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Abstract: Vegetation is an essential component of terrestrial ecosystems and supplies multiple
ecosystem benefits and services. Several indices have been used to monitor changes in vegetation
communities using remotely-sensed data. However, only a few studies have conducted a comparative
analysis of different indices concerning vegetation greenness variation. Additionally, there have
been oversights in assessing the change in greenness of evergreen woody species. In this study, we
used the normalized difference vegetation index (NDVI), the enhanced vegetation index (EVI), the
near-infrared reflectance of terrestrial vegetation (NIRv), and the leaf area index (LAI) data derived
from MODIS data to examine spatial and temporal change in vegetation greenness in the growing
season (May–September) and then evaluated the evergreen vegetation greenness change using winter
(December–February) greenness using trend analysis and consistency assessment methods between
2000 and 2022 on the Tibetan Plateau, China. The results found that vegetation greenness increased
in 80% of pixels during the growing season (northeastern, central-eastern, and northwestern regions).
Nevertheless, a decline in the southwestern and central-southern areas was identified. Similar trends
in greenness were also observed in winter in about 80% of pixels. Consistency analyses based on the
four indexes showed that vegetation growth was enhanced by 29% and 30% of pixels in the growing
season and winter, respectively. Further, there was relatively strong consistency among the different
vegetation indexes, particularly between the NIRv and EVI. The LAI was less consistent with the
other indexes. These findings emphasize the importance of selecting an appropriate index when
monitoring long-term temporal trends over large spatial scales.

Keywords: alpine vegetation; greenness; consistency; multiple indexes; evergreen vegetation

1. Introduction

Vegetation is critical in terrestrial ecosystems and provides multiple ecosystem ser-
vices, such as carbon storage [1,2]. During the past few decades, vegetation greenness
showed an increasing trend in high latitude and altitude regions, such as Arctic tundra,
boreal forest, and northeastern Tibetan Plateau [3–5]. Vegetation dynamics affect water
cycles and the exchange of carbon and energy, impacting the climate [6–9]. The Tibetan
Plateau is known as the “Roof of the World” and the “Third Pole”, averaging 4000 m
above sea level [10]. This region is also the water tower of Asia, with abundant glaciers,
lakes, and rivers [11]. The diverse terrestrial ecosystems distributed the forests, shrubs,
alpine grasslands, and alpine deserts along the northwestward direction [12]. Furthermore,
vegetation variations in the Tibetan Plateau affected the land surface process, ecosystem
structure, and functions [13–17]. For example, grassland growth could attenuate warming
by increasing evapotranspiration [13]. Also, the enhanced vegetation greenness on the
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eastern Tibetan Plateau increases the latent and sensible heat fluxes and affects the regional
rainfall [18]. On the other hand, alpine meadow degradation reduces soil carbon storage
and nutrient cycling capacity [14]. Furthermore, winter evergreen vegetation is also impor-
tant in the Tibetan plateau ecosystem dynamic. For instance, deforestation by evergreen
coniferous trees reduced the dry season (September–February) rainfall in the east of the
Tibetan Plateau (Zagunao watershed) [19]. Evergreen vegetation exhibited the highest
gross primary productivity per unit area across the plateau [20]. Therefore, vegetation
dynamics are important to the Tibetan Plateau’s ecological status.

During the past few decades, vegetation greenness has been assessed by using various
remote sensing vegetation indexes, such as the leaf area index (LAI), the normalized dif-
ference vegetation index (NDVI), and the enhanced vegetation index (EVI) [21–23]. NDVI
and EVI are widely adopted due to their ease of calculation from surface reflectance in
optical spectral bands and the vegetation cover indices, which are usually represented by
the canopy structure parameter LAI [24–26]. From 1982 to 2015, a substantial greening
trend was observed in the northeastern and central, southwestern, eastern, and south-
central areas of the Tibetan Plateau, while browning was identified in some areas located
in the southeastern part [25,27,28]. Other works showed that from 2000 to the late 2010s,
vegetation greenness increased in northeastern, northwestern, east-central, and south-
eastern areas, and browning was observed in southwestern areas [5,29,30]. These results
showed some spatial differences in the areas affected by greening or browning. For ex-
ample, the areas of vegetation using NDVI in the southwest of the Tibetan Plateau were
larger than those indicated by LAI and EVI [21]. EVI analysis showed high vegetation
browning in central areas and some areas in the southeast of the Tibetan Plateau compared
to NDVI [5,22]. Recently, a new vegetation index proxy, the near-infrared reflectance of
terrestrial vegetation (NIRv), was developed and applied to assess the trend of vegetation
greenness [21,31]. NIRv assessment showed that greening areas were lower than those
indicated by NDVI, EVI, and LAI on the Tibetan Plateau [21]. Therefore, vegetation changes
could be inconsistent using different indexes.

Vegetation greenness changes on the Tibetan Plateau were mainly focused on the
annual or growing season, dominated by deciduous vegetation (grasslands) [22,29]. In the
southeast of the Tibetan Plateau, evergreen vegetation is widely distributed and plays a
vital role in carbon storage [32]. Previous studies focused more on evergreen trees’ radial
growth variation, shrubs, treelines, and shrub lines [33,34]. For instance, evergreen trees’
radial growth showed an increasing trend in the southeast and south Tibetan Plateau and
the south-central Tibetan Plateau from the 1960s to the 2010s [34–39]. Nevertheless, a
reduction in evergreen tree and shrub growth was also identified in the northeastern edge
of the Tibetan Plateau (during 1950–2013), south-central Tibetan Plateau (during 1957–2010),
and central Himalayas (during the 1970s–2010s) [40–43]. Also, treelines shifted upward in
the northeastern and southeastern Tibetan Plateau during the 1910s–2000s due to increasing
temperatures [33]. Nevertheless, they remained stable on the southern edge of the Tibetan
Plateau due to increasing tree density and intraspecific competition (i.e., spatial segregation
between seedlings, juveniles, and adults) [44,45]. All these studies were observed at the
local scale. Few assessments were conducted on larger scales. Therefore, studies focused
on evergreen vegetation greenness changes at larger scales are unclear. The aims of this
study are to:

(1) Evaluate the spatial and temporal change characteristics of vegetation greenness on
the Tibetan Plateau during the growing season between 2000 and 2022 using four
vegetation greenness indexes.

(2) On the basis of an analysis of growing season vegetation, assess the temporal change
in winter evergreen vegetation on the Tibetan Plateau.

(3) Analyze the consistency and difference in vegetation greenness variations using four
vegetation greenness indexes.
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2. Materials and Methods
2.1. Study Area

The Tibetan Plateau is in southwestern China and has an average elevation of over
4000 m above sea level [11] (Figure 1a). The plateau hosts various types of vegetation,
including evergreen forests and several alpine ecosystem types (grasslands, shrublands,
and cushion vegetation) (Figure 1b). The region is generally characterized by a cold and
dry climate [46]. The mean annual temperature increased from −16 ◦C to 23 ◦C (Figure 1c).
The mean annual precipitation was highest on the southern edge (i.e., the south face of the
Himalayas), relatively lower in the southeast, and decreasing northwestward (Figure 1d).
The plateau is also the source of several major rivers in Asia, with implications for the water
cycle and water supply of millions of people downstream [11]. Furthermore, vegetation
on the Tibetan Plateau is a crucial driver of ecosystem and atmospheric dynamics at the
regional and continental scales [5,47–50].
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Figure 1. The spatial pattern of elevation, derived from Shuttle Radar Topography Mission version
3 (a), the landcover from MCD12Q1 version 6.1 based on the International Geosphere-Biosphere
Program classification scheme of 2010 (b), the mean annual temperature (c), and the mean annual
precipitation from the ERA5-Land dataset during 2000–2021 (d) on the Tibetan Plateau.

2.2. Framework

Firstly, we evaluated the trend of vegetation greenness during the growing season
(May–September) based on four vegetation indices, including NDVI, EVI, NIRv, and
LAI. Due to the coexistence of evergreen and winter-deciduous vegetation in numerous
regions of the Tibetan Plateau, coupled with uncertainties in existing vegetation type
maps [51,52], it is imperative to mitigate the impact of deciduous vegetation on assessing
evergreen vegetation greenness. To address this, we conducted an analysis of vegetation
greenness trends during the winter, a period when deciduous vegetation lacks greenness. In
addition, to exclude the effect of snow cover on winter vegetation greenness, the normalized
difference snow index (NDSI) snow cover was used to validate the variation of snow cover
in winter. Furthermore, we used the MODIS land cover and GlobeLand30 to exclude
water bodies and artificial surfaces in this study area. In summary, we first exclude the
low-quality data on winter vegetation greenness and average the greenness in the growing
season to evaluate the spatial variation of vegetation greenness in the growing season
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and winter. Then, we analyze the consistency of the trend of vegetation greenness in the
growing season and winter based on different vegetation indices (Figure 2).
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Figure 2. Study framework.

2.3. Dataset
2.3.1. Vegetation Greenness

Vegetation greenness was quantified with NDVI, EVI, NIRv, and LAI between 2000
and 2022 [53–55]. The formulas for NDVI, EVI, NIRv, and LAI are as follows:

NDVI =
NIR− R
NIR + R

(1)
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In the Formula (1), NIR and R are the spectral reflectances of the near-infrared and red
bands, respectively.

EVI = G× NIR− R
NIR + C1 × R− C2 × Blue + L

(2)

In Formula (2), NIR, R, and Blue are the spectral reflectances of the near-infrared, red,
and blue bands; G is the gain factor; L is a canopy background adjustment term; and C1
and C2 are the coefficients of the aerosol resistance term. The coefficients used in the EVI
algorithm are L = 1, C1 = 6, C2 = 7.5, and G = 2.5 [54].

LAI is defined as the one-sided green leaf area per unit ground area in broadleaf
canopies and as the projected needle leaf area in coniferous canopies [55].

NIRv = (NDVI − 0.08)× NIR (3)

In the Formula (3), NIR is the spectral reflectance of the near-infrared band [53].
NDVI and EVI were extracted from the MOD13A1 version 6.1 product (accessed at

https://earthengine.google.com on 10 December 2022). The NIRv was calculated by NDVI
and reflectance from near-infrared band extracting from MOD13A1 version 6.1 product,
which was better for capturing canopy physiological conditions than traditional vegetation
index (i.e., NDVI and EVI) [53]. The MOD13A1 dataset has a spatial resolution of 500 m and
a composite period of 16 days [56]. This dataset also provides quality information, including
Pixel Reliability and VI (i.e., NDVI) Quality Assessment layers reflecting the status of the
overall data quality rating and the conditions under which the data were obtained or
processed, including clouds, snow/ice, shadows, and aerosols [54]. LAI was extracted
from the MOD15A2H version 6.1 product (accessed at https://earthengine.google.com on
10 December 2022). This dataset has a spatial resolution of 500 m and a composite period
of 8 days [57].

2.3.2. Solar-Induced Fluorescence Dataset

The solar-induced fluorescence (SIF) dataset can track the variation in the photosyn-
thetic activity of terrestrial ecosystems [58]. Therefore, we explore the trend of SIF in the
growing season to validate the greenness change [59]. The continuous SIF (CSIF) dataset
during 2000–2019 was extracted from Orbiting Carbon Observatory-2 observations and
MODIS surface reflectance using a neural network algorithm with a spatial resolution
of 0.05◦ and 4 days of temporal resolution, and this dataset has been shown with low
uncertainty [60].

2.3.3. Landcover Datasets

The landcover datasets used in this study are the GlobeLand30 dataset, accessed from
https://www.nature.com/articles/514434c on 21 July 2021, and the MCD12Q1 version
6.1 dataset, accessed from https://search.earthdata.nasa.gov/ on 10 December 2022. The
GlobeLand30 dataset provides landcover type at a spatial resolution of 30 m for 2000, 2010,
and 2020, respectively [61]. The landcover types in the MCD12Q1 dataset are based on the
International Geosphere-Biosphere Program (IGBP) scheme and have a spatial resolution
of 500 m [62].

2.3.4. Snow Cover

The Normalized Difference Snow Index (NDSI) Snow Cover during 2000–2022 was
extracted from the MOD10A1 version 6.1 product, with a spatial resolution of 500 m and a
temporal resolution of 1 day [63]. The formula for NDSI is as follows:

NDSI =
ρVIS − ρNIR
ρVIS + ρNIR

(4)

https://earthengine.google.com
https://earthengine.google.com
https://www.nature.com/articles/514434c
https://search.earthdata.nasa.gov/
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In Formula (4), ρVIS and ρNIR are the top-of-atmosphere reflectance of the visible band
is centered at 0.55 µm and the near-infrared band is centered at 1.66 µm in the MODIS
dataset [64].

The MOD10A1 dataset also provides the corresponding quality assessment (NDSI_
Snow_Cover_Basic_QA) (accessed at https://search.earthdata.nasa.gov on 15 March 2023).

2.4. Data Preprocessing

The NDVI, EVI, NIRv, and LAI during 2000–2022 were extracted from monthly data
based on the maximum value composite (MVC) method, which could eliminate the effects
of clouds and atmospheric noise [6,65]. Previous studies revealed some outliers in the
growing season due to cloudy contamination [66]. Therefore, we average the monthly data
of the growing season (May–September) to derive growing season greenness. The multiyear
mean of monthly NDVI < 0.1 was excluded in this study because it was considered covered
with sparse vegetation [25]. We also exclude the pixels that are classified as Croplands,
Cropland/Natural Vegetation Mosaics, Urban and Built-up Land, Permanent Snow, Ice,
and Water based on the MCD12Q1 dataset, which could affect the trend of greenness
evaluation due to different artificial management. After this step, we obtained the area of
vegetation distribution in the growing season.

In winter, evergreen vegetation is easily contaminated by snow, clouds, and aerosols,
which could lead to bias in the assessment of vegetation greenness trends. Therefore, we ex-
cluded the low-quality NDVI pixels, which are contaminated by snow, clouds, and aerosols,
based on the ‘Pixel Reliability’ and ‘VI Quality Assessment’ layers. The EVI, NIRv, and LAI
were processed in the same way. Then, to distinguish the area covered by evergreen vegeta-
tion, the pixels of the multiyear (≥15) mean of winter NDVI < 0.25 are excluded, considered
sparse vegetation or no evergreen vegetation. Further, we excluded the water bodies and
artificial surfaces if the proportion of water bodies and artificial surfaces with 30 m pixels
in Globland30 in 500 m pixels ≥ 5%. Based on the MODIS landcover dataset, we also
excluded the 500 m MODIS pixel of Croplands, Cropland/Natural Vegetation Mosaics
and Urban and Built-up Land. The pixels with abrupt drops were identified by applying
the LandTrendr algorithm [67] to the NDVI time series and excluded. After removing
low-quality NDVI, water bodies, artificial surfaces, Croplands, Cropland/Natural Vegeta-
tion Mosaics and Urban and Built-up Land, we obtained the area covered by evergreen
vegetation on the Tibetan Plateau.

To further validate the trend of vegetation greenness, we calculated the trend of CSIF,
as it is considered a reliable proxy for photosynthetic activity. We initially performed
quality control on the CSIF time series data from 2000 to 2019 [68]. However, even after
preprocessing, we observed outliers and biases in the data. To mitigate this, we divided
the annual CSIF time series data into two seasons: photosynthetically active and photo-
synthetically non-active. The photosynthetically active season was defined as when CSIF
values increased by 30% from the beginning to the day when CSIF values decreased by 70%
in the latter half of the year. On the other hand, the photosynthetically non-active season
was defined as the period outside the photosynthetically active season [69]. We observed
that CSIF values were more variable during the photosynthetically active season and less
variable during the photosynthetically non-active season. Therefore, we applied different
criteria to eliminate outliers and biases in these two seasons [69]. Subsequently, we applied
the MVC method and calculated the average monthly CSIF values during the growing
season. Due to the difference in spatial resolution between CSIF vegetation greenness data
(i.e., NDVI), we spatially aggregated the greenness values by the average method if all the
pixels in a corresponding CSIF pixel were valued. All data processing in this study were
conducted using MATLAB R2020b and IDL 8.5 software.

https://search.earthdata.nasa.gov
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2.5. Data Analysis
2.5.1. Temporal Change of Vegetation Greenness

Temporal changes in vegetation greenness over 2000–2022 were assessed using tempo-
ral trends in greenness. This study analyzes the temporal changes in vegetation greenness
in the growing season and winter. The greenness trend was calculated as the slope in
linear regression between greenness and year using the ordinary least-squares regression
when the length of vegetation greenness time series ≥ 15, and the significance level was
determined by the t-test [25]. In addition, the Theil–Sen median slope for robustness was
also used to evaluate the trend of vegetation greenness in the growing season owing to a
contiguous time series of 22 years [70,71]. The Theil–Sen median slope did not evaluate the
trend of winter vegetation greenness; as a result, the time series were not contiguous for
22 years.

2.5.2. Probability of Vegetation Greenness Change

To evaluate the consistency of different vegetation greenness indices, we first divided
the trends of vegetation greenness during 2000–2022 into 3 categories at the 0.05 significance
level: significantly positive (↑), significantly negative (↓) and no significant change (–).
Then, according to the probabilities or likelihoods of vegetation growth trends [6,72], we
summarized the probability categories (Table 1). The criteria were as follows:

(1) If four vegetation indexes (NDVI, EVI, NIRv, and LAI) showed significant change in
the same direction, the probability of vegetation greenness change was defined as
‘very likely’ (i.e., four ‘↑’ is defined as ‘Enhanced very likely’, and four ‘↓’ is defined
as ‘Degraded very likely’).

(2) If three vegetation indexes showed significant change, the probability of vegetation
greenness change was defined as ‘likely’.

(3) If two vegetation indexes showed significant change, the probability of vegetation
greenness change was defined as ‘probably’.

(4) If there was none or only one vegetation index that showed a significant change, the
probability of vegetation greenness change was defined as ‘Uncertainty’.

Table 1. The probability of vegetation’s greenness changing.

Trend of NDVI Trend of EVI Trend of NIRv Trend of LAI Probability of Vegetation Greenness Change

↑ ↑ ↑ ↑ Enhanced, very likely

↑ ↑ ↑ –

Enhanced likely
↑ ↑ – ↑

↑ – ↑ ↑

– ↑ ↑ ↑

↑ ↑ – –

Enhanced probably↑ – – ↑

– – ↑ ↑

↓ ↓ ↓ ↓ Degraded very likely

↓ ↓ ↓ –

Degraded likely
↓ ↓ – ↓

↓ – ↓ ↓

– ↓ ↓ ↓

↓ ↓ – –

Degraded probably↓ – – ↓

– – ↓ ↓

None or only one vegetation index showed a significant change Uncertainty

Note: significantly positive (↑), significantly negative (↓) and no significant change (–).
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Furthermore, we used the confusion matrix to evaluate the difference in vegetation
greenness between two vegetation indexes [73]. In this matrix, we expected the proportion
to be large in the diagonal positions (a, e, and i in Figure 3), representing large consis-
tency between the changes in two vegetation indexes. The accuracy was used as a proxy
to measure the consistency trend of two vegetation indexes, and the expression can be
written as:

Accuracy =
a + e + i

a + b + c + d + e + f + g + h + i
(5)

The ‘Accuracy’ represents the pixel’s proportion of consistent change by using two
vegetation indexes in total pixels. The ‘a’ represents the pixels proportion of the trend of
vegetation index1 belonging to the class (significantly positive) and the trend of vegetation
index2 belonging to the class (significantly positive) in total pixels. The ‘b’–‘i’ is calculated
in the same way. All data analysis in this study were conducted using the MATLAB
R2020b software.
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3. Results
3.1. The Trend of Vegetation Greenness during the Growing Season and Winter

Spatially, the temporal trends in growing season NDVI, EVI, NIRv, and LAI (NDVIGS,
EVIGS, NIRvGS, and LAIGS) during 2000–2021 were positive in 75.2%, 76.1%, 75.1%, and
76.0% of pixels covered by vegetation in the growing season on the Tibetan Plateau
(Figure 4a–d). The growing season greenness indexes showed a positive trend in the
northeastern, central-eastern, and northwestern areas. In contrast, negative trends in
growing season greenness were observed in southwestern and central-southern regions.
Temporally, the growing season greenness indexes averaged over the region significantly
increased (p < 0.01) from 2000 to 2021 (Figure 4e,f). Furthermore, for robustness, simi-
lar trend patterns of NDVIGS, EVIGS, NIRvGS, and LAIGS were also observed using the
Theil–Sen median slope method (Figure S1).

In addition, the temporal trends in winter NDVI, EVI, NIRv, and LAI (NDVIWinter,
EVIWinter, NIRvWinter, and LAIWinter) from 2000–2001 to 2021–2022 were positive in 85.5%,
80.4%, 81.6%, and 73.4% of pixels covered by evergreen vegetation on the Tibetan Plateau
(Figure 5a–d). In most pixels, the evergreen vegetation showed widespread greening
trends. The winter greenness indexes averaged over the region significantly increased
(p < 0.01) from 2000–2001 to 2021–2022 (Figure 5e,f). In this study, the multiyear mean
of winter NDSI snow cover from 2000–2001 to 2021–2022 in 96.1% pixels was equal to 0,
which indicated that snow cover showed little impact on the change of winter vegetation
greenness (Figure S2). In summary, despite the regional variation, the NDVI, EVI, NIRv,
and LAI showed similar greening change patterns in the growing season and winter in
more than half of the total pixels.
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Figure 4. Spatial variation of the trend of growing season (May–September) NDVI, EVI, NIRv,
and LAI by using the ordinary least-squares regression, respectively (a–d). The bottom-left inset
in each map displays the percent of pixels in each trend of vegetation greenness interval with the
corresponding interval values depicted by the color in the legend on the bottom. Temporal trend of
growing seasons NDVI, EVI, NIRv, and LAI, respectively (e–h). NDVIGS, EVIGS, NIRvGS, and LAIGS

are the abbreviations of NDVI, EVI, NIRv, and LAI in the growing season.



Remote Sens. 2023, 15, 5697 10 of 19

Remote Sens. 2023, 15, x FOR PEER REVIEW  10 of 19 
 

 

and LAI showed similar greening change patterns in the growing season and winter in 

more than half of the total pixels. 

 

Figure 5. Spatial variation of the trend of winter (December–February) NDVI, EVI, NIRv, and LAI 

by using the ordinary least‐squares regression, respectively (a–d). The bottom‐left inset in each map 

displays the percent of pixels in each trend of vegetation greenness interval with the corresponding 

interval values depicted by the color in the legend on the bottom. Temporal trend of growing sea‐

sons NDVI, EVI, NIRv, and LAI, respectively (e–h). NDVIWinter, EVIWinter, NIRvWinter, and LAIWinter are 

the abbreviations of NDVI, EVI, NIRv, and LAI in winter. 

3.2. Analysis of the Probability of Vegetation Greenness Change 

The consistency assessment of the trend of four vegetation greenness indicators in 

the growing season showed that in 28.5% of pixels, vegetation growth enhanced in pixels 

covered by vegetation (Figure 6a). The 14.0% and 8.4% pixels were identified as enhanced 

very likely and enhanced likely, which were distributed in northeastern and northern ar‐

eas on  the Tibetan Plateau. The 6.0% pixels were  identified as enhanced and probably 

distributed in central and central‐eastern areas on the Tibetan Plateau. Only 1.5% of pixels 

Figure 5. Spatial variation of the trend of winter (December–February) NDVI, EVI, NIRv, and LAI
by using the ordinary least-squares regression, respectively (a–d). The bottom-left inset in each map
displays the percent of pixels in each trend of vegetation greenness interval with the corresponding
interval values depicted by the color in the legend on the bottom. Temporal trend of growing seasons
NDVI, EVI, NIRv, and LAI, respectively (e–h). NDVIWinter, EVIWinter, NIRvWinter, and LAIWinter are
the abbreviations of NDVI, EVI, NIRv, and LAI in winter.
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3.2. Analysis of the Probability of Vegetation Greenness Change

The consistency assessment of the trend of four vegetation greenness indicators in
the growing season showed that in 28.5% of pixels, vegetation growth enhanced in pixels
covered by vegetation (Figure 6a). The 14.0% and 8.4% pixels were identified as enhanced
very likely and enhanced likely, which were distributed in northeastern and northern
areas on the Tibetan Plateau. The 6.0% pixels were identified as enhanced and probably
distributed in central and central-eastern areas on the Tibetan Plateau. Only 1.5% of pixels
showed degraded distribution in southwestern and central-eastern areas. The inconsistent
change in four vegetation greenness indexes was observed in only 0.04% of pixels in the
growing season. The evergreen vegetation was also enhanced by 29.8% of the pixels
covered by evergreen vegetation on the Tibetan Plateau (Figure 6b). The percent of pixels
identified with enhanced very likely, enhanced likely, and enhanced probably of pixels
covered by evergreen vegetation on the Tibetan Plateau were 10.6%, 11.4%, and 7.8%,
which were distributed in eastern edges and southeastern areas. Only 1.3% of pixels
showed degraded distribution in the valley of southeastern areas. The 0.64% pixels showed
inconsistent change by four greenness indexes. Among multiple greenness indicators,
significant greening was observed in 30.1%, 32.7%, 30.8%, and 22.1% of this study area
when estimated from NDVIGS, EVIGS, NIRvGS, and LAIGS (Figure 6c). The NDVIGS, EVIGS,
and NIRvGS were closest to the probability of vegetation greenness change. The LAI
showed the lowest percentage of significantly positive trends in the growing season. The
assessment of multiple greenness indicators could balance the percent of significantly
positive vegetation trends, especially improving the percent of the significantly positive
trend of LAIGS. Whereas, the percent of evergreen vegetation greening indicated by
NDVIWinter (42.8%) was higher than that indicated by EVIWinter, NIRvWinter, and LAIWinter
(28.2%, 30.8%, and 21.5%). Thus, asynchronous changes in different vegetation greenness
should be the focus of further study.
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Figure 6. Consistency of trend of vegetation greenness in the growing season (a) and winter (b) on
the Tibetan Plateau; (c) the percent of pixels of the trend of growing season vegetation greenness
with significantly positive and negative in pixels covered by vegetation in the growing season on the
Tibetan Plateau; (d) the percent of the trend of winter vegetation greenness pixels with significantly
positive and negative in pixels covered by evergreen vegetation on the Tibetan Plateau.
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3.3. Comparison of Vegetation Greenness Trends between Two Different Vegetation Indexes

The largest consistency of significantly positive was between NIRvGS and EVIGS in
29.6% pixels, and the following consistency of significantly positive was between EVIGS and
NDVIGS, NIRvGS and NDVIGS (Figure 7). The lowest consistency of significantly positive
results was between EVIGS and LAIGS. The overall accuracy between the two vegetation
indexes was about 0.80, and the accuracy between the trend of EVIGS and NIRvGS showed
the biggest value. The accuracy between the LAIGS trend and other vegetation indexes was
relatively low (Table 2).
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Figure 7. (a) The confusion matrix between the trend of growing season EVI (EVIGS) and NDVI
(NDVIGS); (b) the confusion matrix between the trend of growing season NIRv (NIRvGS) and NDVIGS;
(c) the confusion matrix between the trend of growing season LAI (LAIGS) and NDVIGS; (d) the
confusion matrix between the trend of growing season LAI (LAIGS) and EVIGS; (e) the confusion
matrix between the trend of LAIGS and EVIGS; (f) the confusion matrix between the trend of LAIGS

and NIRvGS.

Table 2. The accuracy between the trends of different vegetation greenness indexes in the growing season.

Accuracy NDVIGS EVIGS NIRvGS LAIGS

NDVIGS -
EVIGS 0.86 -

NIRvGS 0.87 0.95 -
LAIGS 0.79 0.78 0.79 -

In the comparison of the trend of evergreen vegetation, the largest consistency of sig-
nificantly positive was between NIRvWinter and EVIWinter in 27.0% pixels, and the following
consistency of significantly positive was between NIRvWinter and NDVIWinter, EVIWinter
and NDVIWinter (Figure 8). The lowest consistency of significantly positive results was
between EVIWinter and LAIWinter, which showed a similar result with the trend of greenness
in the growing season. The overall accuracy between the two vegetation indexes was about
0.65 lower than in the growing season, and the accuracy between the trends of LAIWinter
and NDVIWinter was relatively low (Table 3). The overall accuracy between NDVIWinter and
EVIWinter was lower than between NDVIGS and EVIGS. We found that the more pixels, the
more NDVIWinter trends were significantly positive. However, EVIWinter trends showed no
significant change.
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Figure 8. (a) The confusion matrix between the trend of winter EVI (EVIWinter) and NDVI
(NDVIWinter); (b) the confusion matrix between the trend of winter NIRv (NIRvWinter) and NDVIWinter;
(c) the confusion matrix between the trend of winter LAI (LAIWinter) and NDVIWinter; (d) the con-
fusion matrix between the trend of winter LAI (LAIWinter) and EVIWinter; (e) the confusion matrix
between the trend of LAIWinter and EVIWinter; (f) the confusion matrix between the trend of LAIWinter

and NIRvWinter.

Table 3. The accuracy between the trends of different vegetation greennesses in winter.

Accuracy NDVIWinter EVIWinter NIRvWinter LAIWinter

NDVIWinter -
EVIWinter 0.65 -

NIRvWinter 0.68 0.95 -
LAIWinter 0.64 0.73 0.72 -

4. Discussion
4.1. Significances of the Consistency of Vegetation Greenness Trend

The consistency analysis of four vegetation indexes for vegetation change on the
Tibetan Plateau revealed a green trend during the growing and winter seasons. The EVIGS
and NIRvGS, as well as EVIWinter and NIRvWinter, demonstrated the greatest consistency
(0.95) in vegetation change trends, consistent with previous studies [31]. The consistency
between NDVIGS and other vegetation greenness indexes (EVIGS, NIRvGS, and LAIGS) was
higher in the growing season, with a value of about 0.80, but lower in NDVIWinter with
EVIWinter, NIRvWinter, and LAIWinter, with a value of about 0.65. This could be explained
by dataset accuracy due to the contamination by clouds and aerosols in winter, despite
removing low-quality datasets. The LAI exhibited lower consistency with the other three
vegetation indices, particularly in LAIWinter and NDVIWinter, as NDVI may not be suitable
due to the lack of sensitivity in high LAI conditions [74]. To further explore the physiological
activity of vegetation, we used the CSIF to assess the change in vegetation growth. The
CSIF also showed a greening trend in the eastern and northeastern areas, and browning
was observed in the southwestern and some southeastern areas (Figure S3). In most areas,
the CSIF showed a consistent change with greenness (Figures S3 and S4). However, there
were some differences in trends in SIF and greenness. The CSIF showed more browning
areas (accounting for 34.8%) in the northwestern and southeastern parts of the Tibetan
Plateau than NDVIGS, EVIGS, NIRvGS, and LAIGS (accounting for 24.4%, 25.7%, 27.0%, and
23.0%, respectively). When the leaf area remains stable, the change in greenness (i.e., NDVI)
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may be small, while the change in photosynthesis could provide more information about
influencing factors such as solar radiation and drought conditions [75,76]. Therefore, in
most areas, vegetation greenness is consistent with SIF in monitoring vegetation dynamics,
but CSIF is more sensitive to greenness in the physiological activity of vegetation.

4.2. The Driving Factors of Vegetation Greenness Change

Compared with previous studies, the change in vegetation greenness in the growing
season based on satellite observations showed increasing trends in northeastern, northwest-
ern, central-eastern, and northwestern areas since 2000 as a result of increasing precipitation,
increasing temperature, and solar radiation, respectively [5,77,78]. Browning was observed
in the southwestern Tibetan Plateau due to decreasing precipitation from 2000 to 2018 [5].
On the other hand, since 2000, the Chinese government has implemented some ecological
restoration projects, and vegetation growth has benefited from these projects [79–81]. Some
studies revealed that establishing the protected areas increased vegetation greenness [79,80].
In addition, grazing reduction has been identified as an important and effective strategy in
these projects on the Tibetan Plateau, such as fencing, degrading grassland, and ecological
compensation [80]. Implementing these projects has mitigated grassland degradation in
the central Tibetan Plateau [81].

For winter evergreen vegetation, similar to our findings, vegetation greenness in the
southeastern Tibetan Plateau showed an increasing trend over the past 20 years due to
increasing temperatures [78,82,83]. On the other hand, upward treelines and tree recruit-
ment could lead to an increase in evergreen vegetation greenness [33,84]. For example, in
an analysis of treeline dynamics on the Tibetan Plateau by collecting 59 treeline sites, 67%
showed an upward trend from 1901 to 2017, and 73% of the tree recruitments showed an
increasing trend [84]. In addition, ecological restoration projects such as afforestation also
caused an increase in the greenness of evergreen vegetation [85].

4.3. Uncertainty and Limitations

In our analysis, we carefully considered the robustness of vegetation indices and
chose to analyze four widely utilized ones. Nonetheless, there remains potential for future
expansion by incorporating a broader range of indices. It is worth noting that our current
focus is on identifying regions characterized by evergreen vegetation cover. However, the
distinction between deciduous and evergreen vegetation can sometimes be challenging,
warranting dedicated efforts to enhance accuracy in identifying areas with deciduous
vegetation. The current study provides a concise overview of the factors contributing to
variations in vegetation greenness. Recognizing the intricate nature of these factors, we
should strive for a more refined and nuanced understanding of the underlying causes
driving these changes.

4.4. Implications and Future Research Directions

A widespread greening of vegetation influences the structure and function of the
ecosystem. For example, greening increases vegetation’s photosynthetic carbon absorption
capacity, which in turn increases vegetation productivity, and enhanced productivity can
increase terrestrial carbon storage [3]. Conversely, greening also causes some negative
impacts on the ecosystem. For example, shrub encroachment decreased herbaceous cov-
erage, density, and species richness and led to the loss of endemic species in the meadow
community [86]. Vegetation greening also impacts the land surface process. For example,
vegetation greening could reduce the temperature [78]. However, vegetation greening
can only indirectly indicate vegetation expansion, and further exploration is necessary,
combined with ground observations and other investigation data. Furthermore, when we
assessed the change in vegetation greenness, more indexes could enhance the robustness
of the results, especially in winter evergreen vegetation. In addition, vegetation growth
in deciduous and winter evergreen vegetation is different. Evergreen vegetation should
be considered to improve process-based land surface models, as most of these models use
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scenarios specified for vegetation types [87]. Further research is needed to elucidate the
underlying drivers of these trends and their potential impacts on ecosystem services and
land surface processes on the Tibetan Plateau.

5. Conclusions

In this study, we first assessed the change in growing-season vegetation greenness.
Then, we identified the area covered by evergreen vegetation and evaluated the change
in evergreen vegetation greenness from 2000 to 2022 based on satellite observations. Four
vegetation greenness indexes were selected to show vegetation change and consistency
assessment. This study found positive temporal trends in growing season vegetation
greenness using NDVI, EVI, NIRv, and LAI on the Tibetan Plateau between 2000 and
2021. These positive trends were mainly observed in the northeastern, central-eastern,
and northwestern areas, while negative trends were observed in the southwestern and
central-southern regions. Widespread green trends in winter greenness indexes were
observed during 2000–2022. The consistency assessment of different vegetation greenness
indexes showed relatively high consistency in positive trends, particularly between NIRv
and EVI. However, the consistency was relatively low between LAI and other vegetation
indexes. These findings suggest the application of multiple indexes to study the dynamics
of vegetation on the Tibetan Plateau synthetically.
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