
Citation: Song, Y.; Xiang, J.; Jiang, J.;

Yan, E.; Wei, W.; Mo, D. A Cross-

Domain Change Detection Network

Based on Instance Normalization.

Remote Sens. 2023, 15, 5785.

https://doi.org/10.3390/rs15245785

Academic Editors: Peter M. Atkinson

and Ce Zhang

Received: 7 November 2023

Revised: 11 December 2023

Accepted: 15 December 2023

Published: 18 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

A Cross-Domain Change Detection Network Based on Instance
Normalization
Yabin Song 1, Jun Xiang 2,3,4,5 , Jiawei Jiang 3,4,6 , Enping Yan 3,4, Wei Wei 2,5,* and Dengkui Mo 3,4

1 Central South Academy of Inventory and Planning of NFGA, Changsha 410019, China;
20221100023@csuft.edu.cn

2 Forestry Research Institute of Guangxi Zhuang Autonomous Region, Nanning 530002, China;
xiangjun@csuft.edu.cn

3 Key Laboratory of State Forestry and Grassland Administration on Forest Resources Management
and Monitoring in Southern Area, Changsha 410004, China; jiangjw26@mail2.sysu.edu.cn (J.J.);
enpingyan@csuft.edu.cn (E.Y.); dengkuimo@csuft.edu.cn (D.M.)

4 College of Forestry, Central South University of Forestry & Technology, Changsha 410004, China
5 Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Nanning 530002, China
6 School of Civil Engineering, Sun Yat-Sen University, Zhuhai 519082, China
* Correspondence: 20180203@csuft.edu.cn

Abstract: Change detection is a crucial task in remote sensing that finds broad application in land
resource planning, forest resource monitoring, natural disaster monitoring, and evaluation. In this
paper, we propose a change detection model for cross-domain recognition, which we call CrossCDNet.
Our model significantly improves the modeling ability of the change detection on one dataset and
demonstrates good generalization on another dataset without any additional operations. To achieve
this, we employ a Siamese neural network for change detection and design an IBNM (Instance
Normalization and Batch Normalization Module) that utilizes instance normalization and batch
normalization in order to serve as the encoder backbone in the Siamese neural network. The IBNM
extracts feature maps for each layer, and the Siamese neural network fuses the feature maps of the
two branches using a unique operation. Finally, a simple MLP decoder is used for end-to-end change
detection. We train our model on the LEVIR-CD dataset and achieve competitive performance on the
test set. In cross-domain dataset testing, CrossCDNet outperforms all the other compared models.
Specifically, our model achieves an F1-score of 91.69% on the LEVIR-CD dataset and an F1-score of
77.09% on the WHU-CD dataset, where the training set was LEVIR-CD.

Keywords: change detection; deep learning; cross-domain; instance normalization

1. Introduction

Convolutional neural networks (CNNs) based on deep learning have become a valu-
able tool in computer vision [1], enabling tasks such as image recognition [2], object
detection [3–5], semantic segmentation [6–8], image super-resolution [9], and change detec-
tion [10,11]. Change detection is a crucial technique in remote sensing image analysis and is
extensively used in land resource planning, forest resource monitoring [12,13], and natural
disaster monitoring and assessment [14]. The goal of change detection is to identify and
characterize surface changes from remote sensing data acquired at different times in a
quantitative manner. This technique allows for semantic segmentation of the changed
regions between the two different time periods, extending the scope of remote sensing
analysis. Change detection involves a pixel-to-pixel visual interpretation task that enhances
the quantitative analysis capability of the changed regions.

Deep learning models have been widely used in change detection tasks to extract
semantic features at a deeper level. Some studies have utilized deep learning models that
were originally designed for image segmentation tasks, such as constructing a Siamese
encoder–decoder structure for change detection, which employs the U-Net++ [15] backbone
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network. Furthermore, many researchers have aimed to improve the performance and
efficiency in change detection by extracting deep semantic features, as shown in [16,17].
One noteworthy similarity among these change detection studies is their focus on explor-
ing semantic features associated with deeper-level changes. The objective of semantic
depth features is to juxtapose categories or characteristics of identical geographic features
depicted in images captured across distinct time intervals. This analytical process seeks to
identify alterations within these features, encompassing variations in building quantities,
road expansion, or instances of deforestation. Expansive structures, notably buildings,
frequently dominate substantial portions of the image. There is superior appropriateness
regarding deep features for encapsulating semantic nuances within these extensive re-
gions. Conversely, shallow features exhibit heightened effectiveness in addressing localized
intricacies, comprising spatial elements like object edges and textures. These spatial fea-
tures are employed to assess variations in the color, position, and shape of geographical
elements across images acquired at different time points. Notable examples include struc-
tural translations or modifications of buildings and color shifts in forests resulting from
seasonal variations.

Within the remote sensing community, significant distinctions in color domains among
various remote sensing images arise due to seasonal and regional spatial variations. Con-
sequently, it becomes imperative to comprehensively consider both semantic and spatial
features to attain more precise and comprehensive results in change detection. This under-
taking is of utmost importance in enhancing the cross-domain detection capabilities and
the overall generalization of the change detection model. Figure 1 illustrates the significant
differences in color between two change detection datasets. Although traditional change
detection methods such as Image Difference, change vector analysis (CVA) [18], PCA,
and K-means [19] can yield effective results in some simple scenarios, their performance
significantly decreases when applied to other datasets for scene analysis. Most contempo-
rary supervised remote sensing (RS) image change detection approaches are customized
for equal-resolution bitemporal images. Conventional change detection models fail to
accurately predict these cross-domain image data, rendering them insufficient in terms of
generalization and practicality for meeting actual production needs [20].

Figure 1. Differences between LEVIR-CD dataset and WHU-CD dataset: (a) is the mean and standard
deviation of each channel; (b) is the display of some images of the two datasets.

To enhance the model’s generalization capacity, it is advisable to employ specific
data augmentation techniques. These may include geometric transformations, such as
image translation, horizontal flipping, and rotation, which serve as effective methods for
data augmentation. Additionally, spectral data augmentation strategies can be applied,
involving adjustments to image brightness, contrast, and the introduction of random
noise. However, despite these efforts, specific data augmentation methods do not entirely
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bridge the appearance disparities across diverse datasets. In the actual prediction process,
relying solely on data augmentation to enhance the model’s generalization capability
reveals inherent limitations. It is unrealistic to anticipate that data augmentation alone
can sufficiently align the transformed training data with the distribution of all testing
data. Effectively addressing the substantial diversity in appearance necessitates the adept
design of deep learning frameworks. This stands as a pivotal challenge in the realm of
cross-domain change detection.

In this paper, we present an alternative approach to tackle the challenge of cross-
domain image change detection and enhance the model’s generalization capabilities. Our
methodology incorporates the use of instance normalization (IN) [21], a neural network
module that adeptly captures variations in image appearances within the change detection
network while preserving discriminative attributes. Notably, our change detection model
strategically combines IN with batch normalization (BN) [22] as fundamental building
blocks, augmenting its learning and generalization abilities [23].

Our model, denoted as CrossCDNet, demonstrates notable advantages in cross-domain
detection owing to its robust generalization capability. Unlike conventional change detec-
tion models, CrossCDNet extensively learns both spatial and semantic features from images
captured before and after the change detection interval, seamlessly unifying them. Subse-
quent research has further validated the effectiveness of CrossCDNet by leveraging diverse
architectural configurations to enhance model accuracy and generalization capabilities.

To further address the issue of inadequate model generalization caused by differences
in color domains, we have introduced a global-module-based attention mechanism into the
encoding–decoding structure of the neural network. This mechanism is designed to com-
pensate for the encoder module’s tendency to focus only on central features by introducing
an attention mechanism that takes into account the global context. The experimental results
demonstrate that this mechanism can aggregate and refine semantic-level features, thereby
improving the model’s performance.

The contributions of this paper are mainly as follows:

(1) We propose a Siamese network named CrossCDNet for remote sensing change detec-
tion, which is based on IN and BN of IBNM. CrossCDNet significantly enhances the
cross-domain detection capability of the change detection model.

(2) This paper employs a global attention mechanism to address the shortcomings of IN,
which tends to focus more on central features.

(3) The experimental results indicate that CrossCDNet exhibits competitive performance in
change detection tests compared to mainstream change detection models and has better
generalization ability in cross-evaluation. The code for CrossCDNet will be open-sourced
at https://github.com/XJCXJ/CrossCDNet (accessed on 16 December 2023).

This paper is structured into multiple sections. In Section 2, we present the cross-
domain change detection method proposed in this study, accompanied by a description
of the dataset and experimental particulars. Section 3 provides a series of quantitative
analysis results derived from two comparative experiments. In Section 4, we delve into
the significance of both shallow spatial and deep semantic features in the context of cross-
domain change detection. Lastly, Section 5 serves as the conclusion for this paper.

2. Methods and Materials
2.1. CrossCDNet
2.1.1. Network Architecture

CrossCDNet comprises four primary components: an encoder, attention module, con-
nection module, and decoder. The foundational structure adheres to the widely embraced
encoder–decoder architecture prevalent in contemporary change detection models. Specifically,
the input segment of the network structure conforms to the standard Siamese neural network
architecture. In this configuration, we separately input the two temporal images (T1 and T2)
into the encoders of the Siamese network’s two branches. Throughout each downsampling

https://github.com/XJCXJ/CrossCDNet
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step, uniform convolutional kernels are employed for feature extraction from the feature maps
within both branches, activating corresponding positions within these feature maps.

Figure 2 illustrates the use of identical encoders for the preservation of both spatial
and semantic information of the two branches during the four-stage downsampling process
of the paired temporal images. Afterward, in the “Fusion” layer, we connect T1 (preperiod
image) and T2 (posterior image) by using a “Concatenation” technique. To be more specific,
we perform calculations by pairing the feature maps of the two branches of T1 and T2
based on their hierarchical structure:

OUT = Cat[FA, FB] (1)

where Cat module in PyTorch is a connection method that does not alter the length and
width of an image but rather only adds the number of channels of the two tensors together.
FA and FB represent the feature maps. The fused results are then fed into a simple decoder
composed of an MLP. During the model training phase, we continually refine our model by
minimizing both the distance map and the ground truth label map. This process ensures
that distance values for change points become larger, while those for unchanged points
decrease. In the testing phase, we obtain the predicted label map, denoted as P, through
straightforward threshold calculations applied to the distance map.

Figure 2. CrossCDNet model structure.

2.1.2. Encoder

In previous research, CNNs have been proposed to enhance the learning of spatial and
semantic features. Due to their robust performance in computer vision, CNN-based method-
ologies have found extensive applications in remote sensing [24]. The domain of change
detection, in particular, has seen the emergence of several outstanding encoder networks
designed for feature extraction. For instance, TINYCD [25], a compact and lightweight
feature extraction network, prioritizes the significance of low-level features in image analy-
sis while maintaining a minimal network parameter count. Another lightweight model
for change detection, LightCDNet [11], adopts ShuffleNet v2 as its lightweight backbone
network for feature extraction, complemented by a pyramid decoder for end-to-end change
detection. The Feature Interaction Network model, known as Changer [26], introduces a
groundbreaking universal change detection architecture named MetaChanger, incorpo-
rating a series of alternative interaction layers within the feature extractor. Furthermore,
the Hierarchical Attention Network (HANet) has been developed [27], which integrates
multiscale features and refines detailed features.

Our work draws inspiration from these networks in constructing a feature extractor.
We have made enhancements to the encoder’s structure based on ResNet. However, given
the requirement of our change detection task to accommodate datasets spanning different
color domains, we employ a normalization method distinct from those used in the networks.
Within our encoder, we employ a module that combines both BN and IN.

BN is a technique that mitigates the issue of “internal covariate shift” during neural
network training by integrating normalization into the model structure. This technique
facilitates larger learning rates and faster training speeds. During training, BN standardizes
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each feature channel by calculating the mean and variance of a small batch of data. Dur-
ing inference, it applies global statistics to normalize features. BN has become a standard
component in the most popular CNN architectures, including ResNet.

Unlike BN, IN normalizes the spatial and semantic features of images using statistics
from a single sample instead of a small batch of samples. Additionally, IN applies the
same normalization process during both training and inference, enabling the filtering of
instance-specific contrast information from the content.

IN(F) =
Fn,k − µn,k

σn,k + ε
(2)

where IN(.) denotes the instance normalization process and ε is a small value to avoid
division by zero. Then, mean µn,k and standard deviation σn,k of n-th sample k-th channel
are computed as follows:

µn,k =
1

HW

H

∑
h=1

W

∑
w=1

Fn,k,h,w (3)

σn,k =

√√√√ 1
HW

H

∑
h=1

W

∑
w=1

(Fn,k,h,w − µn,k)
2 (4)

where H is the height and W is the width in Equations (3) and (4).
Firstly, through the concurrent application of IN and BN, our model acquires the statistical

benefits associated with feature divergence across various network depths. Secondly, IN en-
sures visual appearance invariance, while BN expedites training and safeguards discriminative
features. The amalgamation of these advantages plays a pivotal role in our model architecture
by augmenting its learning and generalization capabilities, all while preserving computational
efficiency. Leveraging IN empowers our model to adeptly capture variations in the visual
appearance of images within the network, concurrently preserving discriminative attributes
and thus amplifying the model’s learning and generalization capacities.

CrossCDNet is a new network based on the ResNet model that incorporates different nor-
malization techniques and has been improved from the original ResNet model. The schematic
diagram of the CrossCDNet backbone structure as an encoder is shown in Figure 3a, while
Figure 3b illustrates the convolutional processing module of the initial images in two periods.
We used IN for the initial convolutional processing, and the processed result was input into
the residual block. Additionally, we designed an IN and BN module (IBNM) to optimize the
image’s feature structure, as depicted in Figure 3c. The first two layers of feature maps’ spatial
feature information is considered more significant in the network architecture. Therefore, we
used IBNM for the initial two layers of the backbone while retaining the original BN for the
deeper third and fourth layers. This strategy improves the performance of our network in
predicting cross-domain images during the inference stage.

Our design aims to enhance the performance of the model in recognizing cross-domain
images and generalizing well. Using IN has a two-fold benefit. First, it allows the model
to learn invariant features of shallow appearances, improving its ability to use images
with high appearance diversity. Second, the moderate incorporation of IN at appropriate
positions in the network structure further enhances the model’s ability to recognize cross-
domain images and generalize well.

2.1.3. Attention Module

Although IBNM/IN achieves center alignment of the feature distribution, it fails
to align the global distribution of the features. Therefore, we introduced a global atten-
tion mechanism at the end of the encoder to enable the model to better leverage global
spatial information.
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Figure 3. CrossCDNet encoder structure: (a) is encoder backbone; (b–d) are the modules in the backbone.

As illustrated in Figure 4, C, H, W represent the channel count, length, and width
of the feature map, respectively. The encoder produces feature maps comprising four
layers. In Figure 2, we have performed a reinforcement operation using this attention
mechanism for the feature maps generated at each layer of the encoder. Consequently,
the feature maps fed into the attention network exhibit four distinct shapes: (64, 128, 128),
(128, 64, 64), (256, 32, 32), and (512, 16, 16). ’Conv’ denotes torch.nn.conv2d(), with the
following numbers indicating the quantity of convolutional kernels. ’LN’ signifies the
implementation of a normalization layer utilizing the Layer Norm type. Post LN mod-
ule construction, its resulting shape aligns with the input shape. ’Parameter’ refers to
torch.nn.Parameter, a subclass of torch.Tensor utilized primarily as trainable parameters
in nn.Module. A critical distinction from torch.Tensor lies in nn.Parameter automatic
recognition as a trainable parameter in nn.Module, i.e., its inclusion in the iterator parame-
ter(). In contrast, regular tensors within the module, not identified as nn.Parameter(), are
excluded from the parameters. Notably, we quote this attention mechanism from https:
//github.com/likyoo/open-cd/blob/main/opencd/models/backbones/tinynet.py (ac-
cessed on 16th December 2023).

2.1.4. Decoder

In this paper, we use a lightweight decoder called SegformerHead, composed only
of MLP layers. The specific structure of this decoder is depicted in Figure 5. Initially,
multilevel features (referred to as “Features”) extracted from the encoder and connection
layers are processed through MLP layers, consolidating the channel dimensions. Then,
in the second step, each feature map is unsampled to one-fourth of the original size (with
one-fourth of the original number of channels), followed by concatenating all feature
maps. Finally, another MLP layer leverages these fused features to predict classification
masks with an H × W × Ncls resolution, where Ncls denotes the number of classes. In the
context of change detection tasks, Ncls is typically set to 2, discerning between change
and no change. The SegformerHead structure employed in our work is characterized by
simplicity, composed exclusively of MLP layers, thereby alleviating the need for manual
design, and reducing computational demands.

https://github.com/likyoo/open-cd/blob/main/opencd/models/backbones/tinynet.py
https://github.com/likyoo/open-cd/blob/main/opencd/models/backbones/tinynet.py
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Figure 4. Global attention mechanisms.

Figure 5. Detailed structure of the SegformerHead decoder.

2.1.5. Details of Loss Function

Imbalance between positive and negative samples is often observed in change de-
tection datasets. For instance, in the popular change detection dataset LEVIR-CD [10],
positive samples account for merely 4.65%, while the proportion of positive samples is
as low as 4.33% in WHU-CD [28]. This phenomenon is not exclusive to building change
detection datasets; it is also present in forest change detection datasets, where an imbalance
between positive and negative samples is observed. Specifically, the pixel area of the
changed regions is significantly smaller than that of the unchanged regions. To mitigate
the impact of sample imbalance and improve model performance in change detection, we
employ the strategy of online hard example mining (OHEM) during network training with
a cross-entropy loss function:

LCE(pi, qi) = −
c

∑
i=1

pi log(qi) (5)
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Loss(pi, qi) = OHEM(LCE) (6)

where C is used to denote the number of categories, pi to represent the ground truth,
and qi to signify the model prediction. To enhance the effectiveness of network parameters,
OHEM can be explained in the following three steps:

(1) The OHEM algorithm selects hard examples that are difficult to train as training
samples. Hard examples refer to samples with diversity and high losses.

(2) The selection of hard examples is based on the loss value of each ROI, where those with
the highest loss are chosen. In practical implementation, the initial single ROI Network is
augmented into two ROI Networks, with shared parameters. The first ROI Network ex-
clusively executes forward operations, primarily serving the purpose of loss computation.
The second ROI Network incorporates both forward and backward operations. It takes
challenging examples as input, computes loss, and conducts gradient backpropagation.

(3) Additionally, the losses between ROIs with high intersection-over-union (IoU) val-
ues are relatively similar. As a result, we use nonmaximum suppression (NMS) to
eliminate ROIs with a high IoU. The threshold for sample screening is set to 0.7.

This algorithm’s strength resides in its ability to mitigate imbalanced data categories
without necessitating the adjustment of positive and negative sample ratios. Additionally,
with the expansion of the dataset, the algorithm’s enhancement becomes more conspicuous [29].

2.2. Dataset and Evaluation Metrics

In this section, we will introduce the experimental data and the research environment,
conduct model comparisons, and evaluate metrics, and subsequently engage in a detailed
discussion on the experimental outcomes pertaining to individual datasets as well as cross-
domain datasets. It should be noted that the cross-domain datasets used in this context
were not included in the training process.

2.2.1. Dataset

We conducted a series of comparative experiments to verify the effectiveness of our
method using the commonly used public evaluation datasets, LEVIR-CD and WHU-CD,
in the field of change detection. Our model was trained on the LEVIR-CD dataset and
evaluated on both the LEVIR-CD and cross-domain WHU-CD test sets. The LEVIR-CD
dataset comprises 637 pairs of high-resolution images, each with a pixel density of 0.5 m.
Each image measures 1024 × 1024 pixels. These images were systematically gathered from
20 distinct regions across various cities in the United States, encompassing Austin, Lakeway,
Bee Cave, Buda, Kyle, Manor, Pflugerville, Dripping Springs, and several other locations
within the state of Texas. The dataset was partitioned regarding the official method into
training, validation, and test sets, with a ratio of 7:1:2. The WHU-CD dataset contains a pair
of very high-resolution (0.2 m/px) image patches measuring 32,507 × 15,345 px, captured
from aerial image data in New Zealand. We used the official data segmentation method
to partition the test set, consisting of 744 pairs of 256 × 256-px images. Normalized mean
values were calculated for each channel of all images in the two datasets, and the results are
shown in Figure 1a. Notably, WHU-CD and LEVIR-CD differ significantly in color space,
which is an important consideration for studying cross-domain models.

2.2.2. Evaluation Metrics

Accuracy metrics are computed at the pixel level. Hence, to quantitatively assess
the CrossCDNet model’s performance, we utilized four common metrics: precision, re-
call, F1-score [30], and IoU, in a comparative experimental study on change detection.
Among these metrics, the F1-score, as the harmonic mean of precision and recall, offers
a more precise representation of the model’s performance on imbalanced datasets. IoU
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represents the intersection over union between the detection results and the actual ground
truth. The specific calculation formulas are as follows:

Precision =
T P

T P+F P
(7)

Recall =
T P

T P+F N
(8)

F1-score =
2 × Precision × Recall

Precision + Recall
(9)

I o U =
T P

T P+F N+F P
(10)

In these equations, TP is the area of pixels where positive samples are correctly
predicted, FP is the area of pixels incorrectly predicted as positive samples, and FN is the
area of pixels where positive samples are missed.

2.3. Training Set and Implementation Details

We implemented the CrossCDNet model using the PyTorch framework and verified
its functionality on Open-CD, a toolbox for change detection. During training, we set the
batch size to 8 and used AdamW as the optimizer with a learning rate of 1 × 10³. To further
enhance the model’s generalization ability, we incorporated simple data augmentation
methods, such as random flipping and rotation, during the model training phase. We
conducted comparative experiments on the Tesla V100S GPU (32GB), training the model
for 40k iterations until it reached convergence. Table 1 shows a comparison of model sizes,
and, although CrossCDNet has a larger number of parameters, the above servers we used
were still able to accomplish the training and testing tasks quickly.

Table 1. Model size comparison.

Model Flops (G) Params (M)

FC-EF 3.244 1.353
FC-SIAM-CONC 4.989 1.548
F C-SIAM-DIFF 4.385 1.352

BIT 8.749 2.99
Changeformer 2.455 3.847

SNUNet 46.697 12.035
Hanet 20.822 3.028

CrossCDNet 20.371 12.569

2.4. Comparison and Analysis
2.4.1. Comparison with Other Models

In this study, we compared several representative change detection methods. FC-EF,
FC-Siam-conc, and FC-Siam-diff [31] are UNet-based change detection baseline models that
use a straightforward fusion of Siamese neural networks. STANet is a Siamese network
that integrates spatiotemporal attention, with the objective of exploring the utilization of
spatiotemporal relationships in change detection. SNUNet is a high-performance change
detection model that uses dense skip connections to alleviate the problem of location infor-
mation loss in deep neural networks. BIT [17] is a hybrid model of CNN and transformer
that models the context in the spatiotemporal domain efficiently by employing a bitemporal
image transformer. ChangeFormer [32] is a conjoined network based on transformers that
integrates a hierarchical transformer encoder and an MLP decoder in the conjoined network
to effectively present long-distance details. Transformer structures are employed in both
BIT and ChangeFormer.
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A model demonstrating high test accuracy on untrained datasets holds substantial
practical value. The CrossCDNet model was trained using the LEVIR-CD dataset and
subsequently validated on the test sets of both LEVIR-CD and WHU-CD.

2.4.2. Compare with Different Structures of CrossCDNet

In a similar vein, to assess the effectiveness of the IBN module proposed in this paper
and the utilization of IN, while also expanding the potential applications of CrossCDNet,
we conducted specific ablation experiments. These experiments involved modifying the
structure of CrossCDNet based on the trials. Within these experiments, CrossCDNet-a signifies
the utilization of the IBN module for all downsampling operations in the encoder section,
CrossCDNet-b signifies the absence of IBN modules in the encoder part, and CrossCDNet-c
indicates the application of BN to the Conv Block depicted in Figure 3a, with the rest of the
structure remaining unaltered. Detailed modifications are illustrated in Figure 6.

Figure 6. Schematic representation of the structural changes in CrossCDNet. The red boxes show
how the models differ from CrossCDNet.

3. Results
3.1. Results of All Methods

In the initial phase, we conducted a comparative analysis to assess the accuracy of var-
ious change detection models employing the LEVIR-CD test dataset. This analysis involved
calculating precision, recall, F1-score, and IoU concerning detected changes, as elaborated
in the introductory section of Table 2. Most of the indicators consistently illustrate that
CrossCDNet showcases robust performance and competitiveness. CrossCDNet attains a
precision rate of 93.35%, a recall rate of 90.08%, an F1-score of 91.69%, and an IoU of 84.65%
across these metrics; all the metrics display optimal performance.

Subsequently, we conducted experiments using a cross-domain dataset. A model
demonstrating high test accuracy on untrained data holds significant practical application
value. We subjected our model to testing using the WHU-CD dataset, and the test results
are presented in the latter part of Table 2. Within the WHU-CD dataset, CrossCDNet
achieved precision, recall, F1-score, and IoU values of 77.43%, 76.76%, 77.09%, and 62.73%,
respectively. Importantly, our model outperformed all the evaluation metrics in these re-
sults. This unequivocally illustrates the superiority of our model in cross-domain detection
and its exceptional generalization capabilities.

In the realm of cross-domain detection, the CrossCDNet model demonstrates superior
precision concerning the F1-score and IoU metrics. Thus, this experimental outcome
substantiates the efficacy of the two methodologies employed in this study for enhancing
the model’s capacity for generalization. This enhancement has the potential to elevate the
performance of change detection models in the context of cross-domain detection.
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Table 2. Comparison table of ablation experiment results (training set: LEVIR-CD).

Method LEVIR-CD (%) WHU-CD (%)
Precision Recall F1-Score IoU Precision Recall F1-Score IoU

FC-EF [31] 86.91 80.17 83.40 71.53 19.70 62.52 29.96 17.26
FC-Siam-diff [31] 89.53 83.31 86.31 75.92 41.51 51.41 45.53 29.47
FC-Siam-conc [31] 91.9991.9991.99 76.77 83.69 70.96 49.59 44.29 46.79 30.54

BIT [17] 89.18 87.17 88.16 78.83 73.0473.0473.04 66.00 53.07 53.0753.0753.07
ChangeFormer [32] 89.24 89.3789.3789.37 89.31 80.68 65.7365.7365.73 53.41 58.93 41.78

SNUNet [16] 92.1192.1192.11 90.0790.0790.07 91.0891.0891.08 83.6183.6183.61 58.41 71.1671.1671.16 64.1564.1564.15 47.2347.2347.23
HANet [27] 91.21 89.36 90.2890.2890.28 82.2782.2782.27 57.50 67.6567.6567.65 62.1662.1662.16 45.10
CrossCDNet 93.3593.3593.35 90.0890.0890.08 91.6991.6991.69 84.6584.6584.65 77.4377.4377.43 76.7676.7676.76 77.0977.0977.09 62.7362.7362.73

Color convention: bestbestbest, 2nd-best2nd-best2nd-best, and 3rd-best3rd-best3rd-best for all models.

In order to verify the effectiveness of our method, we conducted a reverse experiment
to test the portability of the model. Therefore, we conducted the same experiments de-
scribed above using WHU-CD as the training dataset and LEVIR-CD as the test dataset.
The results of the test are shown in Table 3. CrossCDNet also shows strong competitiveness
regarding the model trained by WHU-CD. When WHU-CD is the test set, the indexes are
precision 95.79%, recall 91.96%, F1-score 93.83%, and IoU 88.38%, and the comprehensive
evaluation index F1-score is only 0.15% lower than the first ChangerFormer. Meanwhile,
in the cross-domain dataset LEVIR-CD test, CrossCDNet ranked third in accuracy rate
with 79.24%, and the rest of the indicators are all optimal. Combined with the detection
results in Table 1, CrossCDNet has excellent modeling ability, detection accuracy, and
model generalization ability.

Table 3. Comparison table of results of ablation experiments (training set: WHU-CD).

Method WHU-CD (%) LEVIR-CD (%)
Precision Recall F1-Score IoU Precision Recall F1-Score IoU

FC-EF 81.69 68.97 74.80 59.74 73.52 4.53 8.54 4.46
FC-Siam-diff 46.24 74.59 57.09 39.95 86.3586.3586.35 4.47 8.51 4.44
FC-Siam-conc 39.90 85.77 54.46 37.4 67.73 4.80 8.96 4.69

BIT 87.45 91.8891.8891.88 89.6189.6189.61 81.1881.1881.18 64.41 10.4410.4410.44 17.9717.9717.97 9.879.879.87
ChangeFormer 96.4296.4296.42 91.6691.6691.66 93.9893.9893.98 88.6488.6488.64 86.6186.6186.61 39.3539.3539.35 54.1154.1154.11 37.0937.0937.09

SNUNet 88.72 86.01 87.34 77.53 33.71 6.73 11.22 5.94
HANet 89.0789.0789.07 87.72 88.39 79.20 21.17 7.89 11.50 6.10

CrossCDNet 95.7995.7995.79 91.9691.9691.96 93.8393.8393.83 88.3888.3888.38 79.2479.2479.24 41.7341.7341.73 54.6754.6754.67 37.6237.6237.62

Color convention: bestbestbest, 2nd-best2nd-best2nd-best, and 3rd-best3rd-best3rd-best for all models.

The visualization results pertaining to change detection are presented in Figures 7 and 8.
Figure 7 showcases the visualization outcomes of various models applied to the LEVIR-CD
dataset, while Figure 8 illustrates the visualization outcomes for diverse models on the
WHU-CD dataset. Upon scrutinizing the visual outputs from both datasets, it becomes
evident that the detection results obtained by CrossCDNet exhibit a closer alignment
with the ground truth labels when compared to alternative models. This superiority is
manifested through a reduction in the occurrence of false positive and false negative regions.
It is noteworthy that this outcome corresponds to the precision and recall values reported
in Table 2.

The CrossCDNet model distinguishes itself from other change detection models by
leveraging the statistical benefits of feature divergence at various depths through the
simultaneous utilization of IN and BN. This strategy upholds visual appearance invariance
while preserving discriminative features in images. The amalgamation of these techniques
elevates the model’s capacity for learning and generalization, all the while keeping the
computational costs constant. The quantified outcomes presented in Tables 1 and 2, along
with the visual representations in Figures 7 and 8, precisely affirm this distinctive feature.
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Figure 7. A visual comparison of various methods is conducted on the LEVIR-CD test dataset. To en-
hance clarity and convenience, different colors are utilized to facilitate a more distinct visualization of
the results: true positives (TP) are represented in white, false positives (FP) in yellow, true negatives
(TN) in black, and false negatives (FN) in red. Subfigures (a–e) are five sets of images selected from
the LEVIR-CD.

Figure 8. A visual comparison of various methods is conducted on the WHU-CD test dataset. True
positives (TP) are represented in white, false positives (FP) in yellow, true negatives (TN) in black,
and false negatives (FN) in red. Subfigures (a–e) are five sets of images selected from the WHU-CD.

3.2. Results of Ablation Experiments

We leverage IBNM in a versatile manner to craft diverse architectural configurations
for CrossCDNet, thereby enhancing its adaptability in numerous contexts. Following the
experimental approach detailed in Section 3.1, we conducted a comprehensive performance
evaluation of our model using both the LEVIR-CD and WHU-CD datasets. The specific com-
parative outcomes are documented in Table 4. Among the tested models, the CrossCDNet-a
architecture exhibits superior performance on the LEVIR-CD dataset, achieving the highest
recall, F1-score, and IOU. Only the F1-score and IOU values of the CrossCDNet-a architec-
ture surpass CrossCDNet. The results obtained from the cross-domain dataset underscore
the advantages of the CrossCDNet architecture, with all four metrics excelling, except for
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precision. This ablation experiment thoroughly validates the superior performance of Cross-
CDNet in cross-domain change detection and the adaptability of its variant architectures in
diverse environmental contexts.

Table 4. Comparison table of ablation experiment results.

Method LEVIR-CD (%) WHU-CD (%)
Precision Recall F1-Score IoU Precision Recall F1-Score IoU

CrossCDNet-a 92.70 90.7390.7390.73 91.7091.7091.70 84.6884.6884.68 78.5878.5878.58 74.6374.6374.63 76.5676.5676.56 62.0262.0262.02
CrossCDNet-b 92.76 90.3790.3790.37 91.55 84.41 76.95 70.54 73.61 58.24
CrossCDNet-c 93.3493.3493.34 90.04 91.66 84.60 71.15 72.61 71.87 56.10
CrossCDNet 93.3593.3593.35 90.08 91.6991.6991.69 84.6584.6584.65 77.4377.4377.43 76.7676.7676.76 77.0977.0977.09 62.7362.7362.73

Color convention: bestbestbest and 2nd-best2nd-best2nd-best.

Figures 9 and 10 depict the visualized results of various CrossCDNet models applied
to the LEVIR-CD and WHU-CD datasets, respectively. Notably, Figure 10 reveals a close
alignment between the CrossCDNet model’s cross-domain change detection outcomes and the
ground truth label, particularly in the context of the WHU-CD test dataset. However, when
examining the detection results of the CrossCDNet-c architecture, Figure 10e conspicuously
exhibits a significant number of false positives. This issue primarily stems from the absence of
the IN module within the Conv Block connection block, as illustrated in Figure 5c.

Figure 9. Visualization results of ablation experiments in the LEVIR-CD dataset. True positives
(TP) are represented in white, false positives (FP) in yellow, true negatives (TN) in black, and false
negatives (FN) in red. Subfigures (a–e) are five sets of images selected from the LEVIR-CD.
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Figure 10. Visualization results of ablation experiments in the WHU-CD dataset. True positives
(TP) are represented in white, false positives (FP) in yellow, true negatives (TN) in black, and false
negatives (FN) in red.Subfigures (a–e) are five sets of images selected from the WHU-CD.

4. Discussion

In this section, we shall conduct an analysis and discussion regarding the findings
presented in Section 3. Our objective is to investigate a fundamental question in the realm
of cross-domain change detection: which are more important, shallow spatial features or
deep semantic features?

In order to address the issue of comparison, we have introduced a novel architecture
named CrossCDNet’ as shown in Figure 11, which distinguishes itself from the original
CrossCDNet by exclusively employing IBNM in the deeper layers, specifically layers 3
and 4, while abstaining from its use in layers 1 and 2. Below, we will provide a detailed
description of its structure and present the results obtained using WHU-CD.

Figure 11. Encoder network structure of CrossCDNet’.

This structure, distinct from the original CrossCDNet, enables a more profound explo-
ration of the IBNM module’s influence on either shallow or deep network features.

Upon comparing the outcomes from various networks, the specific detection accu-
racy and visualization results are presented in the table below. Among all the precision
assessment metrics, the CrossCDNet architecture consistently yields the highest values,
signifying its superior performance in cross-domain change detection when compared
to CrossCDNet’. When scrutinizing the results of CrossCDNet-b in Table 5, it becomes
evident that, apart from a slightly elevated precision as compared to CrossCDNet’, all the
other metrics exhibit lower values. This outcome underscores the notion that the IBNM
module is better suited for shallow networks. In the cross-domain change detection net-
work model introduced in this paper, shallow spatial features are deemed more pivotal
than deep semantic features, although employing IBNM in deep semantic features does
yield certain benefits.
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Table 5. Comparison of CrossCDNet with CrossCDNet-b and CrossCDNet’ detection results in WHU-CD.

Method Precision (%) Recall (%) F1-Score (%) IoU(%)

CrossCDNet 77.4377.4377.43 76.7676.7676.76 77.0977.0977.09 62.7362.7362.73
CrossCDNet-b 76.9576.9576.95 70.54 73.61 58.24
CrossCDNet’ 75.48 73.1573.1573.15 74.374.374.3 59.159.159.1

Color convention: bestbestbest and 2nd-best.2nd-best.2nd-best.

5. Conclusions

In this paper, we propose a Siamese neural network, named CrossCDNet, for cross-
domain change detection. We formed the IBNM by combining IN and BN in a specific
order and incorporated it as a part of the encoder backbone in the twin neural network to
extract feature maps at each layer. In comparison to other models, CrossCDNet exhibits
noteworthy advancements in modeling capability and detection accuracy on one dataset
while also demonstrating better generalization ability on another dataset. We compare
various combinations of IBNM and attention mechanisms utilized by CrossCDNet to
address diverse application scenarios.

In the initial phase, we conducted a comprehensive assessment of multiple models
using the LEVIR-CD dataset and the WHU-CD dataset, encompassing FC-EF, FC-Siam-
diff, FC-Siam-conc, BIT, ChangeFormer, SNUNet, HANet, and CrossCDNet. Following
both quantitative and qualitative analysis of diverse accuracy metrics such as precision,
recall, F1-score, and IOU, as well as a meticulous review of the visual outcomes for each
model, our findings can be summarized as follows: CrossCDNet is an excellent-performing
model, exhibiting the closest alignment with ground truth labels on both the LEVIR-CD
dataset and the cross-domain detection dataset WHU-CD. On the LEVIR-CD dataset,
CrossCDNet achieves a precision of 93.35%, recall of 90.08%, an F1-score of 91.69%, and an
IOU of 84.65%. Meanwhile, on the WHU-CD dataset, the corresponding metrics stand
at a precision of 77.43%, recall of 76.76%, F1-score of 77.09%, and IOU of 62.73%. This
outcome unequivocally underscores the superior modeling capacity, detection precision,
and generalization capabilities of CrossCDNet.

Subsequently, we introduced modifications to the encoder component of the Cross-
CDNet architecture and conducted a series of ablation experiments. As a result of these
experiments, it became evident that, within the domain of cross-domain change detection,
specifically concerning the WHU-CD dataset, CrossCDNet exhibited the most favorable
overall accuracy metrics. Remarkably, in the evaluation of the LEVIR-CD dataset, the struc-
ture that outperformed in terms of overall accuracy metrics was recognized as CrossCDNet-
a. Simultaneously, while examining the visual results, a high degree of consistency with
the quantitative accuracy evaluations was noted.

In the concluding section, we delve into the inquiry, “In the context of cross-domain
change detection, which holds greater significance: shallow spatial features or deep seman-
tic features?” Following extensive deliberation and empirical investigations, our findings
have unveiled that, within the domain of cross-domain change detection, IBNM proves to
be better suited for handling shallow spatial features. Consequently, in the cross-domain
change detection network model introduced in this research, it becomes evident that
shallow spatial features bear greater importance than their deep semantic counterparts.

Moving forward, we will concentrate on studying the application of the decoder
structure in cross-domain change detection and enhancing the generalization capability of
our model even more.
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