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Abstract: Satellite-based precipitation (SP) data are gaining scientific interest due to their advantage
in producing high-resolution products with quasi-global coverage. However, since the major reliance
of precipitation data is on the distinctive geographical features of each location, they remain at a
considerable distance from station-based data. This paper examines the effectiveness of a convolu-
tional autoencoder (CAE) architecture in pixel-by-pixel bias correction of SP products for the Mekong
River Basin (MRB). Two satellite-based products (TRMM and PERSIANN-CDR) and a gauge-based
product (APHRODITE) are gridded rainfall products mined in this experiment. According to the
estimated statistical criteria, the CAE model was effective in reducing the gap between SP products
and benchmark data both in terms of spatial and temporal correlations. The two corrected SP prod-
ucts (CAE_TRMM and CAE_CDR) performed competitively, with CAE TRMM appearing to have a
slight advantage over CAE CDR, however, the difference was minor. This study’s findings proved
the effectiveness of deep learning-based models (here CAE) for bias correction of SP products. We
believe that this technique will be a feasible alternative for delivering an up-to-current and reliable
dataset for MRB studies, given that the sole available gauge-based dataset for this area has been out
of date for a long time.

Keywords: APHRODITE; Mekong River basin;, PERSIANN-CDR; precipitation bias correction;
satellite precipitation; TRMM

1. Introduction

Precipitation, a fundamental element of the hydrological processes, aids us in com-
prehending the relationships between hydrological and climatic systems. Rainfall data
monitoring is critical for managing water resources and projecting extreme hydro-climate
occurrences, such as droughts and floods [1]. The ground-based precipitation stations
are one of the most commonly utilized data sources due to the reliability and historical
number of observations they can provide. The fact that these data sources only cover
the region immediately surrounding the measuring device’s position, however, is a fun-
damental restriction of these data sources [2,3]. Additionally, the uneven distribution of
rain gauges throughout regions, particularly in mountainous areas, can lead to bias in
the mapping of the regional distributions of precipitation [4]. In contrast, SP estimates
and subsequent reanalysis are promising as trustworthy data sources for describing the
geographical distribution of precipitation since they can provide high-resolution and wide
coverage outputs.

Several gridded SP products with a quasi-global coverage include Global Satellite
Mapping of Precipitation (GSMaP) [5], Climate Prediction Center morphing technique
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(CMORPH) [6], Precipitation Estimation from Remotely Sensed Information using Arti-
ficial Neural Networks-Climate Data Record (PERSIANN-CDR) [7], or Tropical Rainfall
Measuring Mission (TRMM) [8]. The fundamental distinction between SP products is the
employment of different data extraction techniques as well as the variety of satellite sensor
measurement equipment [9]. This causes uncertainty in the gridded precipitation (GP)
products because they may contain faults due to random and systematic errors [10]. As
a result, re-analysis of SP data by area is essential before these data may be exploited for
further studies, such as drought or hydrological models.

Numerous solutions have been developed to minimize the bias of SP products in order
to improve their quality. Several prominent approaches include regression analysis [11],
quantile mapping [12,13], power transformation [14,15], and linear scaling [16]. In essence,
these approaches rely mostly on the distribution network of rain gauge stations, which may
be unequal in some places, such as mountainous areas. In certain cases where it is difficult
to access the ground-based gauges database or to synchronize updated data, these methods
can be error-prone in correcting SP products. In addition, most bias correction methods
depend on the update of gauge-based data [17]. This means that in some cases when the
gauge-based data series is not continuous for certain reasons such as equipment failure
or the project running out of funding, the traditional methods fail to generate a corrected
dataset. Moreover, traditional bias correction methods rely on empirical relationships
or mathematical models to adjust the biases present in SP data. These methods have
limitations in terms of the accuracy of the correction, especially when dealing with large
variations in precipitation across different geographical regions.

Deep neural network models have recently proved their advantage in capturing
non-linear relationships of data [18]. There have been a few studies demonstrating the
capacity of deep learning-based techniques to correct the bias of SP products. For example,
Yang et al. [19] applied an LSTM model (long short-term memory) to rectify the IMERG
product, Tao et al. [20] established a stacked denoising autoencoder model to adjust the
PERSIANN-CCS product, and Le et al. [3] introduced a CNN model (convolutional neural
network) to minimize the SP data bias. However, these methods have yet to see broad
acceptance in the domain of bias reduction of SP products, particularly ones using CNNs.

In this work, we examined the efficiency of the convolutional autoencoder (CAE)
architecture, an upgraded variant of the CNN model, in bias correction of SP products for
the MRB. It is one of the world’s biggest watersheds, located in Asia, and spans the territory
of six developing nations. Despite being one of the most important watersheds in the world
(with an impact on more than 60 million people) [21], little has been studied to date to
reduce the bias of SP products for MRB. This might be because access to ground-based
rainfall data sources, as well as the capacity to create an up-to-date dataset for the whole
basin, remains a substantial barrier [3]. The most widely utilized reference data source for
MRB studies these days is APHRODITE (Asian Precipitation-Integrating High-Resolution
Observational Data towards Water Resources Assessment) [22-24]. This is the result of
an international collaboration between Japan and Asian countries to produce a gridded
observation rainfall dataset for the whole Asia area [25]. This project, however, was completed
in 2015, hence the APHRODITE rainfall product has not been updated since 2016.

The CAE model is introduced as a novel approach to this challenge, with the objective
of producing a modified product that is more up-to-date than APHRODITE. We picked
two SP products, PERSTANN-CDR and TRMM, with the same spatial resolution of 0.25° to
assess the efficacy of the CAE model in adjustment. The model can capture the complex
patterns and relationships between the SP data and the benchmark data, making it more
effective in reducing the gap between the two datasets. Additionally, unlike traditional
methods, the CAE model is able to learn from the data and make adjustments accordingly.
This approach makes the CAE model more adaptable to different regions and different
types of SP data, hence making it a powerful and flexible tool for bias correction in the
MRB and other regions.
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The remaining article is organized as: Section 2 describes the theoretical background
of the methodology as well as the availability of various forms of GP data, such as satellite-
based and gauge-based data. Section 3 presents the process of modeling, specifying hyper-
parameters in particular. The efficiency of GP products before and after bias adjustment is
presented and analyzed in Section 4. Section 5 summarizes the research, highlighting the
key findings.

2. Materials and Method
2.1. CAE Model

The proposed CAE model is a combination of two architectural paradigms, including
CNN and Encoder-Decoder (ED) architecture, which belongs to the category of supervised
learning under the classification of deep learning. CNNSs are a particular sort of neural
network and are designed toward working and processing efficiently with two-dimensional
data such as image data [26,27]. Theoretically, the information encoding and processing in
CNN is implemented through mathematical transformations of the convolutional, pooling,
and fully connected layers (in certain cases). For complex tasks that require a substantial
computational operation, the architecture of CNN can be a flexible stacking of various
layers [28] or can also be flexibly combined with other types of architecture such as encoder-
decoder [29] or LSTM [30,31].

In this study, we have exploited the advantage of ED architecture in combination with
CNN to perform a correction problem of SP products where both input and output are in
the same format as two-dimensional data. The proposed CAE architecture is inspired by
the study of Le et al. [3]. In which, the input information from the GP data is compressed
and encoded through the weight layers by the mathematical operations of convolutions
and poolings. The decoding process is performed in the opposite direction of the encoding
stage, where the previous compressed information is then decoded and reconstructed till
the desired size is obtained. Figure 1 depicts a simplified representation of the CAE'’s basic
structure. At any given time step, both input and output data are daily GP data information
with a resolution of 0.25°, corresponding to images of size 100 x 60 pixels.

Encoder Decoder
Process Process

Input Compressed Reconstructed

Figure 1. Illustrated diagram of CAE network architecture.

2.2. Study Area

The MRB is a large and complex region that spans six countries in Southeast Asia,
including Laos, Thailand, Vietham, Cambodia, Myanmar, and China. The area is char-
acterized by a tropical monsoon climate, with a distinct wet and dry season. The rainy
season is typically from May to November and is characterized by heavy rainfall and high
humidity, with an average of about 2000 mm/year [32]. The rainfall is mainly caused by
the monsoon winds, which blow from the southwest and bring with them moisture from
the Indian Ocean [21]. During this time of the year, the basin experiences frequent heavy
rainfall, flooding, and landslides. The dry season runs from November to April, and during
this time the monsoon wind shifts to blow from the north-east and the basin receives less
rainfall, usually lower than 100 mm/year. The dry season is characterized by low humidity
and little to no precipitation, which leads to water scarcity and drought in some areas. The
annual mean temperature in this area is around 27 °C, with little variation throughout the
year. Temperature extremes are rare, with temperatures reaching the upper 30 s only in
exceptional cases [33]. The temperature variations in the MRB are not as significant as the
precipitation variations.
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Moreover, MRB is known for its high levels of precipitation variability, with large dif-
ferences between the wet and dry seasons and within the wet season as well. The variation
in precipitation is caused by the region’s complicated geography, the basin is located in a
transition zone between the Himalayas and the sea and the specific location of the monsoon
wind system [34]. This basin is rich in biodiversity, and many habitats including forests,
wetlands, and wetlands are influenced by the seasonal floods and droughts that are caused
by the monsoon winds. Climate variations in the MRB have a direct effect on the livelihoods
of the people living in the region, and an understanding of the climate characteristics of
this region is essential for planning and managing the basin’s water resources. The location

of the MRB is presented in Figure 2.
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2.3. Gridded Precipitation (GP) Products
2.3.1. Satellite-Based Precipitation (SP) Data

Two SP products used for bias correction in this work are PERSTANN-CDR (short
name CDR) and TRMM. Both of these data sources have the same grid of 0.25° x 0.25°
and global coverage of 60°S-N for CDR [7] and 50°S-N for TRMM [8], respectively. CDR is
one of the SP products of the PERSIANN family. It was generated with the aim of serving
research on assessing trends in daily precipitation changes as well as extreme rainfall events
due to climate change [35]. CDR product is computed using the rate of precipitation at
each grid cell of 0.25° x 0.25° given by geostationary satellites and the infrared brightness
temperature picture. The dataset is then adjusted by the monthly precipitation data that
is available from GPCP (Global Precipitation Climatology Project). CDR delivers data
from January 1983 to the date with a three to six-month delay [36] and can be accessible at
ftp:/ /persiann.eng.uci.edu/.

The TRMM product is generated for the quantitative measurement of rainfall in
tropical and subtropical regions of the world. Data are produced by integrating rainfall
estimations from multiple sources, including microwave data of low earth orbit satellites,
infrared image data, and rainfall-gauge analysis from GPCP [8]. Precipitation informa-
tion with a 3 h or daily temporal scale can be provided from the project for temporal
coverage from 1998 to 2020. The effectiveness and importance of the two SP products
mentioned above have been demonstrated in a myriad of meteorological, climatological,
and hydrological studies [37-40], as well as in studies on the Mekong River basin [41].

2.3.2. Gauge-Based Precipitation Data

With respect to reference precipitation data, the APHRODITE rainfall product was
used as observed data to correct for biases of SP products. This is an international collabo-
rative initiative led by the Meteorological Agency of Japan with the aim of generating a
daily GP product for the whole of Asia based on rainfall data gathered and analyzed from
large numbers of ground-based stations across Asia. The APHRODITE project, according
to Yatagai et al. [42], provides the output of a gridded rainfall dataset with a resolution of
0.25° for the whole of Asia during the period from 1951 to 2015 with three main regions:
Russia, the Middle East, and Monsoon Asia. When it comes to Japan, this project can
provide GP data with a high resolution of 0.05°, corresponding to a grid cell with a size of
approximately 5 km x 5 km [43]. Therefore, this data has been utilized as the observation
data in a variety of studies implemented for river basins in Asia as a whole [17,44], as well
as, for the MRB [45,46]. For this study, we exploited the latest version of the APHRODITE
(version V1901) for the domain of Monsoon Asia, which provided the available gridded
daily precipitation product with a resolution of 0.25° between 1998 and 2015.

3. Model Processes

Because of the properties of GP products, the input data (those known as CDR and
TRMM) and the referenced data (APHRODITE) of the CAE model are treated as single-
band images. In terms of the data structure, the data volume has sizes of 100 x 60 x 1,
corresponding to the 3D of width, height, and depth, respectively. The model is a flexible
hybrid of two architectures, CNN and encoder-decoder. Figure 3 depicts the architectural
information of the CAE.

Basically, two types of block processing units have been identified and developed corre-
sponding to the two operating processes of the CAE model, the encoding and the decoding
processes [47]. Each of these processing unit blocks is defined as a group of convolution and
pooling operations, where these layers can be arranged in a certain sequence. During the
encoder phase, important information from the input data will be extracted and stored in
the weight layers of the model through the operation of processing blocks [48]. Where, the
processing unit block is an arranged stack of two convolution layers, which is then followed by
a pooling layer (here, the MaxPooling) [49]. In contrast to the information encoder process, the
processing unit block in the decoder phase is the sequential arrangement of an UpSampling
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layer and two subsequent convolution layers. With such a configuration, the paradigm archi-
tecture becomes larger and deeper [50], however, this allows for the CAE model to accurately
represent the complex spatial properties of the data.

Figure 3. The architectural paradigm of the CAE model.

With respect to the convolution layer, the filter parameters perform convolutional
operations on the original image to generate feature maps. The depth of the feature map
(number of channels) is determined by the number of filters used [51]. In this research, the
number of filters in convolution layers is recommended as a power of 2, which is started
with 32, 64, and increases to 256 in the deepest layer. In addition, the spatial dimension of
each filter is 3 x 3 uniformly applied in the convolutional layer of this research. For pooling
layers, a pooling operation is performed in the computational unit blocks of the encoder
stage with a pool size of 2 x 2 aiming to halve the dimensions of the feature map (height
and width) [52]. In the decoder phase, the stored information will be decompressed and
scaled up until the desired spatial dimension is obtained via the mathematical operations
of the UpSampling layers in computational blocks.

Selecting the optimal set of hyperparameters for deep learning models can be a
challenging task, as there is no standard approach for determining the best values [53,54].
In this study, the selection of hyperparameters was based on a combination of theoretical
knowledge and experimental evaluation. Regarding the loss function, the mean squared
error is selected as is commonly utilized in autoencoder models and it proved to be superior
when compared with other loss functions such as MAE or MAPE. For the optimizer, the
Adam [55] is selected as it is a robust optimizer that adjusts the learning rate adaptively
during training [56], and is known to have higher performance and stability in problems
related to hydrology when compared to other algorithms such as SGD, RMSprop [28].
The learning rate was set to the recommended value of 0.001, which goes with the Adam
algorithm. In order to determine the appropriate batch size for our model, we first carried
out a number of tests using a range of various values. After doing so, we discovered that
using a batch size of 32 produced the best results. The CAE model was configured with
a maximum number of epochs of 10,000; however, we used machine learning techniques
such as model checkpoint or early stopping to terminate the training if the validation
dataset’s loss function did not reduce after 500 consecutive calculations. This allowed us to
find the global extreme early and avoid unnecessary computation, enhancing the learning
efficiency of the deep learning model and avoiding over-fitting problems [57].

In this study, the GP products available over an 18-year period, from 1998 to 2015,
were utilized for different purposes. During the training and validation processes, the CAE
model mines 16-year time series data for the period 1998-2013. Where, 14-year data are fed
for the training process, and the remaining two years (2012 and 2013) are for the purpose of
tuning parameters and validating model performance. Finally, an independent dataset of
2 years (period of 2014-2015) that has been unseen before is applied to quantify how well
the chosen model performs.
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4. Results and Discussion
4.1. Evaluation of Temporal Correlation

To assess the CAE model’s effectiveness in terms of temporal correlation, an overview
comparison between corrected and observed rainfall products was investigated. Here, we
are interested in evaluating these rainfall products on a monthly scale and annual scale
across the MRB. For bias-corrected datasets, the monthly and annual precipitation data
of each pixel were grouped based on the corrected daily data from the proposed model.
Then, an average value that represents the total precipitation throughout the whole basin
for each scale was estimated. The comparison results are visualized in Figure 4, and the
quantitative correlation information is depicted in Tables 1 and 2.
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Figure 4. Correlation of average monthly rainfall of data sources for the whole MRB.

Table 1. Annual rainfall of data sources for the whole MRB.

Purpose CDR TRMM APHRODITE CAE_CDR CAE_TRMM
P (mm/Year) (mm/Year) (mm/Year) (mm/Year) (mm/Year)
Testin 1661 1540 1086 1125 1121
& 1498 1402 1050 1095 1058
Average precipitation 1579 1471 1068 1110 1090

Table 2. Comparative correlation of average monthly rainfall between the precipitation products and
APHRODITE data.

. . MAD RMSD
Compared with APHRODITE Period (mm/Month) (mm/Month) NSE
CDR Jan 2014-Dec 2015 43.2 54.1 0.61
TRMM Jan 2014-Dec 2015 34.0 45.6 0.74
CAE_CDR Jan 2014-Dec 2015 12.4 19.0 0.97
CAE_TRMM Jan 2014-Dec 2015 8.7 12.7 0.99

In general, the information presented in Table 1 reveals a well-recognized tendency
that both SP products are overestimated relative to the APHRODITE dataset (or reference
data). The mean annual precipitation for these two products during the testing period was
157 mm and 1471 mm for CDR and TRMM, respectively, while the corresponding figure
for the observed data was only 1068 mm. Although CDR and TRMM provide relatively
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good monthly precipitation correlations with NSE values in the range of 0.6-0.74, the bias
of these products is undeniable by the RMSD values (root-mean-square deviation) and are
recorded in Table 2 up to 55 mm and 45.6 mm, respectively. These biases are more clearly
witnessed during the rainy season in Figure 4, especially in July and August, when these
disparities can be up to approximately 100 mm.

On the other hand, the two GP datasets adjusted by the CAE exhibit substantial agree-
ment with the reference data because the difference in mean yearly rainfall of these two
datasets is only about 2040 mm. The superiority of two bias-adjusted GP products (here,
CAE_CDR and CAE_TRMM) is more obviously expressed in Figure 4 and Table 2, where
monthly scale precipitation is of interest. Compared with SP data, two corrected product
exhibits a higher temporal correlation as well as significantly lower errors. The NSE correlation
coefficient is up to 0.97 with CAE_CDR and 0.99 with CAE_TRMM, while the values of mean
absolute deviation (MAD) of these two datasets are 12.4 mm and 8.7 mm, respectively.

4.2. Evaluation of Spatial Correlation

In addition to the quantitative comparison of rainfall products over various time scales,
their spatial variation under different scales was also taken into account. The measurement
criteria used to estimate the pixel-by-pixel difference between rainfall data sources (both
satellite-based and corrected precipitation) and observed data include RMSD, MAD, Bias
index, and spatial correlation index. The pixel-by-pixel annual precipitation distribution is
illustrated in Figures 5-11, and the spatial pattern variation between the GP products is
quantified in Tables 3 and 4.
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Figure 5. Spatial rainfall distribution of products over the MRB in 2014.
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Figure 6. Spatial rainfall distribution of products over the MRB in 2015.
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Figure 7. Taylor diagram presents quantitative information of three statistical indicators of rainfall
products compared with reference data—APHRODITE product.
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Figure 11. Spatial rainfall distribution of products over the MRB in the wet season of 2015.

Table 3. Quantitative assessment of annual precipitation spatial correlation of products.

. RMSD MAD Bias . .

Year = Compared with APHRODITE (mm/Year) (mm/Year) (mm/Year) Spatial Correlation
CDR 690 582 574 0.61
2014 TRMM 594 461 453 0.74
CAE_CDR 174 134 39 091
CAE_TRMM 177 137 35 091
CDR 561 480 448 0.63
2015 TRMM 450 366 352 0.81
CAE_CDR 236 186 46 0.84
CAE_TRMM 210 166 8 0.86

As can be clearly seen in Figures 5 and 6, the spatial trend of annual rainfall distribution
over the MRB is different among the GP products. Both SP products (CDR and TRMM)
exhibited a trend that is overestimated relative to the reference data (see Figures a,b). The
respective bias values (which are positive values) for these two datasets in 2014 are 574 mm
and 453 mm, and those figures for 2015 are 448 mm and 352 mm, respectively.

For APHRODITE data, annual precipitation in the MRB has a large range of 500-2250 mm
and is unevenly distributed among regions. While the upper Mekong (most of its territory is
in China) receives an average annual rainfall of 500-1000 mm, the observed precipitation for
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the lower Mekong River broadly ranges from just under 1500 to well above 2250 mm. Several
typical areas where dramatic higher rainfall (>2250 mm) was recorded are the north-central
region of Laos, the eastern hilly area of Laos (the part contiguous to Vietnam), or the Ca Mau
cape of Vietnam.

Table 4. Quantitative assessment of seasonal precipitation spatial correlation of products.

. RMSD MAD Bias . .

Year Season Compared with APHRODITE (mm/Year) (mm/Year) (mm/Year) Spatial Correlation
CDR 115 156 104 0.70
Dr TRMM 65 100 58 0.78
y CAE_CDR 40 52 —7 0.86
- CAE_TRMM 39 48 14 0.89
CDR 488 574 474 0.60
W TRMM 406 520 400 0.78
et CAE_CDR 122 154 45 0.93
CAE_TRMM 113 151 2 0.92
CDR 108 128 81 0.67
- TRMM 75 97 61 0.82
y CAE_CDR 60 80 —27 0.79
2015 CAE_TRMM 49 62 15 0.88
CDR 396 458 370 0.62
W TRMM 304 378 296 0.82
et CAE_CDR 149 193 74 0.85
CAE_TRMM 129 170 23 0.87

Regarding the two GP products that were bias-corrected from the CAE model, the
two-year annual rainfall spatial distribution patterns in the test period indicated significant
similarity with the observed data. With the same color scale selected, both CAE_CDR
and CAE_TRMM excellently represent the spatial variation in the precipitation distribu-
tion of the Mekong basin compared with observed data—APHRODITE, including the
changing trend of annual rainfall for the upper and lower Mekong basin. As we can
see in Figures 5 and 6, the estimated precipitation per pixel with these products ranges
between 500 and 1000 mm for the upper Mekong basin. By contrast, the recorded rainfall
corresponding to the lower Mekong basin varies from roughly 1500 to more than 2500 mm.
Quantitative assessments of the spatial variations of the total annual precipitation by pixel
are described in more detail in Table 3 and these statistics are visualized in Figure 7.

From these numbers, it is generally understood that the two bias-corrected products
provided a significantly higher benchmark than the SP products for spatial correlation, bias
index, and error metrics. In 2014, the spatial correlation index of CAE_CDR and CAE_TRMM
compared to the reference data is up to 0.91, and the corresponding error value is about 175 mm
for RMSD and 135 mm for MAD. Meanwhile, for two SP products, the respective measurement
criteria exhibit much lower performance where the spatial correlation is only 0.61 and the
RMSD value of 690 mm for CDR data. Moreover, the bias value that measures the mean
deviation of the pixels across the basin has also described the remarkable effectiveness of the
CAE model since this value is decreased sharply compared to the bias of the products before
being adjusted, the reduction from 453 mm to only 35 mm for the product of CDR_TRMM. The
statistics of yearly precipitation in pixels over the MRB denoted that the standard deviation of
the two corrected rainfall products is approximately 410 mm, close to the standard deviation
of the referenced product with about 390 mm (see Figure 7).

A similar development was witnessed in the year 2015, two bias-corrected precipitation
datasets outperformed the SP products in all of the criteria mentioned in Table 3. In regard
to the CDR data, the spatial correlation coefficient of this rainfall product has improved
from 0.63 to 0.84 for the CAE_CDR product, and the error quantification criteria have
been dropped, respectively, from 561 to 236 mm for RMSD and 480 to 186 mm for MAD.
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Along with the CAE_CDR, the CAE_TRMM precipitation data, which is corrected from
the TRMM by the CAE model also exhibits outstanding advantages. Despite the spatial
correlation of this corrected product being just slightly enhanced by that of the TRMM
product (0.86 vs. 0.81), the improvement in performance can be obviously identified in the
error evaluation criteria remaining as RMSD, MAD, and especially in Bias value. Here, the
bias value or mean deviation of grid cells in the entire MRB is reported as 8 mm, a speedy
decline from the mean bias of 352 mm for the TRMM.

Looking at Table 4 and Figures 8-11, we can see that for the dry season in 2014, the
highest spatial correlation is achieved by the CAE_TRMM product, with a value of 0.89. This
means that there is a significant degree of agreement between the CAE_TRMM product and
the reference data (APHRODITE). In contrast, the lowest spatial correlation is achieved by the
CDR product, with a value of 0.70. This indicates that there is a lower degree of similarity
between the CDR product and APHRODITE. Similarly, for the wet season in 2015, the highest
spatial correlation is achieved by the CAE_TRMM product, with a value of 0.87, while the
lowest spatial correlation is achieved by the CDR product, with a value of 0.62.

In general, the CAE_TRMM and CAE_CDR products tend to have higher spatial
correlation values than the CDR and TRMM products. Additionally, the RMSD and MAD
values are generally lower in CAE_TRMM and CAE_CDR products compared to others;
this means that these products have a lower deviation from the observed data. The bias
values are also often lower in CAE_TRMM and CAE_CDR products compared to others;
this means that these products have a better accuracy compared to others. Assessing the
RMSD, MAD, and bias data reveal that the CAE TRMM and CAE CDR products have the
lowest values, indicating that these products have the best results in terms of deviation,
accuracy, and bias. In addition, the CAE TRMM and CAE CDR products have the highest
spatial correlation values, indicating that these products have the strongest performance in
terms of resemblance to the APHRODITE.

From the qualitative and quantitative comparisons of rainfall datasets, we can confirm
that the bias-adjusted precipitation products present a higher quality than the original SP
products in all of these metrics. Moreover, these results proved the effectiveness of the
proposed CAE model. Despite employing various input data sources (CDR and TRMM),
the bias-corrected rainfall products (CAE_CDR and CAE_TRMM) still exhibit competitively
excellent performance. With regard to the two adjusted products, it seems that CAE_TRMM
is a little higher than CAE_CDR, and this difference was specifically mentioned in 2015.
Even so, both of these products have demonstrated their prominence in capturing the trend
of precipitation distribution and rainfall intensity in terms of spatial and temporal.

5. Conclusions

Although SP products can offer a dataset with global (or near-global) coverage, there
is still a significant disparity in comparison to gauge-based data. To tackle this question,
we have developed a CAE model that may minimize bias and boost the dependability of
SP products. Statistical criteria were utilized to measure the effectiveness of datasets before
and after minimizing the error. The following are several findings of this study.

1. For the SP products studied in this study, TRMM exhibited a more favorable connec-
tion with observational data compared to CDR in most of the evaluation criteria.

2. CAEsucceeded in narrowing the spatiotemporal gap between the SP and APHRODITE
products. The difference in MAD, in particular, has dropped dramatically to just
12.4 mm/month with CDR and 8.7 mm/month with TRMM, equating to a decrease
of 30.8 mm/month and 25.3 mm/month for these two products, respectively. Mean-
while, the temporal correlation of the basin-wide average monthly rainfall of the
corrected products is up to [0.97-0.99].

3. The quantified statistical criteria indicate that both bias-adjusted SP products perform
equally well when compared with observed data. In this regard, CAE_TRMM appears
to have a minor advantage over CAE_CDR, although the difference is insignificant.
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4. Because the APHRODITE product has not been upgraded since 2016, the CAE model
is intended to be the solution for providing a more up-to-date and trustworthy data
set for experiments in the MRB.

The CAE model was effective in addressing the SP bias correction problem; however,
certain limitations must be acknowledged. The outcomes of this study are closely tied to the
source of GP products utilized. In particular, this research used TRMM and PERSIANN-CDR
as SP datasets and APHRODITE as the observed dataset. It is crucial that all of these gridded
daily rainfall datasets have a consistent spatial resolution of 0.25°. Additionally, it is worth
noting that APHRODITE is a product of an international cooperation program and may have
a closer relationship to sources of data offered by governments in the area of relevance.

This study’s findings proved the potential of deep learning-based models (here CAE)
to correct for bias of GP products. We expect that this approach will be a viable option for
large study basins with restricted data availability such as the MRB.
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