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Abstract: The spatiotemporal distribution of ecosystem service values (ESVs) and ecological risk are
critical indicators to represent the regional ecological protection level and potential of sustainable
development, which largely depend on land-use patterns. Aiming to contribute to global climate mit-
igation, China has proposed dual-carbon goals that would remarkably influence the land-use/cover
change (LUCC) distribution. Based on the Landsat land cover data of 2000, 2010 and 2020 and multi-
source satellite products, several driving factors are integrated into the patch-generating land use
simulation (PLUS) model to simulate future LUCC patterns for the Guangdong–Hong Kong–Macao
Greater Bay Area (GBA) under rapid urbanization, cropland protection and carbon neutral (CN)
scenarios from 2020 to 2050. Spatial–temporal ecosystem service and ESVs are allocated using IN-
VEST and the equivalent factor method and thus ecological risks are evaluated using the entropy
method. Results indicate that forest growth is the largest under the CN scenario, especially in the
northwestern and northeastern GBA, exceeding 25,800 km2 in 2050, which results in both the highest
habitat quality and carbon storage. The largest ESVs, reaching higher than 5210 yuan/pixel, are found
in the CN scenario, particularly expanding toward the suburban area, leading to the lowest ecological
risks. From 2020 to 2050, habitat quality, carbon storage and ESVs improve, while ecological risks
decline in the CN scenario. This research provides implications for economic and ecological balanced
development and gives references to the carbon-neutral pathway for the GBA.

Keywords: land use pattern; scenario simulation; ecosystem services; carbon neutral; spatial aggregation

1. Introduction

Ecosystem services (ES), connecting the natural environment with human society,
make continuous contributions to human welfare, which largely depends on land use/cover
change (LUCC) and the corresponding strategies. In recent decades, China proposed reform
and opening up, which means that international trade and development opportunities
have largely increased. It leads to rapid economic growth and dramatic LUCC, resulting in
severe degradation of the ES quality. In recent years, China proposed a dual-carbon strategy
to control carbon emissions, finally achieving sustainable development, which would po-
tentially affect the ES evolution. To quantitatively measure ES changes, ecosystem service
value (ESV) changes and the accompanying ecological risk assessment comprehensively
reflect the ecosystem function and potential threat to the ecosystem. Therefore, the evalua-
tion of future LUCC-induced ESV changes and the exposed ecological risks under multiple
socio-economic and ecological pathways, giving a glimpse into reasonable decision making
on land-use management and ecological protection, deserve special attention.
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In order to gain a better understanding of the potential impact of future policies on
the spatiotemporal distribution of LUCC, a series of scenarios are designed and combined
with the future LUCC [1]. Zhang et al. [2] and Schirpke et al. [3] proposed four scenarios to
simulate LUCC, concerning different development patterns such as cropland protection,
forest protection, rapid urbanization and so on. In contrast to earlier scenarios, the carbon
neutrality scenario prioritizes the enhancement of carbon storage capacity and the achieve-
ment of sustainable development goals, imposing strict limitations on urban expansion.
How different scenarios would stimulate multiple land-use conversions still needs to be
investigated. A variety of LUCC models have been developed in recent decades, such as
CLUE-S model [4] and FORE-SCE model [5]. Liang et al. [6] proposed a patch-generating
land use simulation (PLUS) model, which uses a multi-type patch generation strategy and
models the simultaneous evolution of land-use patches and has been widely applied in
the LUCC simulations. Gao et al. [7] applied the PLUS to simulate the LUCC of Nanjing
in 2025 under four scenarios; Li et al. [8] used the PLUS to simulate the Sichuan–Yunnan
ecological barrier in 2026 under three scenarios. Therefore, the PLUS model, an approach
that combines a CA model with a patch-generating simulation strategy, is a suitable tool
for investigating the interactive relationship between policies and land-use patterns.

To quantitatively evaluate ecosystem changes induced by LUCC, the Integrated Valua-
tion of Ecosystem Services and Tradeoffs (INVEST) model is widely used in the assessment
of ES changes, which contains nine terrestrial modules and eight marine modules, including
carbon storage and sequestration, crop production, habitat quality, nutrient delivery ratio
and so on [9–16]. It uses land-use data and related economic and biophysical data to predict
the relevant ES under multiple scenarios. In recent years, ES has been further classified into
three top categories by the European Environment Agency (EEA)—provisioning, regulating
and maintenance, and cultural services [17]—which can be quantitatively evaluated by
ESV changes, which assign values to the ES based on LUCC and indicate the ecological
sustainable capability [18]. To calculate ESVs, Costanza et al. [19] proposed a global ecosys-
tem service equivalent factor table. Then, Xie et al. [20] evaluated the ecological assets of
the Tibetan Plateau according to the ecosystem service value per unit area based on the
Chinese terrestrial ecosystem. Xie et al. [21] improved the equivalent coefficients table
for ESVs per unit area of China, which has been widely used to calculate ESVs [18,22–24].
Related research is shown in Table 1. However, the impacts of LUCC on ES, ESV and their
induced ecological risks are rarely considered together in previous studies. We provide a
comprehensive evaluation of the impacts of LUCC on various ecological indicators. In our
research, the differences of ES and ESV among three scenarios deserve special attention.

Table 1. Studies related to land-use simulation and ecological service and risk assessment.

Research Land Use Change
Scenario Region Ecological Service

Value Assessment
Ecological Risk

Assessment

Hu et al. [18] Historical the Pearl River Delta
(PRD)

the equivalent
coefficients table

method

/

Liu et al. [22] Historical the PRD

Schirpke et al. [3]

Business as usual
scenario,

‘Liberalization’
scenario, ‘Rewilding’

scenario,
‘Food sovereignty’

scenario

South Tyrol, Italy

derived from the ES
supply, and was
weighted by the

socio-cultural
preference values

Jiang et al. [25] SSP1, SSP2, SSP3, SSP4,
SSP5 Zhengzhou

eco-environmental
quality index,

ecological contribution
rate of land use

transition
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Table 1. Cont.

Research Land Use Change
Scenario Region Ecological Service

Value Assessment
Ecological Risk

Assessment

Peng et al. [26]

Natural increase
scenario, economic

development scenario,
ecological protection

scenario

Wuhan

the equivalent
coefficients table

method
/

Zhang et al. [2]

Natural development
scenario, cultivated

land protection
scenario, ecological
protection scenario,
urban development

scenario

Wuhan

Jin et al. [27] Historical Delingha city

/

land use types, the loss
index of each land use

type

Xu et al. [28]
Natural growth

scenario, ecological
protection scenario

Xinjiang
landscape loss index,
ecological sensitivity

index

Zhang et al. [29] SSP1, SSP2, SSP3, SSP4,
SSP5 Fujian Delta region

landscape disturbance
index, the landscape
vulnerability index,
and land use types

Gao et al. [7]

BAU scenario, RED
scenario (maximum

economic benefit), ELP
scenario (maximize the

ecological benefit)

Nanjing
the equivalent

coefficients table
method

urban expansion
pressure, landscape
ecological risk, grain

reserve pressure,
ecological degradation

pressure

Ecological risk serves as an indicator to reflect the negative impacts of human activities
on the ecological environment [30,31]. In previous studies, ecological risk is usually evalu-
ated in two ways: based on risk sources and sinks [32–34] or on landscape patterns [29,35].
The method using risk sources contains three steps, including risk source identification,
receptor analysis, and evaluation of exposure and damage [36]. However, this method may
not comprehensively consider various risk sources, making it unsuitable for assessing local
ecological risks. Conversely, the method based on landscape patterns, which constructs
a risk assessment model according to the risk of each land patch, is more precise. The
ecological risk index (ERI), widely used to evaluate regional ecological risk, can quanti-
tatively evaluate ecological risk based on the land use type of each patch [27,37–39]. It
establishes a more intricate correlation between LUCC and ecological risk. However, it
solely takes into account the quantitative change of land use areas, without considering
the ecological aspects of LUCC, leading to an incomplete evaluation outcome. To address
this limitation, Gao et al. [7] incorporated the entropy method and ecological indicators,
such as ESVs and ecological capability (EC), into the ecological risk assessment model to
comprehensively evaluate the ecological effects on ecological risk. It has transitioned from
a simplistic evaluation of ecological risk based solely on the quantitative characteristics
of land use types to a comprehensive analysis that considers various factors, including
ESVs and EC. Some researchers use the Geodetector model to evaluate the spatial pattern
of NDVI and LAI [40,41], which is a reference to the evaluation of ecological risk.

In this paper, several problems need to be solved. Firstly, aiming to evaluate the
impacts of land-use policies on the future LUCC, three scenarios, including cropland
protection (CP) scenario, rapid urbanization (RU) scenario and carbon neutral (CN) scenario,
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are proposed to simulate different development patterns. Based on the historical land-use
data and driving factors, LUCC from 2030 to 2050 under three scenarios are simulated.
Secondly, in order to evaluate the spatiotemporal influence of LUCC on the ecological
system, both the equivalent coefficients method and the INVEST model are applied to
evaluate carbon storage, habitat quality changes and ESVsreferring to future scenarios.
Thirdly, the ecological risk among three scenarios in the future is assessed and the ecological
risk maps are generated. Finally, the generation of scientific suggestions and effective
support is expected to promote the sustainable development of the GBA region.

2. Materials and Methods
2.1. Study Area

The GBA, located in the middle of Guangdong Province, is a mega-urban agglomera-
tion over Southern China, spanning from 111.5◦E to 115.5◦E and 21.5◦N to 25◦N (Figure 1).
The GBA falls under the subtropical monsoon climate zone, with a mean annual rainfall
of 1600–2000 mm. The region’s vegetation primarily comprises subtropical evergreen
broadleaf forests. The GBA, an extensive area of 54,574 km2, is composed of Guangzhou,
Shenzhen, Huizhou, Zhuhai, Foshan, Dongguan, Jiangmen, Zhongshan, Zhaoqing and the
Hong Kong and Macau special administrative regions. After the reform and opening-up
of the 1980s, the GBA has undergone rapid economic development, thus causing urban
extension, land cover changes and large uncertainty in the ecological system evolution.
With the increasing densely distributed population and ecological land occupation, the
GBA gains great pressure on its cropland redline retention and forest protection which is
closely related to the land management pathways and the ecological policies. Therefore, the
GBA is a typical representative that reflects LUCC and the induced ecological environment
change in China.
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Figure 1. General location of Guangdong–Hong Kong–Macao Greater Bay Area.

2.2. Data Sources
2.2.1. Land-Use Data and Driving Factors

Land-use data for the years 2000, 2010 and 2020, at a resolution of 30 m, are obtained
from the Chinese Academy of Sciences and harmonized into 6 basic land use types (crop-
land, grassland, forest, shrubland, urban and other) [42]. The product is produced by
combining a time series of Landsat imagery (Landsat-TM/ETM/OLI) and high-quality
training data from the Global Spatial Temporal Spectra Library on the Google Earth Engine
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computing platform. Both evergreen broadleaved forests and deciduous broadleaved
forests with different traits are merged into forests. All types of shrubland, including
evergreen shrubland, deciduous shrubland and sparse shrubland, are classified as shrub-
land. Rainfed cropland and herbaceous cover are considered to be cropland and grassland,
respectively. Impervious surfaces are regarded as urban areas. Wetlands, water bodies, per-
manent ice and snow are merged into the “other” category (Table S1). Nine driving factors
are adopted in the PLUS model, which includes climatic data (precipitation, temperature,
vapor pressure deficit and solar radiation), socioeconomic data (GDP, population), DEM
data, road network, river, railway data and soil type (Table S2, Figure S2). These driving
factors data are all resampled to new data with a resolution of 30 m by ArcGIS.

2.2.2. Statistical Data

Statistical data are used in the calculation of ES and ESVs. The INVEST model used
in the ES evaluation requires carbon pool data and threat sources data to evaluate carbon
storage and habitat quality respectively. The carbon pool data is proposed by Wu et al. [43]
and the threat sources data is from Terrado et al. [44]. In order to calculate the standard
unit equivalent factor for the ESVs, the production values of both the early indica rice and
the late indica rice are obtained from the national compilation of agricultural cost-benefit
information and the sown area data is obtained from the Guangdong Statistical Yearbook of
2020 (http://tjnj.gdstats.gov.cn:8080/tjnj/2021/directory/11/html/11-13.htm, accessed on
1 January 2021).

2.3. Methodology

In this research, the changes of future ESVs and ecological risks are evaluated for the
GBA region based on LUCC under three scenarios (cropland protection, rapid urbanization
and carbon neutral pathways) using the PLUS model, the INVEST, the equivalent coefficient
method and the entropy method. The flowchart is shown in Figure 2.
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2.3.1. Land Use Change Scenario

Cropland protection (CP) scenario: The goal of the CP scenario is to prevent the en-
croachment of other land use types on cropland. With reference to The National Territorial
Plan 2016–2030, China set the target that the retention area of cropland is 1.865 billion mu in
2020 and 1.825 billion mu in 2030. Based on this, the changing rate of cropland is calculated
and applied to evaluate the cropland demands between 2030 and 2050. Accordingly, the
changing rates for grassland, forest and shrubland are controlled based on their areas
in 2020. Conversions between cropland, forest and shrubland are allowed while urban
expansion is restricted. No changes are made to the area of “other” land use type.

Rapid urbanization (RU) scenario: The RU scenario prioritizes urban expansion
regardless of its impact on ecology. During the period of 2010–2020, the rapid economic
development has led to a substantial rate of urban expansion. Based on this, the speed of
urban expansion from 2010 to 2020 is utilized to estimate urban area changes from 2030 to
2050. The probability of conversion from cropland, forest and shrubland to urban increases
while the changing rates of cropland, forest, grassland and shrubland are controlled based
on their respective areas in 2020. The area of “other” remains unchanged.

Carbon neutral (CN) scenario: The carbon neutral scenario aims to maximize carbon
storage and sequestration while ensuring food security. The area of forest in China will
increase by 47 million hectares from 2020 to 2050 [45]. Based on the proportional area of
forest in the GBA compared to the national forest area in 2020 and its growth rate, forest
demands in the GBA between 2030 and 2050 are evaluated. While the preservation of
cropland is a priority, the conversions from shrubland and grassland to forest are controlled
based on the current area of grassland and shrubland in 2020. To achieve the desired
outcome, the total area of forest, shrubland and grassland in 2050 will be equal to their
combined total in 2020. The area of “other” land use type remains unchanged.

2.3.2. Land Use Change Simulation

In order to promote high-resolution dynamic simulation of LUCC, a patch-generating
land-use simulation model (PLUS model) proposed by Liang et al. [6] is adopted to explore
the relationships between LUCC and different driving factors. Based on a land expansion
analysis strategy (LEAS), this model proposes a rule mining framework to obtain the devel-
opment potential of different land use types. Following the LEAS part, land-use expansion
of two years is first extracted and sampling points are randomly selected according to
the types of the land-use expansion. Random Forest Classification (RFC) algorithms are
then used to calculate the relationship between driving factors and the growth of each
land use type. The relationship between the land use conversions and nine driving factors
is analyzed. Finally, a cellular automata (CA) model with a patch-generating simulation
strategy is used to simulate future land-use patterns.

2.3.3. Ecosystem Service Assessment

Ecosystem service changes are assessed based on the future LUCC (2030, 2040, 2050)
pattern under multiple scenarios using the INVEST 3.12.0 model [46,47]. Two typical kinds
of ES, including carbon storage and habitat quality, are selected to evaluate their responses
to LUCC driven by different policies and measures. The Carbon Storage and Sequestration
module of the INVEST model is used to evaluate the regional amount of carbon storage
and carbon sequestration. Carbon storage is derived from four carbon pools: aboveground
biomass, belowground biomass, soil and dead organic matter. Since the dead organic
contains a small amount of carbon, we only consider the sum of aboveground biomass,
belowground biomass and soil as the total carbon storage. The habitat quality is also
calculated by the INVEST, which requires the LUCC map, threats table, sensitivity table
and a half-saturation constant. The threats table and sensitivity table are adopted from
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Terrado et al. [44]. The half-saturation constant is set as 0.5 by default while the habitat
quality is calculated by the following formula:

Qxj = Hj ×
(

1 −
(

Dz
xj

Dz
xj + kz

))
(1)

where Qxj represents the habitat quality in grid cell x with jth land use type; Hj represents
the habitat score assigned to jth land use type, which ranges from 0 to 1. The higher the
habitat score, the better the habitat quality.

2.3.4. Ecosystem Service Value Calculation

Based on the LUCC, we use a new dynamic equivalent factor table proposed by
Xie et al. [21] to calculate ESVs, which is shown in Table 2. The standard unit equivalent factor
refers to the economic value of the annual average natural grain yield per hectare of cropland,
which indicates the early indica rice and the late indica rice in GBA. According to the method
of Xie et al. [48], the net profit of crop production per unit area of cropland ecosystem is used
as the standard unit equivalent factor. However, the net profit data is difficult to obtain and
we use one seventh of the grain production value [20] instead. In addition, the proportion of
sown area for grain crops is also considered. The formula is as follows:

D =
1
7
× (Se × Fe + Sl × Fl) (2)

where D represents the standard unit equivalent factor (yuan/mu). Se and Sl represent the
percentage of sown area of the early indica rice and the late indica rice in the total sown
area of rice, respectively. Fe and Fl represent the production values of the early indica rice
and the late indica rice (CNY/mu), respectively. According to the national compilation of
agricultural cost–benefit information, the production values of the early indica rice and
the late indica rice in 2020 were 1214.74 CNY/mu and 1372.81 CNY/mu, respectively,
while the sown area of the early indica rice and the late indica rice in 2020 are 1303.7 mu
and 1447.95 mu, respectively. Based on the formula, the standard unit equivalent factor is
calculated as 185.42 CNY/mu or 2781.25 CNY/ha.

Table 2. The equivalent coefficients for ESVs per unit area.

Top-Level Ecosystem
Services

Second-Level Ecosystem
Services Cropland Grassland Forest Shrubland Other

Provisioning service
Food production 1.36 0.38 0.31 0.19 0.8

Raw materials 0.09 0.56 0.71 0.43 0.23
Water supply −2.63 0.31 0.37 0.22 8.29

Regulating service

Gas regulation 1.11 1.97 2.35 1.41 0.77
Climate regulation 0.57 5.21 7.03 4.23 2.29

Environment purification 0.17 1.72 1.99 1.28 5.55
Hydrological regulation 2.72 3.82 3.51 3.35 102.24

Supporting service Soil conservation 0.01 2.4 2.86 1.72 0.93
Nutrient cycling maintenance 0.19 0.18 0.22 0.13 0.07

Urban type is unbeneficial for ecosystem service development and the value is 0 for each ecosystem service type.

Based on the equivalent factor table, the ecosystem service value can be calculated
as follows:

ESVij = VCij × Ai × D (3)

where ESVij represents the ecosystem service value of ecosystem service function type j in
land use type i. VCij represents the value coefficient for ecosystem service function type j
of land use type i. Ai represents the area of land use type i. Additionally, the relationship
between LUCC and ESVs is revealed using the circular migration flow analysis approach
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first [49,50]. Exploratory spatial data analysis is also adopted to investigate the spatial
distribution patterns and heterogeneity characteristics of ESVs in the study area [51,52].
We utilize ArcGIS10.8 and GeoDa1.18 to calculate Getis-Ord GI* to identify high- and
low-value aggregation areas of ESVs and determine the local state of cold and hot spots in
spatial ESVs changes under different scenarios.

2.3.5. Ecological Risk Assessment

Based on the risk assessment method of Gao et al. [7], nine indicators are selected
to evaluate the ecological risk, reflecting impact aspects from urban expansion pressure,
landscape ecological risk, grain reserve pressure and ecological degradation pressure,
respectively, which include several second-level indicators (Table 3). The urban expansion
intensity (UEI) is calculated using the specific time interval and the proportion of the
changing urban area over the specific time interval to the initial area of the urban area. The
land-use composite index (L) represents the extent of human development on land, which
quantifies the impact of human activities on the land by grading each land use type. The
disturbance index (LDI) is comprehensively determined by the patch density, the splitting
index and the landscape division index. Their weights are given based on the method of
Han et al. [53]. The calculation is realized using the software Fragstats 4.2. ESVs from the
previous part are applied in the calculation of the ecological capability (EC). The formula is
as below:

EC = ∑6
i=1 ai × ri × yi (4)

ri =
Pi

PNP
(5)

yi =
Pi

Ei
(6)

where ai is the area of ith LUCC. ri is the equilibrium factor. yi is the production factor. Pi is
the ESV per unit area of ith land use type. PNP is the average ESV per unit area of all land
use types. Ei is the national average ESV per unit area of ith land use type [54].

Table 3. The indicators of ecological risk and their weights.

Top-Level Indicators Second-Level Indicators Weight

Urban expansion pressure
Urban expansion intensity (UEI) 4.01%
The proportion of built-up land 38.91%

The land-use composite index (L) 20.74%

Landscape ecological risk Shannon’s diversity index 4.72%
Disturbance index (LDI) 2.33%

Grain reserve pressure The proportion of cropland 3.14%
The reduction rate of cropland 0.40%

Ecological degradation pressure Ecosystem service value (ESV) 12.77%
Ecological capacity (EC) 12.98%

The entropy method is used to evaluate the weight of each indicator [55], which is
based on that the smaller the entropy value, the greater the degree of dispersion of the
index, and the greater the influence of the index on the comprehensive evaluation, thus
giving a greater weight. We initially established a 3 km × 3 km fishing net, dividing the
GBA into 2590 sample units. Subsequently, we calculate the number and area of patches
for each land use type within each sample unit. Based on this, the values of nine indicators
within each sample unit are computed, and the weights of these indicators can be obtained
by the entropy method and standardization is performed according to their positively or
negatively impact direction. These indicators and their weights are shown in Table 3.
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3. Results
3.1. Land Use Demands under Future Scenarios

The different scenarios and pathways result in diverse land use demands (Figure 3).
In the RU scenario, the rapid urban expansion is the primary objective, resulting in a
high urban growth rate reaching 0.8. The urban is mainly transformed from cropland
and forest, which leads to a significant reduction of these two land use types. The rate
of forest loss is approaching 0.4. By contrast, the CP scenario attaches more importance
to cropland protection, resulting in a slower rate of cropland reduction. The CN scenario
aims to enhance regional carbon storage capacity, improve the ecological environment and
ensure food security. In this scenario, cropland and forest are well preserved, and the area
of cropland decreases at the same pace as the CP scenario. At the same time, the forest
increases significantly, with a growth rate of 0.38. According to our prediction, the area
of forest will exceed 24,500 km2 in 2050, with the large increase primarily coming from
shrubland. As a result, the shrubland experiences an extremely significant decrease in the
CN scenario, with an area substantially less than that in the CP and RU scenarios. In order
to reduce the impact of urban expansion, the CN scenario imposes strict restrictions on
urban expansion, with an expansion rate of approximately 0.2. The urban area will be less
than 10,000 km2 by 2050, which is far less than that in the CP and RU scenarios.
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scenario, grey columns are for 2050 rapid urbanization (RU) scenario and green columns are for 2050
carbon neutral (CN) scenario. Right: net change rate of 2050 compared with land use areas of 2020
under three scenarios.

3.2. Land Use Change Simulation

Validation for historical LUCC simulation is evaluated using 2000 and 2010 land-use
datasets and the distribution is shown in Figure S1. The kappa coefficient is 0.80 and
the overall simulation accuracy is 0.86, indicating that the PLUS model is effective for
capturing spatial landscape changes. Results of the simulation in 2030, 2040 and 2050
under three scenarios (CP, RU and CN) are simulated based on the 2020 land-use data
which is shown in Figure 4 and Table 4. Spatial pattern evolution under three future
scenarios demonstrates distinct characteristics as they prioritize different environmental
control targets. In the RU scenario, cropland and forest are heavily encroached by urban
expansion along the boundaries of the urban and rural areas from 2030 to 2050, which
leads to significant anthropogenic interference on the ecological system. In the CP scenario,
cropland is well preserved with most distributed in southwestern and southeastern GBA.
The urban expansion in the CP scenario is slower than that in the RU scenario. In the CN
scenario, the forest is expanding, especially to the northwestern and northeastern GBA, at
the cost of shrubland. Cropland is also well preserved to the same degree as the CP scenario.
The CN scenario shows the most evident changes in both type and total area of vegetation.
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Table 4. The percentage of each land use type for 2020, 2030, 2040 and 2050 under multi-scenarios.

Scenario Year Cropland Grassland Forest Shrubland Urban Other

/ 2020 31.247% 0.011% 32.228% 15.395% 15.110% 6.008%
CP 2030 30.577% 0.011% 30.725% 16.802% 15.878% 6.008%

2040 29.921% 0.012% 29.244% 17.667% 17.149% 6.008%
2050 29.279% 0.013% 28.228% 17.766% 18.704% 6.008%

RU 2030 28.695% 0.012% 28.793% 17.819% 18.673% 6.008%
2040 25.928% 0.011% 25.161% 19.814% 23.077% 6.008%
2050 22.832% 0.008% 22.712% 21.447% 26.994% 6.008%

CN 2030 30.577% 0.008% 37.009% 10.632% 15.766% 6.008%
2040 29.921% 0.006% 41.789% 5.855% 16.422% 6.008%
2050 29.279% 0.005% 44.313% 3.317% 17.078% 6.008%

3.3. Spatial–Temporal Changes of Ecosystem Service
3.3.1. Carbon Storage

Carbon storage changes are dependent on land-use patterns and exhibit significant
variations among three scenarios (Figure 5, Table 5). In the RU scenario, areas with high
carbon storage capacity are located in the northwestern and northeastern GBA, particularly
in Zhaoqing and Huizhou, whereas the central GBA, with a high economic level and dense
urbanization, shows low carbon storage capacity. The carbon storage capacity declines
from 2030 to 2050 due to the reduction of both cropland and forest. It is worth noting
that the carbon storage in the central GBA is declining rapidly, showing an extensive
decreasing trend to the outward. The spatiotemporal distribution and growing trend of
carbon storage changes in the CP scenario are similar to those in the RU scenario. However,
the total carbon storage capacity of GBA in the CP scenario is higher than that in the RU
scenario. The CN scenario exhibits the most abundant carbon storage capacity among
the three scenarios as forest areas are the biggest under this scenario. The carbon storage
capacity of northwestern and northeastern GBA is relatively large, especially in rural areas
(e.g., northwestern and northeastern regions). In contrast to the CP and RU scenarios, the
total carbon storage capacity demonstrates a significant increasing trend from 2030 to 2050
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in the CN scenario. Generally, carbon storage distributions are lower in the middle but
higher in the surrounding regions among the three scenarios.
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Table 5. Carbon storage for 2030, 2040 and 2050 under multi-scenarios (unit: ton).

Scenario Year Cropland Grassland Forest Shrubland Urban Other

/ 2020 202,038,233 94,873 287,357,803 87,725,762 1,742,112 3,823,298
CP 2030 197,704,969 93,458 273,953,927 95,739,005 1,830,582 3,823,298

2040 193,464,649 98,753 260,748,807 100,667,960 1,977,139 3,823,298
2050 189,315,280 115,197 251,693,685 101,235,551 2,156,509 3,823,298

RU 2030 185,535,153 99,137 256,733,535 101,534,104 2,152,920 3,823,298
2040 167,643,701 98,124 224,349,632 112,906,215 2,660,603 3,823,298
2050 147,628,789 66,039 202,505,588 122,206,343 3,112,205 3,823,298

CN 2030 197,704,890 65,445 329,986,965 60,583,983 1,817,733 3,823,298
2040 193,464,570 48,092 372,603,634 33,360,121 1,893,355 3,823,298
2050 189,315,280 40,298 395,114,261 18,898,717 1,968,977 3,823,298

3.3.2. Habitat Quality

Similar to carbon storage, the habitat quality which reflects the sustainability of the
ecosystem environment is also closely related to scenarios and landscapes (Figure 6). In the
RU scenario, the habitat quality declines rapidly due to urban expansion, especially in the
central GBA, including Guangzhou, Shenzhen, Foshan, Dongguan and Zhongshan. The
decline is gradually spreading from the middle to the periphery from 2030 to 2050. The
northwestern, southwestern and northeastern GBA show relatively lower declines from
2030 to 2050, as those suburban areas are far from urban areas. In contrast, the habitat
quality in the CP scenario is slightly higher than that in the RU scenario, declining in the
central GBA but improving slightly in the surrounding regions. The CN scenario has the
highest habitat quality, with extensive improvements in the northwestern, southwestern
and northeastern GBA as a result of increasing forest areas. The habitat quality in the
central GBA will remain steady from 2030 to 2050. Overall, the three scenarios exhibit
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similar patterns of habitat quality distributions with lower quality in the central GBA and
higher quality extended in the surrounding areas.

Remote Sens. 2023, 15, x FOR PEER REVIEW 13 of 22 
 

 

quality in the CP scenario is slightly higher than that in the RU scenario, declining in the 
central GBA but improving slightly in the surrounding regions. The CN scenario has the 
highest habitat quality, with extensive improvements in the northwestern, southwestern 
and northeastern GBA as a result of increasing forest areas. The habitat quality in the cen-
tral GBA will remain steady from 2030 to 2050. Overall, the three scenarios exhibit similar 
patterns of habitat quality distributions with lower quality in the central GBA and higher 
quality extended in the surrounding areas. 

 
Figure 6. Dynamic habitat quality distributions for 2030, 2040 and 2050 under multi-scenarios. Note: 
CP, RU and CN refer to the cropland protection scenario, rapid urbanization scenario and carbon 
neutral scenario, respectively (unit: dimensionless parameter). Cities with lower habitat quality in 
GBA are marked. 

3.4. Ecosystem Service Value Changes 
The spatial distributions of ESVs exhibit similar changes with the habitat quality as a 

better ecological environment would gain higher ESVs generally (Figure 7). Overall, the 
ESVs of the GBA are expected to continuously decline from 2030 to 2050 under both the 
RU and CP scenarios. In the RU scenario, the northwestern and northeastern GBA have 
higher ESVs, including Zhaoqing, the northern Guangzhou and the northern Huizhou. In 
contrast, the central GBA shows relatively low ESVs, which are even below CNY 
1123/pixel for the period 2020 to 2050 and less than half of the surrounding ESVs. The 
spatiotemporal characteristics and changing trends of ESVs in the CP scenario are similar 
to those in the RU scenario. However, the total ESVs in the CP scenario are slightly higher 
than that in the RU scenario. The CN scenario demonstrates an overall opposite trend, 
with ESVs increasing from 2030 to 2050 when compared to the other two scenarios. GBA 
in 2050 would own the highest ESVs distribution, particularly in the northwestern and 
northeastern GBA, where ESVs are greater than CNY 5210/pixel for the enclosing subur-
ban areas. In the CN scenario, the ESVs in the central GBA are higher than those in the 
other two scenarios and keep rising from 2030 to 2050. 

Figure 6. Dynamic habitat quality distributions for 2030, 2040 and 2050 under multi-scenarios. Note:
CP, RU and CN refer to the cropland protection scenario, rapid urbanization scenario and carbon
neutral scenario, respectively (unit: dimensionless parameter). Cities with lower habitat quality in
GBA are marked.

3.4. Ecosystem Service Value Changes

The spatial distributions of ESVs exhibit similar changes with the habitat quality as a
better ecological environment would gain higher ESVs generally (Figure 7). Overall, the
ESVs of the GBA are expected to continuously decline from 2030 to 2050 under both the RU
and CP scenarios. In the RU scenario, the northwestern and northeastern GBA have higher
ESVs, including Zhaoqing, the northern Guangzhou and the northern Huizhou. In contrast,
the central GBA shows relatively low ESVs, which are even below CNY 1123/pixel for
the period 2020 to 2050 and less than half of the surrounding ESVs. The spatiotemporal
characteristics and changing trends of ESVs in the CP scenario are similar to those in the RU
scenario. However, the total ESVs in the CP scenario are slightly higher than that in the RU
scenario. The CN scenario demonstrates an overall opposite trend, with ESVs increasing
from 2030 to 2050 when compared to the other two scenarios. GBA in 2050 would own the
highest ESVs distribution, particularly in the northwestern and northeastern GBA, where
ESVs are greater than CNY 5210/pixel for the enclosing suburban areas. In the CN scenario,
the ESVs in the central GBA are higher than those in the other two scenarios and keep
rising from 2030 to 2050.

In detail, the values of second-level ES and the ESVs of each city are compared
(Figure 8). The values of water regulation and climate regulation are high, indicating the
high level of ecosystem adjustment between nature and anthropogenic activities. However,
the values of raw materials, water supply and nutrient cycling maintenance are low, which
implies a relatively low capability for providing production resources. Water supply is
negative under three scenarios except for the RU scenario as the equivalent coefficient of
water supply of cropland is negative and the area of cropland in the RU scenario is nearly
4000 km2 less than that in the CP and CN scenarios. In each second-level ES, the ESVs of the
CN scenario are commonly the highest, followed by the CP and RU scenarios. Compared
with ESVs in 2020, the values of raw materials, water supply, gas regulation, climate
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regulation, environment purification, soil conservation and nutrient cycling maintenance
in the CN scenario are all higher, while only water supply in the CP and RU scenarios
are higher than in 2020. In the statistics chart for each city, Zhaoqing, Huizhou, Jiangmen
and Guangzhou have the highest ESVs among all GBA cities. Cities with faster economic
development have lower ESVs, with Macao being the lowest. Furthermore, the ESVs of the
CN scenario are the highest and the ESVs of the CP scenario are slightly higher than those
of the RU scenario in each city, resulting from the variations in the total areas of different
land use types.
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3.5. Ecological Risk Assessment

The ecological risk values are classified into five levels (I to V) to quantitatively assess
the ecological risk among three scenarios, as shown in Figure 9. The ecological risk exhibits
similar characteristics among the three scenarios. In the RU scenario, the ecological risk is
higher in the central and southwestern GBA while lower in the northwestern and northeast-
ern GBA. The percentage of level I in the RU scenario is lower than that in the CP and CN
scenarios, falling about 4%. Notably, the total percentage of level IV and level V exceeds
25%. In the CP scenario, the spatial distribution of ecological risk is similar to that in the RU
scenario. However, the overall ecological risk in the CP scenario is lower than that in the
RU scenario. The percentage of level I is 36.0%, which is higher than that in the RU scenario.
Moreover, the total percentage of level IV and level V is lower than that in the RU scenario,
which is less than 25%. In the CN scenario, the spatial distribution of ecological risk bears
resemblance to that in the CP and RU scenarios. Nevertheless, the overall ecological risk
in the CN scenario is lower than that in the CP and RU scenarios. The total percentage of
level I and level II in the CN scenario reaches 58.5%, whereas it is lower than 30% in the
CP scenario. Additionally, the total percentage of level IV and level V in the CN scenario is
approximately 6% lower than that in the RU scenario. Overall, the CN scenario exhibits the
lowest ecological risk among the three scenarios.
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3.6. Impact of Land Use on ESV Changes

Figure 10 shows the ESV flows from 2020 to 2050 for each land use type under multi-
scenarios. In the CP and RU scenarios, the ESVs of cropland and forest decrease while
those of grassland and shrubland increase during the period of 2020–2050. Both RU and
CP scenarios experience the largest reduction in the ESVs of forest, with a decrease of up
to more than CNY 28 billion and more than CNY 11 billion, respectively. The ESV flows
transforming to urban in the RU scenario are also higher than in the CP scenario. However,
the ESVs of forest in the CN scenario significantly increase, and the increment exceeds CNY
36 billion from 2020 to 2050. The ESV flows transforming to urban in the CN scenario are
far less than those in the RU scenario. Nevertheless, the ESVs of cropland, grassland and
shrubland all decrease, with the ESVs of shrubland decreasing the most, and the ESV flows
mainly concentrate in shrubland and forest, which are larger than those in the CP and RU
scenarios. The “other” land use type, primarily composed of water bodies, owns high ESVs
which remain constant between 2020 and 2050 among three scenarios.
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The spatial clustering of ESVs indicates a center cold clustering surrounded by hot
spots clustering distribution (Figure 11). In the RU and CP scenarios, the hot-spot areas are
mainly concentrated in Zhaoqing, located in the northwestern GBA. Several small hot-spot
areas exist in Huizhou and Jiangmen, which are in the northeastern and southwestern GBA,
respectively. The hot spot confidence reaches 99%. Cold-spot areas are concentrated in the
central GBA, including Guangzhou, Foshan, Dongguan and Zhongshan, where the cold-
spot confidence ranges from 90% to 99%. Compared with the CP scenario, the RU scenario
exhibits lower spatial clustering of hot-spot areas in the northwestern GBA, but higher
spatial cold-spot clustering in the central GBA. In the CN scenario, the spatial clustering
of ESVs is the lowest among the three scenarios. Large areas in the southwest, northeast,
and even part of northwest regions are the regions with low significance levels. In contrast
to the spatial distribution of ESVs hot/cold spots in 2020, both the RU and CP scenarios
show that the spatial clustering of the hot-spot areas is stronger in the northwestern GBA
while weaker in the northeastern GBA, and the cold-spot areas in the central GBA slightly
expand from the center to the surrounding region. The spatial clustering trends of the CN
scenario seem to be more scattered in both the center and surrounding regions, with the
significance level becoming lower than that in 2020.
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4. Discussion
4.1. Land Use Change Impact on ES and ESVs

The LUCC has a close connection with carbon storage and habitat quality [56,57], in
which forest is a crucial factor for carbon storage capability [58], while urban areas could
strongly damage habitat quality [59]. Among the six land use types, the carbon storage
from highest to lowest is forest, grassland, cropland, shrubland, “other” and urban. It is
worth noting that forests and grassland have higher carbon storage than other land use
types. Consequently, the larger the green space area, the higher the carbon storage. The
total carbon storage of the CN scenario is higher than that in the CP and RU scenarios
as the vegetation area is significantly substantial, especially the forest area. Similar to
carbon storage, the habitat quality of forest, grassland and shrubland ranks in the top
three while urban areas are the lowest. Abundant vegetation is beneficial for improving
habitat quality. Meanwhile, the LUCC exhibits significant spatiotemporal heterogeneity
under three scenarios from 2030 to 2050 [60,61]. According to Xie et al. [21], different land
use types have distinct equivalent coefficients in each second-level ES. Among these land
use types, the sum of equivalent coefficients of “other” is the highest as the equivalent
coefficient of hydrological regulation of “other” is remarkably higher than that of other
second-level ES. However, “other” is set as a constraint layer, which is prohibited from
transforming into any land use type, resulting in the ESV change of “other” from 2030 to
2050 as 0. Beyond that, the order of ESV contribution rates from high to low are forest,
grassland, shrubland and cropland, which is consistent with those of Liang and Song [62].
The results show that the LUCC would dominate the spatial–temporal changes of ESVs.

4.2. The Relationship between Ecological Risk and LUCC

As shown in Table 3, the weights of the proportion of built-up land are the highest,
followed by the land-use composite index, ecological capacity and ESV. Based on our
research, it can be inferred that these indicators are closely associated with LUCC. In
the RU scenario, urban expands extensively, encroaching upon vast forest and cropland,
consequently resulting in the increase of built-up land area and the decline of ESVs and EC,
so the ecological risk remains at a high level. In contrast, the CP scenario exhibits a smaller
urban area, while the areas of cropland and forest are larger than those in the RU scenario.
As a result, the ESVs are higher in the CP scenario. In addition, the expansion of forest area
contributes to the enhancement of carbon storage and habitat quality, thereby improving
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EC and subsequently mitigating ecological risk. In the CN scenario, the urban area is far
less than that in the other two scenarios, while the forest area largely increases, leading to
the lowest ecological risk. In general, LUCC exerts a profound impact on ecological risk.
Urban expansion usually leads to the degradation of the ecological environment and an
increase in ecological risk. Conversely, forests and cropland contribute to improving the
environmental quality and reducing ecological risk.

4.3. Land Use Strategies under Multiple Scenarios

Based on different land use strategies, LUCC development in three scenarios exhibits
unique characteristics, ultimately influencing ES, ESVs and ecological risk. The RU scenario
can promote rapid urban expansion, but it causes significant damage to the ecological envi-
ronment and the ecological risk is remarkably elevated. Compared with the RU scenario,
the CP scenario can protect the cropland and forest more effectively. Its contribution to
carbon storage, habitat quality and ESVs is relatively larger. The CN scenario imposes strict
limitations on urban development and attaches more importance to forest protection, so ES
and ESVs in the CN scenario remain at the highest level and the ecological risk is the lowest
among the three scenarios. Therefore, based on the CN scenario, a balanced approach is re-
quired that incorporates forest conservation and urban development [63–65]. In the future,
we should strike a balance between urban expansion and ecological protection. Neither
should we go all out for economic development at the expense of ecological protection,
nor should we simply protect the ecological environment at the expense of the economy.
More protection should be given to forests and cropland in the future as they possess great
ecological value. In the meantime, land-use policies should be formulated in line with
the ecological characteristics of different regions [66]. The unorganized urban expansion
should be limited and the ecological spatial patterns need to be further constructed in
the central GBA [67,68]. Meanwhile, the ecosystem structure ought to be stabilized in the
northwestern, northeastern and southwestern GBA, as usual [46].

5. Conclusions

In this study, we simulate the future LUCC and evaluate ES, ESV changes and the
induced ecological risk in 2030, 2040 and 2050 under three scenarios. The relationships
between LUCC and these ecological indicators are also evaluated. The results are as follows:

(1) The spatiotemporal heterogeneity of land-use patterns under different scenarios is
significant. The RU scenario shows extremely high urban expansion in the central
GBA at the expense of cropland and forest, which does not align with sustainable
development goals. The CP scenario focuses on cropland protection. In contrast, the
CN scenario has a conspicuous increase in forest area and an effective limitation in
urban expansion, which is in line with the sustainable development goal.

(2) Owing to the high rate of urban expansion, carbon storage and habitat quality are
lower in the CP and RU scenarios, whereas they are higher in the CN scenario. The
ESVs in the CP and RU scenarios are lower than in the CN scenario. The cold and hot
spots of ESVs show aggregated distributions except for the CN scenario.

(3) The ecological risk is closely linked to LUCC, which exhibits a higher trend in the
central and southwestern GBA and lower in the northwestern and northeastern GBA.
Among the three scenarios, the RU poses the highest ecological risk while the CN
owns the lowest ecological risk, in which ESVs and EC rank are the top two factors,
indicating a close association between LUCC and ecological risk.

(4) In order to achieve carbon peaking and carbon neutrality goals, the government should
formulate specific policies based on the different land-use conditions. In the central GBA,
rationalizing urban expansion and strengthening the protection of ecological resources
should be important tasks. In the northwestern, northeastern and southwestern GBA, it
is advisable to highlight ecological carbon sequestration measures.

However, there are several limitations in this research. Due to the data of grain produc-
tion value and the sown area in the future being difficult to predict, a constant standard unit
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equivalent factor per unit area is used in ESV calculation. Dynamic standard unit equiva-
lent factors are needed in the future to achieve more accurate estimation. Additionally, the
habitat suitability of each land use type is determined by expert knowledge [44], which
possesses a certain degree of subjectivity and should be further improved by considering
the systematic impacts of different threats on habitat quality. In the assessment of ecological
risk, the entropy method used to determine the weights of indicators is sensitive to the
sample data and lack of dynamic variation. Therefore, it is better to integrate with expert
knowledge so as to determine the weights more scientifically.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs15245749/s1, Figure S1: (a) land cover map of 2000; (b) land
cover map of 2010. Figure S2: maps of nine driving factors: (a) distance to railway; (b) distance to
road; (c) distance to water; (d) soil type; (e) precipitation; (f) temperature; (g) population (h) GDP (i)
DEM. Table S1: reclassification of land-use data from multiple models; Table S2: the information on
driving factors.
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