρblue + 0.20× ρgreen + 0.33× ρred + 0.34× ρnir
−0.71× ρswir1 − 0.46× ρswir2

(4)

NDBSI = 1
2

{
2×ρswir1

ρswir1+ρnir
− ρnir

ρnir+ρred
− ρgreen

ρgreen+ρswir1
2×ρswir1

ρswir1+ρnir
+

ρnir
ρnir+ρred

+
ρgreen

ρgreen+ρswir1

}
+

1
2

{
ρswir1+ρred−ρnir−ρblue
ρswir1+ρred+ρnir+ρblue

} (5)

LST = {a(1− C− D) + [b(1− C− D) + C + D] × Tb + D× Ta}/C (6)

C = ετ (7)

D = (1− ε)[1 + (1− ε)τ] (8)

Ta = 16.01 + 0.09× T0 (9)
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AI = µ×
(

0.35× Forest + 0.21× Grassland + 0.28×Water+
0.11× Cropland + 0.04× Build + 0.01×Unused

)
/Area (10)

Xrescale = (Xi − Xmin)/(Xmax − Xmin) (11)

ECEIseason_o = PC1{ f (NDVI, WET, NDBSI, LST, AI)} (12)

ECEIseason =
ECEIseason_o_i − ECEIseason_o_min

ECEIseason_o_max − ECEIseason_o_min
(13)

ECEI =

N
∑

j=1
ECEIseason_j

N
(14)

where ρblue, ρgreen, ρred, ρnir, ρswir1 and ρswir2 represent the land surface reflectance of the
blue, green, red, nir, swir1, and swir2 bands, respectively; WET is the moisture component
of the tasseled cap transformation, its calculation formulas are different for different Landsat
series [56,57]; a and b are constant variables, which are−67.36 and 0.46, respectively; ε is the
land surface emissivity; τ is the atmospheric transmittance; Ta is the average atmospheric
action temperature; Tb is the brightness temperature, which is derived from Landsat images
metadata file; T0 is the actual surface temperature; µ is the normalized coefficient; Forest,
grassland, water, cropland, built and unused are the corresponding areas of each land
use type in the target units of the study area; Xrescale indicates the normalized result of
each index; Xi, Xmin and Xmax represent the ith, min and max value of each index; PC1
displays the first component of SPCA, which can aggregate the most information of five
indicators; ECEIseason_o means the origin ECEIseason value; ECEIseason_o_i, ECEIseason_o_min,
and ECEIseason_o_max represent the ith, min and max value of ECEIseason_o; ECEIseason is the
normalized value of ECEIseason_o; ECEI is the average value of all seasons in each period.
ECEI ranges from 0 to 1, and a higher value indicates a higher EEQ.

2.3.2. Calculation of EI

Based on Technical Criterion for Ecosystem Status Evaluation (HJ 192-2015) [58], the
calculation of EI consists of five parts, which are the biological abundance index (BAI),
vegetation cover index (VCI), water network density index (WNDI), land stress index (LSI),
and pollution load index (PLI). Equations (15)–(19) were used to calculate each index.

BAI =
BI + HQI

2
(15)

where BI represents the biodiversity index, calculated from species diversity level, ecosys-
tem diversity level, and landscape diversity level [59,60]. Table 2 displays the weight
and sub-indicator names for BI calculation. Among them, the Simpson diversity index
(SIDI), Splitting index (SPLIT), and Contagion index (CONTAG) were calculated using
Fragstats 4.2 software. HQI indicates habitat quality index, which is acquired by using
InVEST model [61,62]. The weights of all indicators were determined by analytic hierarchy
process method (AHP) [60].

NDVIavg = Aveg ×
(

∑n
i=1 Pi

n

)
(16)

where Pi is the average value of the maximum monthly value of NDVI from May to
September; n is the pixel number; Aveg is the normalization coefficient value; NDVIavg is
the value of VCI.

WNDI =
[

Ariv × Lengthriver/Arearegion+Alak × Areawater/Arearegion
+Ares × Soucewater/Arearegion

]
/3 (17)

where Ariv, Alak, and Ares are the normalized coefficient values; Lengthriver is the length of
all rivers in Zhaotong; Areawater is the area of water in Zhaotong, including lakes, reservoirs,
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rivers, canals, and offshore; Arearegion is Zhaotong’s area; Sourcewater is the water resource
amount [63].

LSI = Aero ×
(

0.4× Areasevere + 0.2× Areamiddle
+0.2× Areaother + 0.2× Areabuilding

)
/Arearegion (18)

where Aero is the normalized coefficient value; Areasevere, Areamiddle, Areaother, and Areabuilding
are the area of severe soil erosion, medium soil erosion, other soil erosion, and building
land; Arearegion is the city area.

PLI = 0.20×ACOD × EmsCOD/Preannual + 0.20×ANH3 × EmsNH3 /Preannual+
0.20×ASO2 × EmsSO2 /Arearegion + 0.10×AYFC × EmsYFC/Arearegion+
0.20×ANOX × EmsNOX/Arearegion + 0.10×ASOL ×VolSOL/Arearegion

(19)

where ACOD, ANH3, ASO2, AYFC, ANOX, and ASOL are normalized coefficient values; EmsCOD,
EmsNH3, EmsSO2, EmsYFC, EmsNOX, and VolSOL represent emissions of COD, NH3, fume, and
dust, NOX and solid waste disposal volume; Preannual is the average annual precipitation;
Arearegion is the city area.

Table 2. Weight and sub-indicator system of BI.

Level Weight Sub-Indicator Weight

Species diversity 0.60
Habitat quality index (HQI) 0.30

Enhanced vegetation index (EVI) 0.15
Water network density index (WNDI) 0.15

Ecosystem diversity 0.15
Percentage of habitat area (Sp) 0.05
Simpson diversity index (SIDI) 0.10

Landscape diversity 0.25
Splitting index (SPLIT) 0.15

Contagion index (CONTAG) 0.10

Due to the lack of long-term NH3 and NOX data, this study used CHAP datasets to
represent the emission amount of NH3 and NOX [64,65]. As CHAP datasets represented
spatial data, each county’s emission amount was allocated by the AHP method. Table 3
shows the pollutant allocation indicator system.

Table 3. Pollutant allocation indicator system.

Target Level Element Layer Indicator Weight

Pollutant emissions
allocation

Environment Water quality (WQ) 0.38
Economy Gross domestic product (GRP) 0.33

Society Population density (PD) 0.29

2.3.3. Calculation of SDE

The SDE, long served as a general geographic information system tool, is a statisti-
cal method to measure the distribution characteristics of spatial features [66]. It can be
constructed by ArcGIS directional distribution tool and can describe the characteristics of
gravity center trend, dispersion, and directional trend [66]. In this study, SDE was used to
present the aggregation characteristics of ECEI spatial distribution. One standard deviation
was selected to perform SDE [67]. Equations (20)–(24) were used to calculate the gravity
center, corner, and major and minor axes of SDE.

SDEx =

√√√√√ n
∑

i=1

(
xi − X

)2

n
(20)

SDEy =

√√√√√ n
∑

i=1

(
yi −Y

)2

n
(21)
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tan θ =

(
n
∑

i=1
x2

i −
n
∑

i=1
y2

i

)
+

√(
n
∑

i=1
x2

i −
n
∑

i=1
y2

i

)2
+ 4
(

n
∑

i=1
xiyi

)2

2
n
∑

i=1
xiyi

(22)

σx =
√

2

√√√√√ n
∑

i=1
(xi cos θ − yi sin θ)2

n
(23)

σy =
√

2

√√√√√ n
∑

i=1
(xi sin θ + yi cos θ)2

n
(24)

where xi and yi display the spatial location of each pixel; X and Y indicate the arithmetic
mean center; xi and yi represent the difference between mean center and coordinate x
and coordinate y; θ presents the corner. In this study, it represents the primary spatial
distribution trend of ECEI.

2.3.4. Trend Analysis Method

Trend analysis is a method to analyze the change trend and intensity of a variable by
performing a univariate linear regression analysis. The slope of the regression equation
indicates the variable’s change trend [68,69]. In this study, trend analysis was applied to
analyze the change trend of ECEI. Equation (25) shows the calculation formula.

θslope =

n×
n
∑

i=1
i× Ni −

n
∑

i=1
i

n
∑

i=1
Ni

n×
n
∑

i=1
i2 −

(
n
∑

i=1
i
)2 (25)

where θslope denotes the changing trend; n is the number of study periods. In this study,
n equals 5; Ni is the ith value of ECEI; θslope > 0 indicates an increasing trend, and vice versa.

3. Results
3.1. Spatiotemporal Change Analysis of ECEI

Figure 3 shows the average ECEI values of Zhaotong from 2000 to 2020. Based on
Figure 3, all ECEI values in Zhaotong were higher than 0.690, indicating an inverted “N”
change trend. In 2005, the ECEI had the lowest value (0.693). In 2015, the ECEI had the
highest value (0.749). Generally, the EEQ of Zhaotong has shown an upward trend over
the past 20 years, with the ECEI value increasing by 0.23%.
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To understand the spatial characteristics of the ECEI, a spatial distribution map at grid
and county levels was drawn (Figures 4 and 5).
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According to Figure 4, the distribution pattern of EEQ in Zhaotong was relatively
stable. Regions located in the northern and eastern parts had high ECEI values. Western
areas had moderate ECEI values, better contiguity, and rich patch detail. Areas with low
ECEI values showed highly fragmented characteristics. In addition, these regions were
mainly distributed in Weixin county, Zhenxiong county, Zhaoyang district, surrounding
areas of Shuifu city, Suijiang county, Yongshan county, Daguan county, and Qiaojia county.
Except for Chaoyang district, all remaining regions displayed an upward trend to varying
degrees. The EEQ of the southern Zhaoyang district was consistent in the past 20 years,
with no expansion. In 2015, areas with low ECEI values in Zhaoyang district showed a
slight reduction. In addition, the EEQ in the western regions, including Yongshan county,
Zhaoyang district, Ludian county, and Qiaojia county, have improved. Due to the lack of
satisfying images, in 2015, some regions did not have valid ECEI values. Here, to fully
understand the area change with respect to different grades, we set 0.2 as the interval
to equally divide ECEI into five grades, which were bad [0,0.2], fair (0.2,0.4], moderate
(0.4,0.6], good (0.6,0.8] and excellent (0.8,1]. Table 4 shows the area percentage of different
ECEI grades. Figure 6 shows the area percentage bar chart of Zhaotong from 2000 to 2020.

Table 4. Area percentage of different ECEI grades.

ECEI Grades

2000 2005 2010 2015 2020

Area
Percentage/%

Area
Percentage/%

Area
Percentage/%

Area
Percentage/%

Area
Percentage/%

Bad 0.37 0.49 0.61 0.79 0.73
Fair 13.45 13.48 13.48 13.86 10.04

Moderate 22.39 22.31 22.36 22.44 23.70
Good 0.57 2.65 0.59 0.63 7.27

Excellent 63.22 61.07 62.96 62.28 58.26
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Data from Table 4 and Figure 6 show that the area percentage of different grades in
different years was relatively stable. Specifically, for the bad grade, its area percentage
displayed an upward trend, with its value increasing from 0.37% in 2000 to 0.73% in 2020.
However, the percentage of this grade in all periods was small (lower than 1%). For the
fair grade, its area percentage presented a downward change trend, especially in 2020;
the area percentage decreased from 13.86% in 2015 to 10.04% in 2020. For the moderate
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grade, its area percentage increased from 22.39% in 2000 to 23.70% in 2020. For the good
grade, its area percentage showed a fluctuating upward trend, with the area percentage
rising from 0.57% in 2000 to 7.27% in 2020. As for the excellent grade, its area percentage
displayed a fluctuating downward change trend, with the area percentage decreasing from
63.22% in 2000 to 58.26% in 2020. Generally, in 2020, the area percentage of excellent grade
decreased. However, the area percentage of moderate, good, and excellent grades in 2020
was the highest. In addition, in all periods, the area percentage of the excellent grade was
the highest, indicating that the overall EEQ of Zhaotong city was good.

3.2. Change Direction of ECEI Based on SDE

Figure 7 shows the change direction of ECEI in Zhaotong from 2000 to 2020.
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According to Figure 7, the θ range of SDE was from 57.06◦ to 62.90◦ with the central
areas almost located in the SDE. The distribution pattern of EEQ in Zhaotong presented the
direction of “southwest–northeast.” Based on the standard deviation change situation of
the major and minor axes of the ellipse, this study was divided into four periods, which
were 2000–2005, 2005–2010, 2010–2015, and 2015–2020. Specifically, from 2000 to 2005, the
standard deviation of the major and minor axes of the ellipse increased, and regions with
high ECEI values moved along the major axis and toward the northeast of Zhaotong city.
At the same time, these regions spread toward the minor axis. From 2005 to 2010, the
standard deviation of the major and minor axes of the ellipse indicated that the spatial
aggregation situation of the ECEI moved toward the gravity center of the ellipse with
the coordinate point changing from (386983.50, 3045862.44) to (381051.81, 3041515.11). In
general, compared with the previous period, in this period, the changes in southwestern
regions’ EEQ played an important role. From 2010 to 2015, standard deviation increments
of the major and minor axes of the ellipse were small, and the SDE spatial distribution over
two years was similar, indicating that the spatial distribution of EEQ was stable. From
2015 to 2020, standard deviation increments of the major and minor axes of the ellipse
were accelerated. Compared with the first period, the transport and expansion intensity
were stronger, indicating that the changes in the northeastern regions’ EEQ played an
enhanced driving effect. In addition, in this period, the gravity center was located in the
northeast corner of Zhaoyang district. In general, from 2000 to 2020, the standard deviation
of the major axis of the ellipse moved toward the northeast of Zhaotong city with θ of SDE
changing from 57.06◦ to 62.90◦, indicating the improvement of northeastern regions’ EEQ.

3.3. Change Trend of ECEI Based on the Trend Analysis Method

Figure 8 shows the spatial distribution of the ECEI changing trend in Zhaotong from
2000 to 2020.
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According to Figure 8, the change trend value ranged from −0.24 to 0.24. Change
trend values of most regions were close to 0, indicating that the EEQ of those regions did
not show a noticeable improvement or decrease. Regions with low change trend values
were mainly distributed in the center of Zhaoyang district. These regions primarily
comprised artificial surfaces with intense human activities. To further understand these
changes, the center regions of Zhaoyang district were enlarged (b). In Figure 8b, regions
with the red color displayed an obvious eco-environmental deterioration. Combined with
Figure 8c,d, these regions belonged to urban-expanded areas. In 2021, the urbanization
rate of Zhaotong city reached 40.50%, and the build-up area of Zhaoyang district was
62 km2. Other areas with low change trend values presented a scattered distribution.
Regions with high change trend values also displayed a scattered distribution. Generally,
in the past 20 years, with the increase in urbanization levels, especially the increase
in artificial surfaces, the EEQ of the center of Zhaoyang district displayed an evident
decrease trend. However, the EEQ’s change trend in most regions of Zhaotong city
remained stable, with the change trend value close to 0. Other regions with high or low
change trend values showed a scattered distribution.

4. Discussion
4.1. Analysis of ECEI’s SPCA Results

Based on the aforementioned analysis, each ECEI season’s SPCA results were analyzed.
Among them, the eigenvalue and percentage of PC1 are shown in Table 5.
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Table 5. Each ECEI season’s SPCA results.

Year Season Eigenvalue of PC1 Percentage of PC1/%

2000
Spring–Summer 0.0303 73.40
Autumn–Winter 0.0292 80.24

2005
Spring–Summer 0.0325 69.94
Autumn–Winter 0.0298 73.72

2010

Spring 0.0312 72.16
Summer 0.0302 70.92
Autumn 0.0303 65.83
Winter 0.0325 69.94

2015

Spring 0.0321 81.47
Summer 0.0290 86.93
Autumn 0.0297 85.43
Winter 0.0308 78.53

2020

Spring 0.0352 77.91
Summer 0.0306 80.04
Autumn 0.0301 82.77
Winter 0.0313 79.18

According to Table 5, in 2000 and 2005, due to the lack of cloudy-free images, only
two seasons were taken into consideration. The eigenvalue represented the information
aggregated by the SPCA method. A higher eigenvalue aggregated more information.
However, there was no comparison between two or more periods. For example, for the
spring–summer season in 2000, the eigenvalue of PC1 was the highest compared with PC2
to PC5. Specifically, for the three remaining periods, four seasons’ cloudy-free images were
all available. Specifically, in 2000, the two seasons’ eigenvalues of PC1 were 0.0303 and
0.0292, with PC1 percentages of 73.40% and 80.24%. In 2005, the two seasons’ eigenvalues of
PC1 were 0.0325 and 0.0298, with the PC1 percentages of 69.94% and 73.72%. In 2010, four
seasons’ eigenvalues of PC1 were 0.0312, 0.0302, 0.0303, and 0.0325, with PC1 percentages
of 72.16%, 70.92, 65.83%, and 69.94%. In 2015, four seasons’ eigenvalues of PC1 were 0.0321,
0.0290, 0.0297, and 0.0308, with percentages of 81.47%, 86.93%, 85.43%, and 78.53%. In the
year 2020, the eigenvalues of different seasons were 0.0352, 0.0306, 0.0301, and 0.0313, and
percentages of PC1 in four seasons were 77.91%, 80.04%, 82.77%, and 79.18%. Generally,
the percentages of PC1 were all higher than 65%, with an average percentage value of
76.77%. These results were consistent with the existing RSEI studies. In these studies, even
the results of the contribution of PC1 varied. Typically, the contribution was higher than
60% [70,71]. Therefore, based on Table 5, the first component of the SPCA could aggregate
the most information of the five indicators, demonstrating the first component’s ability to
influence the regional EEQ’s assessment.

4.2. Validation of ECEI by Comparing with EI

To further validate the effectiveness of the ECEI, the EI was adopted to compare with
the ECEI. According to the aforementioned calculation steps, the results of the EI in 2010,
2015, and 2020 were calculated considering the data accessibility. Figure 9 shows the eight
sub-indexes calculation results of BI in 2020.

Based on Figure 9, different sub-indexes showed noticeable differences. For WNDI,
southern and northwestern Zhaotong had high WNDI values while central regions had low
WNDI values, indicating that those regions’ water networks were relatively low. Areas with
low HQI values were mainly distributed in Zhaoyang district as those regions had intense
human activities. However, the HQI value in northern Zhaotong was relatively high. This
is mainly because of those regions’ high vegetation coverage. The spatial distribution of
the EVI further validated that areas with high vegetation index are mainly distributed in
northern Zhaotong. For SPLIT, regions with high SPLIT values were primarily distributed
in southwestern and western parts, indicating that landscape segmentation degrees of these
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regions were high. However, at the center of Zhaoyang district, the landscape segmentation
degree was low. Combined with CONTAG and SIDI, those regions had contiguous artificial
surfaces, which further proved that regions with intense human activities usually had low
ecosystem and landscape diversity [72,73].
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Figure 10 shows the spatial distribution map with the average EI value of Zhaotong
city during three periods.
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Based on Figure 10, the spatial distribution situation of the average EI during the three
periods was similar. Specifically, the average EI values of northern Zhaotong were high,
especially in Yanjin and Suijiang counties. However, Zhaoyang district and Ludian county
had low average EI values. From the perspective of spatiality, average EI values presented
the pattern of high values in the north and low values in the south. From the standpoint of
the highest–lowest value, from 2010 to 2020, the lowest values were 60.08, 60.85, and 60.49,
respectively, while the highest values were 71.85, 72.15, and 74.57. Generally, the lowest
value showed a fluctuating upward trend, with the value increasing by 0.69%. The highest
value showed an increasing upward trend with the value increased by 3.78%. These results
indicated that the EEQ of Zhaotong improved from 2010 to 2020, which was consistent with
the results of the ECEI. In addition, based on the technique criteria, all years’ highest and
lowest EI values were higher than 55, indicating that all regions of Zhaotong city qualified
for good grades.

To further validate the accuracy of the ECEI, average ECEI and RSEI values of the
same three periods were calculated to draw the scatter diagram and establish the fitting
curve (Figure 11).
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Based on Figure 11, the coefficients of determination (R2) between the EI and ECEI
were 0.95 (2010), 0.88 (2015), and 0.89 (2020), with an average R2 of 0.90. As for the R2

between the EI and RSEI, the values of the three periods were 0.31 (2010), 0.92 (2015), and
0.82 (2020), with an average value of 0.69. It could be found that the average R2 value
between the EI and ECEI was higher than that of the EI and RSEI, indicating that the ECEI
could provide more accurate and scientific EEQ results when considering land surface and
season differences. In addition, the R2 of the ECEI was more stable than the RSEI with the
value ranging from 0.88 to 0.95, while the R2 of the RSEI went from 0.31 to 0.92. In addition,
the R2 of considering all values of the three periods further validated the accuracy of the
ECEI with the value of 0.84, which was higher than that of the RSEI (R2 = 0.56). Generally,
after considering land surface and season differences, the evaluation of the EEQ in typical
cloudy regions was more accurate and scientific compared with the RSEI.



Remote Sens. 2023, 15, 657 17 of 22

4.3. Implications, Limitations, and Further Study

To evaluate the EEQ of cloudy regions, land surface and season differences were
considered to construct a new index-ECEI to assess Zhaotong’s EEQ from 2000 to 2020
accurately and scientifically. Then, the ECEI and RSEI results were compared to validate the
effectiveness of the ECEI. Based on the aforementioned analysis, Zhaotong’s EEQ showed
a fluctuating upward trend in the past 20 years, with the value increasing from 0.729 to
0.730. From 2000 to 2005, ECEI’s value decreased from 0.729 to 0.693. In this period, due
to the rapid population growth and low economic development level, people decided to
get more food by destroying forests, cutting trees, and abandoning grazing, thus causing
serious water and soil loss and forest coverage loss [72]. From 2002 to 2004, the area of
water and soil loss in Zhaotong city increased from 11307.93 km2 to 13362.49 km2 [72,73].
From 2005 to 2020, with the implementation of a series policies, including the “Returning
Farmland to Forest (grass) Project”, the forest coverage rate increased from 32.60% in 2011
to 47.80% in 2021. As a result, northern counties had a higher forest coverage rate compared
with southern counties. Specifically, Suijiang county’s forest coverage rate reached 71.99%
in 2021. In addition, Yanjin, Daguan, Yongshan, and Suijiang counties were listed in the
National Key Ecological Function Areas, implemented by the Chinese government since
2007. The number of nature reserves at all levels increased from 8 in 2011 to 23 in 2021, with
the area increasing to 1656.00 km2. The controlled area of rocky desertification reached
1180 km2. Moreover, the wastewater treatment rate and garbage harmless treatment rate
increased from 41.80% and 45.80% to 98.40% and 100.00%, respectively. Generally, the
spatial distribution of the EEQ displayed a pattern of high values in the north and low
values in the south, which was consistent with the vegetation coverage situation. Based
on the statistical yearbook of Zhaotong, at the end of 2021, the forest coverage rate of
Suijiang county was the highest, with a value of 71.99%. Except for Suijiang county and
other northern counties in Zhaotong city, forest coverage rates of Yanjin county and Shuifu
county were 64.62% and 66.5%. However, the Zhaoyang district’s forest coverage rate
was only 38.67%. These results indicated the accuracy of ECEI evaluation results. In
addition, the EEQ value of Zhaoyang district was the lowest due to its intense human
activities. Existing studies found that human activities could exert a significant influence
on the regional EEQ [74,75]. In the future, regions with intense human activities, such
as Zhaoyang district, should seek coordinated development between the economy and
eco-environment [23].

This paper established the ECEI and evaluated the EEQ of Zhaotong in the past
20 years. Compared with the RSEI, the ECEI results were more accurate and stable. How-
ever, this paper still had some limitations. On the one hand, the regional eco-environment
belongs to a compound system, including society, economy, and nature [23]. The RSEI
only considers four main aspects of the eco-environment. In this study, land surface and
season differences were taken into consideration. However, some components, such as
air and soil environments, should also be taken into account in the evaluation model.
Hence, in further studies, relevant air and soil indicators should be carefully selected to
establish a more comprehensive index. On the other hand, for cloudy regions, although
the adjacent year was also used to select the satisfying images, this study found that some
places did not have any satisfying images. Hence, in further studies, image fusion and
image construction from multi-satellites may provide helpful ways to evaluate the regional
EEQ thoroughly. Generally, despite these shortcomings, this study still provided a new
framework for assessing cloudy regions’ EEQ more accurately and scientifically.

5. Conclusions

Based on multi-source datasets, this study constructed a new eco-environmental
comprehensive evaluation index (ECEI) by considering land surface and season dif-
ferences to evaluate Zhaotong’s EEQ in the past 20 years. Five aspects, such as the
biological abundance index (BAI), vegetation cover index (VCI), water network density
index (WNDI), land stress index (LSI), and pollution load index (PLI), were also cal-
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culated to acquire the ecological index (EI) of Zhaotong at the county level from 2010
to 2020. Finally, spatiotemporal characteristics, standard deviation ellipse (SDE), and
trend analysis of Zhaotong’s EEQ at different periods were analyzed. In addition, scatter
diagrams of EI–ECEI and EI–RSEI were explored. The main conclusions were as follows:
(1) The EEQ of Zhaotong showed a fluctuating upwards trend (0.0058 a−1), with average
ECEI values of 0.729, 0.693, 0.722, 0.749, and 0.730. Since 2005, a series of policies, includ-
ing the “Returning Farmland to Forest (grass) Project”, were implemented to improve
Zhaotong’s EEQ. (2) The spatial distribution pattern of EEQ showed high values in the
north and low values in the south, which was consistent with the actual forest coverage
rate distribution. For example, Suijiang county had a forest coverage rate of 71.99% in
2021. Zhaoyang district had the lowest ECEI value, which was mainly caused by urban
sprawl and intense human activities. (3) From 2000 to 2020, the standard deviation of
the major axis of the ellipse moved northeast of Zhaotong city with θ of SDE changing
from 57.06◦ to 62.90◦, indicating the improvement of northeastern regions’ EEQ; this
was related to the increase of National Key Ecological Function Area and nature reserves
numbers in northern counties. (4) The coefficients of the determinant (R2) between the
EI and ECEI were 0.84, which was higher than that of EI–RSEI (R2 = 0.56). Generally,
the ECEI could provide more accurate spatial EEQ evaluation results compared with
the RSEI, which could contribute to the regional eco-environmental management, as the
spatial pattern of the regional EEQ could be quickly obtained and actual measures could
improve the regional EEQ with low ECEI values.
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Abbreviations

AI Abundance index An index for describing regional biological abundance
BI Biodiversity index An index for describing regional biodiversity

ECEI
Eco-environmental comprehensive An index for evaluating regional comprehensive
evaluation index eco-environmental quality

EEQ Eco-environmental quality A measure of regional eco-environmental quality
EI Ecological index An index for describing ecological quality
GEE Google Earth Engine A cloud platform for processing massive data
HQI Habitat quality index An index for describing regional habitat quality
LSI Land stress index An index for describing regional land stress
LST Land surface temperature An index for describing regional eco-environmental heat
NDBSI Normalized difference build-up and soil index An index for describing regional eco-environmental dryness
NDVI Normalized difference vegetation index An index for describing regional eco-environmental greenness
RSEI Remote sensing ecological index An index for describing eco-environmental quality
SDE Standard deviation ellipse An ellipse for measuring the standard deviation of data
SPCA Spatial principal component analysis A multivariate statistical analysis method
WET Wetness An index for describing regional eco-environmental wetness
WNDI Water network density index An index for describing regional water network density
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