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Abstract: Images captured by deep space probes exhibit large-scale variations, irregular overlap,
and remarkable differences in field of view. These issues present considerable challenges for the
registration of multi-view asteroid sensor images. To obtain accurate, dense, and reliable matching
results of homonymous points in asteroid images, this paper proposes a new scale-invariant feature
matching and displacement scalar field-guided optical-flow-tracking method. The method initially
uses scale-invariant feature matching to obtain the geometric correspondence between two images.
Subsequently, scalar fields of coordinate differences in the x and y directions are constructed based
on this correspondence. Next, interim images are generated using the scalar field grid. Finally,
optical-flow tracking is performed based on these interim images. Additionally, to ensure the
reliability of the matching results, this paper introduces three methods for eliminating mismatched
points: bidirectional optical-flow tracking, vector field consensus, and epipolar geometry constraints.
Experimental results demonstrate that the proposed method achieves a 98% matching correctness
rate and a root mean square error of 0.25 pixels. By combining the advantages of feature matching
and optical-flow field methods, this approach achieves image homonymous point matching results
with precision and density. The matching method exhibits robustness and strong applicability for
asteroid images with cross-scale, large displacement, and large rotation angles.

Keywords: asteroid images; optical-flow tracking; reliable matching guidance; scalar field grid

1. Introduction

Asteroid exploration holds considerable importance in studying the origin of the
solar system and predicting asteroid impact events on Earth [1,2]. It is currently a key
direction and research hotspot in deep space exploration, following lunar and Mars mis-
sions [3]. Obtaining high-resolution terrain information on the surface of an asteroid is a
prerequisite for autonomous navigation and safe landing of the probe [4] and crucial for
asteroid exploration missions [5]. Accurate and high-density image matching results are
prerequisites for generating 3D shapes with high geometric accuracy and model refinement
in asteroid exploration missions [6,7]. However, due to the limited texture of the asteroid
and the limited presence of topographical features [8], along with the weak gravity of the
asteroid, the images acquired by the probe exhibited huge differences in shooting angle
and resolution. These characteristics of asteroid images pose considerable challenges for
the dense matching of multi-view images [4].

To obtain homonymous points in multiple images with large-scale changes, scale-
invariant feature-matching methods, such as SIFT [9] and SURF [10], have been proven
to be reliable, and they are often used in asteroid shape reconstruction. Cui et al. [11]
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used the PCA-SIFT [12] algorithm to match feature points in sequential images taken
during the Eros flyby phase, successfully achieving feature tracking in situations with the
image field of view changes. In the process of 3D reconstruction of Vesta using sequence
images, Lan et al. [13] obtained reliable homonymous points based on SIFT matching and
combined them with methods such as sparse bundle adjustment to obtain accurate position
and attitude parameters of sequence images. Liu et al. [14] used SIFT matching in the
structure from motion method to ensure the reliability and robustness of homonymous
point matching to solve the image matching and high-precision 3D modeling problems of
weakly textured asteroids. SIFT matching exhibits strong robustness in different scenarios
and can be used as a constraint for other image-matching methods. However, scale-
invariant feature-matching algorithms, such as SIFT, also have their drawbacks. For
instance, the homonymous points obtained by these methods are relatively sparse and may
not fully meet the requirements for obtaining detailed 3D information on asteroids.

Optical-flow methods have proven effective in utilizing the grayscale information
of images. Since the inception of the Lucas–Kanade (LK) [15] optical-flow algorithm in
1981, image alignment based on optical flow has found widespread applications in diverse
fields such as computer vision, autonomous driving, medicine, and industry [16–18]. By
fully utilizing the grayscale information of images, optical-flow methods enhance the
density of multi-view image-matching points. In recent years, researchers have explored
the application of optical-flow fields for homonymous point matching in deep space
exploration images. Debei et al. [19] utilized optical-flow algorithms to refine the matching
results to sub-pixel levels during the 3D reconstruction of asteroids based on multi-view
images. Chen et al. [20] applied optical-flow estimation to the registration of Chang’e-1
multi-view images, achieving sub-pixel matching accuracy of Lunar images. Despite the
ability to generate dense image-matching results, optical-flow methods rely on strong
assumptions of small displacement and grayscale invariance, leading to limitations in
practical applications. Although substantial advancements have been made in optical-flow
methods over the past few decades, large displacement optical-flow estimation remains
a challenge to be addressed in asteroid image-matching scenarios [21,22]. To address the
limitations of optical-flow tracking in large displacement and multi-scale scenarios, some
researchers have introduced image feature-based matching algorithms, such as SIFT, as
prior conditions. Brox and Malik [22] integrated feature matching into the optical-flow
framework, enabling the satisfactory capture of non-rigid large displacement motion.
Liu et al. [23] calculated the homography matrix based on Harris–SIFT matching points
and utilized it to guide the LK optical-flow method in finding local optimal matching points,
resulting in more accurate matching results. Wang et al. [24] added SIFT feature matching
as a constraint term to the energy function, successfully achieving registration of large
deformation medical images based on optical-flow fields. To solve the problem of large
displacement optical-flow estimation, Wang et al. [25] proposed a feature matching-based
optical-flow optimization algorithm. This approach integrates feature matching into the
variational optical-flow framework, fully leveraging the robustness of feature matching
under large displacement conditions and the density of variational optical flow.

The aforementioned research underscores the efficacy of algorithms with strong scale
adaptability, such as SIFT, in providing reliable preliminary conditions for optical-flow
methods. In addition to contending with large displacement and significant scale variations,
asteroid images encompass considerable rotation angles and uneven scale deformation.
These complexities compound the challenge of optical-flow tracking, and existing tech-
niques struggle to concurrently address these issues. Furthermore, research on image
homologous point matching based on optical-flow fields for asteroid images remains lim-
ited, necessitating further exploration of the potential benefits of optical-flow methods.
To address these gaps, this paper capitalizes on the unique characteristics of asteroid
images, merging the strengths of feature matching and optical-flow field methods. It
presents an asteroid multi-view image-matching approach grounded in feature-guided
optical-flow tracking, with the aim of attaining accurate and densely populated homol-
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ogous point-matching results for asteroid images. This method incorporates the SIFT
matching algorithm within the optical-flow tracking process, leveraging the robustness
of feature-matching techniques to impart constraint conditions for optical-flow tracking
in challenging scenarios. Introducing a novel approach centered on scalar field grids in
the x and y directions, the method guides optical-flow tracking, notably enhancing the
accuracy of initial parameter values to be solved. The optical-flow tracking process is
further streamlined by introducing intermediate images, a strategy that mitigates the intri-
cacies of optical-flow tracking and augments algorithmic robustness. In all, this approach
effectively addresses the limitations of optical-flow fields in scenarios marked by cross-scale
disparities, substantial displacement, and extensive rotation angles.

2. Methods
2.1. Problem Definition

Due to the weak gravity of the asteroid, the challenges of accurately controlling the
attitude of the probe, and the significant changes in the probe’s orbit, the images captured by
the sensor exhibit distinct characteristics, such as large-scale variations, irregular overlaps,
and significant differences in shooting angles. Although optical-flow-based homonymous
point tracking offers advantages, such as high density and fast processing speed, it demands
strict prerequisite conditions. Specifically, the optical-flow tracking algorithm must satisfy
two fundamental hypotheses.

Hypothesis 1: The brightness constancy assumption or the gray level invariance assumption
means that the brightness of the same point remains unchanged at different times.

Hypothesis 2: The small motion assumption, which means that the change in the same point with
time will not cause considerable changes in position.

These two assumptions are required, and in most cases, the asteroid images acquired
by the probe cannot directly use the optical-flow method for image matching. Therefore,
when using the optical-flow method for asteroid image matching, these issues must be
addressed. Based on these two basic assumptions, the mathematical model of the optical-
flow method can be defined using the following formulas.

Assuming that I(x, y, t) is the pixel value (gray value) of the pixel point whose
coordinates are (x, y) in the previous image at time t, the coordinate of the pixel point
in the next image at time t + ∆t is (x + ∆x, y + ∆y). Based on Hypothesis 1:

I(x, y, t) = I(x + ∆x, y + ∆y, t + ∆t). (1)

Based on Hypothesis 2, Taylor series expansion is performed on the right part of
Equation (1):

I(x + ∆x, y + ∆y, t + ∆t) = I(x, y, t) +
∂I
∂x

∆x +
∂I
∂y

∆y +
∂I
∂t

∆t + . . . . (2)

From Equations (1) and (2), we yield:

∂I
∂x

∆x +
∂I
∂y

∆y +
∂I
∂t

∆t = 0. (3)

From Equation (3):
∂I
∂x

∆x
∆t

+
∂I
∂y

∆y
∆t

= −∂I
∂t

. (4)

Let:
∆x
∆t

= u;
∆y
∆t

= v;
∂I
∂x

= Ix;
∂I
∂y

= Iy;
∂I
∂t

= It;
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[
Ix Iy

][u
v

]
= −It. (5)

Equation (5) contains two unknowns and cannot be solved using only one point. For
this problem, the Lucas–Kanade optical-flow algorithm proposed the third hypothesis [26].

Hypothesis 3: The motion of adjacent pixels is consistent.

Based on Hypothesis 3, Equation (5) can be extended to:
Ix1

Ix2

Ix3
...

Ixn

Iy1

Iy2

Iy3
...

Iyn


[

u
v

]
= −


It1

It2

It3
...

Itn

. (6)

In Equation (6), 1, 2, 3, . . ., n is the index number of the neighboring pixels of the center
pixel. Equation (6) is an overdetermined system of equations, which can be solved using
the least squares method.

Optical-flow-tracking algorithms are widely used in object tracking in video images,
mainly due to the strong continuity of video images. However, satisfying the second
assumption, which is small motion, is difficult for the asteroid images. From the perspective
of pixel positions in the image, two asteroid images with overlapping areas may encounter
the following:

(1) Pixels have large position changes.
(2) Pixels have large rotation angles, as well as different movement amounts because of

the varying distances between pixels and the image rotation center.
(3) Large-scale changes of adjacent pixels caused by different distances and shooting

angles of the camera center relative to the shooting area.

The issues arising from these three scenarios are significantly more intricate than those
arising from the small motion assumption, and conventional techniques are inadequate to
address these issues. This paper focuses on solving the problem wherein asteroid images
cannot satisfy the second assumption.

2.2. Improved Optical-Flow-Tracking Algorithm

To address the aforementioned issues, this paper introduces a novel optical-flow
tracking method guided by scale-invariant feature matching and displacement scalar
fields. The core concept is to begin by acquiring reliable homonymous matching points
via the scale-invariant feature-matching algorithm. With the aim of ensuring accuracy and
smoothness in the pixel mapping relationship between the two images, x and y directional
displacement scalar field grids are constructed based on the reliable matching points.
Subsequently, the mapping relationship is derived from the x and y directional scalar
field grids, leading to the construction of interim images. Optical-flow tracking is then
performed through these interim images, effectively resolving the three types of issues
commonly encountered in asteroid images. Moreover, the proposed method combines
epipolar geometry constraints, forward and backward optical flows, and vector field
consensus (VFC) techniques to eliminate erroneous matches at multiple stages, further
enhancing the robustness of the process. Finally, the optical-flow tracking coordinates are
restored using the x and y directional displacement scalar field grids.

The algorithm process includes nine main steps, as shown in Figure 1. In the following
sections, we will elaborate on the key steps of scalar field grid construction, interim image
extraction, optical-flow tracking, and erroneous match elimination.
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Figure 1. Schematic of the improved optical-flow-tracking algorithm’s framework. Numbers in the
scalar field grid-x/y are in pixels. The interim image is a warping of the “next image”. The red lines
represent the optical-flow-tracking results of the intermediate steps and the blue lines represent the
final optical-flow-tracking results.

2.3. Scalar Field Grid Construction and Interim Image Extraction
2.3.1. Scalar Field Grid Construction

Accurate and evenly distributed homonymous matching points play a crucial role in
establishing the pixel mapping relationship between two images. To achieve this goal, a
robust method is necessary. The SIFT descriptor, which can effectively capture the position,
scale, and orientation information, expressing the feature vector of key-points through
128 gradient values [27], is employed in this paper. SIFT possesses several advantages,
such as scale invariance, rotation invariance, viewpoint invariance, affine transformation
invariance, and brightness invariance. Given that the brightness difference of sequential
images can impact the accuracy of tracking points, we introduced a relative radiation
correction algorithm before SIFT matching to ensure that the brightness space of multiple
images is relatively uniform. In this paper, SIFT feature matching is used as the foundation
for obtaining homonymous points in the two images, and the process consists of four
main steps:

(1) Detect key-points in the image and extract the SIFT feature descriptors of these key-
points.

(2) Use a fast nearest-neighbor search algorithm to obtain matching relationships.
(3) Combine the random sample consensus (RANSAC) [28] algorithm and the fundamen-

tal matrix to eliminate erroneous matching point pairs.
(4) Remove overlapping points or points with close distances.

In this paper, the homonymous matching point pairs obtained from the two images are
referred to as reliable matching point pairs. Based on these reliable matching point pairs,
scalar field grids are constructed in the x and y directions. The construction of the scalar field
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grid needs to consider the spatial correlation, accuracy, and smoothness requirements of
the homonymous matching points. As such, the Ordinary Kriging interpolation algorithm
is employed. This algorithm involves three main steps:

(1) Based on the x and y coordinate pairs of homonymous points in the two images, the
difference in x and y coordinates for each point is calculated (i.e., ∆x and ∆y).

(2) Based on xi, yi, ∆xi (i = 1,2, 3,. . .,n), the Ordinary Kriging interpolation algorithm is
used to generate a raster file with the same size and resolution as the initial image,
which is the x-direction scalar field grid.

(3) Based on xi, yi, ∆yi (i = 1,2, 3,. . .,n), the Ordinary Kriging interpolation algorithm is
used to generate a raster file with the same size and resolution as the initial image,
which is the y-direction scalar field grid.

2.3.2. Interim Image Extraction

The extraction of interim images serves two main objectives: first, to preserve the
grayscale information of the initial image, and second, to retain the gradient information
without any loss. To achieve these objectives, this paper proposes a method for extracting
interim images, outlined in Figure 2. The method involves determining the value of each
pixel in the interim image through two steps. In the first step, the corresponding coordinates
of the four corner points of the pixel in the next image are calculated. This step provides
the value scope of the pixel on the next image based on the scalar field grid in the x and y
directions. In the second step, the pixels covered by the calculated value scope in the next
image are determined. Subsequently, the pixel values of the interim image are calculated
using Equation (7).

Ii,j =
n

∑
c=1

I′c × A′
c

Ai,j
, (7)

where Ii,j represents the pixel value of the interim image, Ai,j represents the area of the value
scope, n is the number of pixels in the next image covered by the value scope, I′c represents
the grayscale value of the pixel c, and A′

c represents the area of the pixel c covered by the
value scope.

Figure 2. Mapping relationship of interim image pixel’s extraction. ∆x and ∆y are obtained based on
a scalar field grid in the x and y directions, respectively. Pixel pi obtains coordinate mapping values
for the four corners through ∆x and ∆y. The grayscale values are taken at the corresponding scope
on the next image based on the mapped coordinate values of the four corners of pixel pi.

The proposed method for extracting pixel values of interim images ensures that no
gaps or overlaps exist in the value scope mapped onto the initial image (i.e., the next image).
This process establishes a unique correspondence between the pixels of the initial image and
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the interim image. By using this mapping method, the initial grayscale information can be
fully reflected in the interim image while preserving the gradient trend of the initial image.

2.4. Optical-Flow Tracking

The fundamental principle of optical-flow tracking is to identify the correspondence
between pixels in adjacent images by utilizing the gradient value and its changing trend of
pixels at the same position in the image sequence. The necessary premise of the optical-flow
algorithm is that the displacement value of the pixels in the previous frame and the next
frame of the image is very small so the gradient information is useful. In optical-flow
tracking, the difference in grayscale information between two frames of images can be used
as the objective function. In the optical-flow-tracking process, the correspondence between
pixels can be obtained through multiple iterations. The objective of optical-flow tracking
is to establish the correspondence between homonymous matching points in two images.
To achieve this objective, the method proposed in this paper is divided into seven steps,
as depicted in Figure 3, to obtain the coordinate values of homonymous matching points
between the current image and the next image.

(1) The first step involves the extraction of feature corner points. When observing the
motion of an object, the local motion information within the observation window
is limited due to the window’s size. As a result, accurate tracking of motion along
the image gradient within the observation window, such as object edges, becomes
challenging. This phenomenon is known as the aperture problem [29]. Additionally,
optical-flow tracking can be inaccurate in areas with uniform texture. To ensure
accurate tracking results, feature points must be extracted from the image before
performing optical-flow tracking. In this paper, the features from the Accelerated
Segment Test (FAST) algorithm [30] are employed to extract feature corner points
from the current image, forming Coordinate Point Set 1.

(2) Based on Coordinate Point Set 1, obtained in the first step, the coordinates of each point
on the interim image were estimated one by one, resulting in the forward-tracking
results denoted as Coordinate Point Set 2. These coordinates represent the points that
can be successfully tracked in the interim image. After this step, Coordinate Point Set
1 is updated to reflect the new set of points used for tracking. Furthermore, record the
correspondence between homonymous points in Coordinate Point Sets 1 and 2.

(3) Based on the Coordinate Point Set 2 obtained in the second step, the coordinates
of each point on the current images were estimated one by one. This process is
known as backward tracking and results in Coordinate Point Set 3. Additionally,
record the correspondence between homonymous points in Coordinate Point Set 2
and Coordinate Point Set 3.

(4) Calculate the Euclidean distance between the homonymous points in Coordinate
Point Set 1 and Coordinate Point Set 3, as illustrated in Figure 4. If the distance is less
than the specified threshold, then the optical-flow tracking result is deemed accurate,
and the matching point pairs are retained. Conversely, if the distance exceeds the
threshold, then the result is considered incorrect, and the erroneous matching point
pairs are removed. In this paper, the distance threshold is set to 1 pixel. After this step,
Coordinate Point Sets 1 and 2 are updated with the refined and accurate matching
point pairs.

(5) Using the matching-point pairs verified by forward and backward optical-flow track-
ing, which are the results obtained in the fourth step, apply the vector field consensus
algorithm to further eliminate erroneous matching point pairs. After this step, update
Coordinate Point Sets 1 and 2.

(6) Based on Coordinate Point Set 2, calculate the coordinates of each point on the next
image one by one using Equations (8) and (9). This process involves restoring the
tracking coordinates, and the resulting coordinates are denoted as Coordinate Point
Set 4.
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X(x, y) = x + w0 × XG
(

x′, y′
)
+ w1 × XG

(
x′, y′ + 1

)
+w2 × XG

(
x′ + 1, y′

)
+w3 × XG

(
x′ + 1, y′ + 1

)
, (8)

Y(x, y) = y + w0 × YG
(

x′, y′
)
+ w1 × YG

(
x′, y′ + 1

)
+w2 × YG

(
x′ + 1, y′

)
+w3 × YG

(
x′ + 1, y′ + 1

)
, (9)

where w0 = (1 − x + x′) × (1 − y + y′), w1 = (1 − x + x′) × (y − y′), and w2 =
(x − x′) × (1 − y + y′), w3 = (x − x′) × (y − y′). x and y are the vertical and hor-
izontal coordinates of the interim image, respectively; X(x, y) and Y(x, y) are the
vertical and horizontal coordinates on the next image, respectively; x′ and y′ are
the integer parts of x and y values, respectively; and XG(x′, y′) and YG(x′, y′) are
the grid values of the scalar field grid in the x and y directions of the x′ row and y′

columns, respectively.

Figure 3. Optical-flow-tracking algorithm flowchart.
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(7) Using the reliable matching point pairs obtained in Section 2.3.1, calculate the funda-
mental matrix between the current image and the next image. Utilizing this funda-
mental matrix, compute the epipolar lines for all points in Coordinate Point Set 1 in
the next image and record the correspondence between the points and their respective
epipolar lines. Subsequently, calculate the Euclidean distance from each point in
Coordinate Point Set 4 to its corresponding epipolar line individually. If the distance
exceeds the threshold, then the point is considered an erroneous matching point, as
illustrated in Figure 5. In this paper, the threshold for considering a point as erroneous
is set to 1 pixel.

Figure 4. Schematic diagram of bidirectional optical-flow tracking.

Figure 5. Schematic diagram of the error matching-point elimination method based on epipolar
geometry. C1 and C2 are the positions of Camera 1 and Camera 2, respectively. P is a point in
three-dimensional space. p1 and p2 are the mappings of point P on the image planes of Camera 1 and
Camera 2, respectively.

3. Experiment and Analysis
3.1. Experimental Data

Images of multiple asteroids were selected to verify the robustness of the proposed
method. These include images of asteroid 101955 Bennu [31] obtained by OSIRIS-REx and
images of asteroids 1 Ceres [32] and 4 Vesta [33] obtained by Dawn. In addition, to verifying
the applicability of the algorithm, the experimental images were selected considering differ-
ent scenarios, such as large rotation angles, scale changes, and terrain differences, totaling
six scenarios, as shown in Table 1. The size of the images is 1024 pixels × 1024 pixels.
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Table 1. Experimental data.

Scene Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Scene 6

Current
image

Next
image

Asteroid Bennu Bennu Bennu Bennu Vesta Ceres

Characteristics Large terrain
changes

Large
displacement

Rotate + Large
displacement

Rotate + Large
displacement

Uneven
displacement

Uneven
displacement

3.2. Comparative Experiment
3.2.1. Comparison with Feature-Matching Algorithms

The main characteristic of multi-view asteroid images is their large-scale variation,
leading this paper to select scale-invariant feature-matching algorithms for comparative
experiments. The chosen algorithms for comparison include SIFT, SURF, Akaze [34], and
Brisk [35]. All four algorithms employ the RANSAC algorithm to eliminate mismatches.
To measure the accuracy of the matching results, this experiment employs the Euclidean
distance (d) from the matched result point coordinates to the epipolar line. Points with an
epipolar distance of 1 pixel or less are considered correct matches, while points with an
epipolar distance greater than 1 pixel are deemed incorrect matches.

This experiment uses root mean square (RMS) and matching accuracy (MA) to evaluate
the matching results of different methods. The calculation of the RMS is demonstrated in
Equation (10), and it considers points with an epipolar distance of 1 pixel or less. Meanwhile,
the MA is defined as the ratio of the number of points with an epipolar distance of 1 pixel
or less to the total number of matched points. The statistical results of the six groups of
experiments are presented in Table 2.

RMS =

√
∑N

i=1 di
2

N
. (10)

As indicated in Table 2, the RMS error of the method proposed in this paper is the
smallest among all scenarios, with values ranging from 0.18 to 0.33 pixels. Additionally,
this paper has conducted a statistical analysis of the distribution of distances from the
matched point coordinates of different methods to the epipolar line, as depicted in Figure 6.
Observing Figure 6, except for Scenario 5, our method exhibits the highest distribution
ratio at small distances. Specifically, in Scenario 5, the proportion of epipolar distances less
than 0.3 pixels is 64%, while in other scenarios, the proportion exceeds 78%. As shown in
Table 2, the proposed method obtained the most matching point pairs. We have conducted
statistics on the running time of the algorithm. For an experimental scenario, the average
calculation time spent by the method proposed in this paper is 19.77 s. Under the same
operating environment, the average time spent by the SIFT method is 14.02 s.
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Table 2. The comparison results’ statistics of feature-matching algorithms. “≤1” represents that the
Euclidean distance from the matching point to the polar line is less than or equal to 1. “>1” represents
that the Euclidean distance from the matching point to the polar line is greater than 1. The distances
are in pixels. Numbers in bold text format are the best results among all methods.

Scene Method ≤1 >1 MA RMS Scene Method ≤1 >1 MA RMS

Scene
1

Brisk 10,044 1222 89.2% 0.39

Scene
4

Brisk 7097 1480 82.7% 0.43

SURF 4453 481 90.3% 0.35 SURF 2295 453 83.5% 0.42

Akaze 3301 153 95.6% 0.30 Akaze 2666 329 89.0% 0.37

SIFT 8007 158 98.1% 0.28 SIFT 4499 204 95.7% 0.30

Ours 48,980 1202 97.6% 0.26 Ours 31,683 660 98.0% 0.25

Scene
2

Brisk 11,921 1371 89.7% 0.39

Scene
5

Brisk 2325 200 92.1% 0.40

SURF 3772 456 89.2% 0.37 SURF 2423 634 79.3% 0.48

Akaze 4022 159 96.2% 0.29 Akaze 372 46 89.0% 0.36

SIFT 5927 166 97.3% 0.29 SIFT 1894 72 96.3% 0.33

Ours 46,733 177 99.6% 0.22 Ours 62,799 773 98.8% 0.33

Scene
3

Brisk 20,041 2274 89.8% 0.39

Scene
6

Brisk 2014 272 88.1% 0.41

SURF 6052 481 92.6% 0.33 SURF 2487 337 88.1% 0.42

Akaze 6720 150 97.8% 0.25 Akaze 1275 99 92.8% 0.33

SIFT 11,041 104 99.1% 0.24 SIFT 4028 57 98.6% 0.25

Ours 62,633 131 99.8% 0.18 Ours 57,244 307 99.5% 0.25

Figure 6. Statistics of distribution of epipolar distances by different methods. The distances are
in pixels.
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From Table 2 and Figure 6, the method proposed in this paper achieves the highest
correct matching rate in Scenarios 2, 3, 4, 5, and 6, and is the second-best in Scenario
1, outperformed only by the SIFT method. The value of MA varies between 97.6% and
99.8%. Figure 7 illustrates representative incorrect matching results, with the left column
displaying the current image and the right column showing the next image. By analyzing
the incorrect matching points across the six scenarios, this paper classifies the causes of
these mismatches into three types. The first type of mismatch arises from the influence of
shadow areas on the surrounding regions, leading to significant deviations in the position
of optical-flow tracking, as observed in Figure 7a,c,d. The second type involves substantial
texture changes in the homonymous regions, rendering accurate key-point tracking difficult,
as depicted in Figure 7e,f. The third type results from abrupt changes in terrain, which
obscure the homonymous regions and make key-point tracking challenging, as seen in
Figure 7b. Among these types, the first type is the most common in asteroid images, while
the third type has the most significant impact on the results.

Figure 7. Example of different situations of mismatching. The yellow points represent correct matches,
while the red points represent incorrect matches.
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3.2.2. Comparison with Optical-Flow Algorithms

At present, there are optical-flow estimation algorithms for large displacement prob-
lem. We chose six representative optical-flow estimation algorithms to compare. The
algorithms we selected include TV-L1 [36], DeepFlow [21], DIS (Dense Inverse Search) [37],
LDOP (Large Displacement Optical Flow) [22], PyrLK (Pyramidal Lucas Kanade) [38], and
CPM (Coarse-to-fine PatchMatch) [39]. Firstly, feature points are selected in the current
image, and these feature points are in the overlapping region of the current image and the
next image. Then, based on these feature points, seven algorithms are used for tracking,
respectively. The experiment in this section adopts the same indexes, MA and RMS, as in
Section 3.2.1, to evaluate the results, as shown in Table 3. Figure 8 is a schematic diagram
of the superposition of the feature-point tracking results of seven algorithms with images.
Matching point pairs whose distance from the epipolar line is less than or equal to 1 are
represented in yellow, and matching point pairs whose distance from the epipolar line is
greater than 1 are represented in red.

Table 3. The comparison results’ statistics of optical-flow algorithms. “Key-points” represent the
number of feature points to be tracked. Numbers in bold text format are the best results among
all methods.

Scene Key-
Points Method ≤1 >1 MA RMS Scene Key-

Points Method ≤1 >1 MA RMS

Scene
1

8007

TV-L1 0 8007

Scene
4

4499

TV-L1 0 4499

DeepFlow 0 8007 DeepFlow 0 4499

DIS 3191 4816 39.9% 0.54 DIS 0 4499

LDOP 1271 6736 15.9% 0.57 LDOP 0 4499

PyrLK 7276 481 93.8% 0.24 PyrLK 1956 2433 44.6% 0.25

CPM 7799 208 97.4% 0.42 CPM 4359 140 96.9% 0.42

Ours 7519 57 99.2% 0.25 Ours 4249 54 98.7% 0.23

Scene
2

5927

TV-L1 0 5927

Scene
5 1894

TV-L1 2 1892 0.1% 0.48

DeepFlow 0 5927 DeepFlow 5 1889 0.3% 0.52

DIS 132 5795 2.2% 0.58 DIS 30 1864 1.6% 0.58

LDOP 0 5927 LDOP 32 1862 1.7% 0.55

PyrLK 1426 2743 34.2% 0.21 PyrLK 1265 287 81.5% 0.40

CPM 5797 130 97.8% 0.41 CPM 1808 86 95.5% 0.42

Ours 5678 13 99.8% 0.22 Ours 1720 27 98.5% 0.28

Scene
3 11041

TV-L1 0 11,041

Scene
6 4028

TV-L1 16 4012 0.4% 0.53

DeepFlow 0 11,041 DeepFlow 18 4010 0.4% 0.53

DIS 6844 4197 62.0% 0.45 DIS 17 4011 0.4% 0.48

LDOP 6307 4734 57.1% 0.47 LDOP 17 4011 0.4% 0.52

PyrLK 10,723 22 99.8% 0.17 PyrLK 9 3135 0.3% 0.53

CPM 10,878 163 98.5% 0.41 CPM 3725 303 92.5% 0.45

Ours 10,767 13 99.9% 0.17 Ours 3870 9 99.8% 0.26

In Figure 8, the yellow points represent correct matches, while the red points represent
incorrect matches. As can be seen from Figure 8, for all experimental scenarios, both CPM
and our algorithms obtain ideal matching results, indicating that these two algorithms can
cope well with matching asteroid images with large displacements, large-scale variations,
and large rotation angles. The method proposed in this paper has the least occurrence of
red points, indicating that the method is the most reliable.

This paper defines matching point pairs with an epipolar line distance of ≤1 as the
result of successful tracking. From Table 3, in terms of the success rate of feature-point
tracking, CPM and the proposed algorithm are the most robust. In terms of matching
accuracy, the MA value of the proposed algorithm is the best in all 6 scenarios, and the MA
value is greater than 98.5%. In terms of matching accuracy, the RMS value of the proposed
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algorithm is between 0.17 and 0.28. Among the seven algorithms, the overall accuracy of
the proposed algorithm is the highest.

Figure 8. Optical-flow-tracking results of different algorithms. The seven columns from left to right
represent the results of algorithms TV-L1, DeepFlow, DIS, LDOP, PyrLK, CPM, and ours, respectively.

3.3. Accuracy Verification
3.3.1. Analysis of Reliable Matching Points on Accuracy

When constructing interim images based on scalar field grids, the distribution and
density of reliable matching points affect the results of optical-flow tracking, and we analyze
the problem in this section. From Figure 9, the optical-flow fields of Scenes 1, 5, and 6
are more complicated compared to other scenes. Among them, Scene 1 is caused by large
terrain changes, and Scenes 5 and 6 are caused by uneven scale changes. We chose these
three scenes for detailed analysis.
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Figure 9. Schematic diagram of the optical-flow field of six experimental scenes. The optical-flow
field is represented by the yellow arrow. (a–f) represent Scenes 1–6, respectively.

The experiments in this section are analyzed by setting different intervals between
reliably matched points. The distance between points is set to 50, 100, 200, 300, and
400 pixels. The number of homonymous points, the correctness (MA), and the precision
(RMS) are used as comparison metrics. The experimental results are shown in Table 4
and Figure 10. From Table 4, the number of homonymous points obtained based on this
paper’s method shows an obvious decreasing trend as the interval of reliable matching
points increases, and the MA also shows a decreasing trend. The influence of the interval
of reliable matching points on the RMS is not obvious.

Table 4. Statistics of optical-flow-tracking results under reliable matching points at different intervals.
“Interval” represents the average distance between reliable matching points. The distances are
in pixels.

Scene Interval ≤1 >1 MA RMS

Scene
1

50 48,678 1064 97.9% 0.26
100 47,426 1129 97.7% 0.26
200 43,933 1171 97.4% 0.25
300 39,574 1360 96.7% 0.25
400 26,060 1790 93.6% 0.25

Scene
5

50 59,793 1328 97.8% 0.32
100 59,919 1341 97.8% 0.32
200 58,878 1646 97.3% 0.32
300 56,676 1634 97.2% 0.33
400 50,724 1639 96.9% 0.33

Scene
6

50 56,083 415 99.3% 0.25
100 55,524 445 99.2% 0.26
200 52,028 641 98.8% 0.28
300 50,942 836 98.4% 0.31
400 41,341 1258 97.0% 0.32

The regions marked by the red lines in Figure 10 indicate the area where reliable
matching points are sparse, while the blue lines indicate the area where homonymous
points are sparse. The density of reliable matching points has a significant impact on the
results of homonymous points tracking, as shown in “A”–“D” in Figure 10, where the
optical-flow-tracking results in these areas marked by red lines are significantly sparser than
in other areas. Therefore, a more dense and uniform distribution of reliable matching points
is beneficial for obtaining more dense homonymous points. Based on the experiments
in this section, this paper recommends using a spacing of 50 pixels in the algorithm
implementation.
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Figure 10. The influence of reliable matching point distribution on optical-flow tracking. The top
two rows of images are the results of Scene 1, the middle two rows of images are the results of Scene
5, and the bottom two rows of images are the results of Scene 6. The green circles in the images
represent reliable matching points.

3.3.2. Quantitative Analysis of Accuracy

Using Equation (10), we can compare the results of different methods using the
same criterion, enabling an objective evaluation of their matching accuracy. However,
this approach does not provide a quantitative evaluation of the error in the key-point
coordinates of the method proposed in this paper. Table 2 and Figure 6 demonstrate that,
aside from the method proposed in this paper, the SIFT method exhibits the best matching
accuracy. Consequently, in this study, the results of SIFT matching are utilized as the
ground truth for verifying the matching accuracy of the method proposed in this paper. To
assess the matching accuracy of the proposed method, based on the coordinates of the key
points in the current image obtained from the SIFT-matching results, the method proposed
in this paper estimates the coordinates of the key points in the next image. Subsequently,
the Root Mean Square Error (RMSE) is calculated using Equation (11).
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RMSE =

√
∑N

i=1 (xi − x′ i)
2 + (yi − y′ i)

2

N
. (11)

In Equation (11), xi and yi represent the horizontal and vertical coordinates of the
key-points in the next image estimated by the method proposed in this paper. x′i and
y′i stand for the horizontal and vertical coordinates of the key-points in the next image
matched by the SIFT method, respectively. If the Euclidean distance between the key-point
coordinates obtained by the two methods is greater than one pixel, then it is considered
an incorrect result. However, all points with a distance of one pixel or less between the
key-point coordinates obtained by the two methods are included in the calculation of the
RMSE. Additionally, MA denotes the ratio of the number of key-points with a coordinate
distance of one pixel or less to the total number of key-points. Table 5 presents the statistical
results of RMSE and MA for all matching points in the six scenarios.

Table 5. Method proposed in this paper tracks SIFT key-point results.

Scene Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Scene 6 ALL

MA 99.06% 99.56% 100% 98.44% 99.99% 100% 99.51%
RMSE 0.23 0.27 0.18 0.37 0.22 0.26 0.25

Figure 11 displays a density plot depicting the distribution of Euclidean distances
between the key-point coordinates obtained from the two methods, measured in pixels. It
is evident from Figure 11 that, for the six pairs of images, the Euclidean distance between
the coordinates tracked by the method proposed in this paper and the coordinates matched
by SIFT primarily falls within the range of less than 0.4 pixels. The peak of the density plot
for all 6 scenarios is consistently below 0.2 pixels.

Figure 11. The method in this paper tracks the error distribution of SIFT key-points.
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The method proposed in this paper demonstrates excellent accuracy and robustness,
as indicated by the experimental results. It achieves accuracy comparable to SIFT feature
matching. Notably, this method outperforms mainstream feature-matching algorithms
in terms of matching accuracy and the density of key-points obtained. This method
effectively addresses the challenges of optical-flow tracking in asteroid multi-view images,
including poor photographic conditions, large-scale variations, significant rotation angles,
and substantial displacements. In multi-view image matching of Bennu, Ceres, and Vesta
asteroids, the proposed method achieved a remarkable matching accuracy exceeding 98%,
along with a matching precision of 0.25 pixels in RMSE, outperforming the SIFT feature-
matching approach.

4. Conclusions

To explore the technical advantages of the optical-flow method in asteroid image
matching, this paper begins by analyzing the characteristics of multi-view images of
asteroids and examining the differences among various scene image pairs. Based on
these insights, this paper introduces a novel optical-flow-tracking method guided by scale-
invariant feature matching and a displacement scalar field, which accounts for the small
motion assumption of the optical-flow-tracking algorithm. We innovatively introduce
the displacement scalar field grid into optical-flow tracking. The method provides a
continuous initial value for optical-flow tracking through the displacement scalar field grid
computed by the Kriging interpolation algorithm, which solves the problem of optical-flow
tracking under large displacement, uneven scale variation, and a large rotation angle. In
addition, we propose an intermediate image-based optical-flow-tracking strategy, which
reduces the difficulty of optical-flow tracking by decomposing the optical-flow-tracking
steps. By integrating the technical strengths of image feature matching and the optical-flow
algorithm, this method achieves image homonymous point-matching results with precision
and density. Experimental results demonstrate that the algorithm presented in this paper
achieves excellent matching accuracy and density when dealing with challenging scenarios
of multi-view images of asteroids.

The method presented in this paper focuses on addressing the small motion assump-
tion of the optical-flow method. However, it is important to note that the optical-flow
method also relies on a strong assumption of gray value invariance. Changes in the gray
value of homonymous pixel points between two images can significantly affect the accuracy
of tracking results. In this paper, only frame-level gray value unification is performed, and
no comprehensive investigation is conducted regarding the impact of uneven illumination.
Nonetheless, it is crucial to recognize that poor lighting conditions are a prevalent char-
acteristic of asteroid images. Therefore, in our future research, we will conduct in-depth
investigations into the optical-flow-tracking problem arising from uneven illumination.
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