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Abstract: The illumination conditions of the lunar south pole region are complex due to the rugged
terrain and very low solar elevation angles, posing significant challenges to the safety of lunar landing
and rover explorations. High-spatial and temporal-resolution analyses of the illumination conditions
in the south pole region are essential to support mission planning and surface operations. This paper
proposes a method for illumination condition analysis in the lunar pole region using multi-temporal
high-resolution orbital images with a pre-selected landing area of Chang’E-7 as the study area. Firstly,
a database of historical multi-temporal high-resolution (0.69–1.97 m/pixel) orbital images, with
associated image acquisition time, solar elevation angle, and azimuth angle, is established after
preprocessing and registration. Secondly, images with the nearest solar elevation and azimuth at
the planned time for mission operations are retrieved from the database for subsequent illumination
condition analysis and exploration support. The differences in the actual solar positions at the mission
moments from that of the nearest sun position image are calculated and their impact on illumination
conditions is evaluated. Experimental results of the study area demonstrate that the constructed
image database and the proposed illumination analysis method using multi-temporal images, with
the assistance of DEM in a small number of cases, can effectively support the mission planning and
operations for the Chang’E-7 mission in the near future.

Keywords: moon; south polar region; Chang’E-7; illumination conditions; multi-temporal
high-resolution orbital images

1. Introduction

The lunar south pole, with its abundant resources (e.g., solar energy resources in
permanently illuminated regions (PIR), potential water ice in permanently shadowed
regions (PSR)) and favorable scientific value, has become a prime area for exploration
activities to be conducted by various countries [1]. Both NASA’s Artemis mission and
CNSA’s Chang’E-7 mission plan to carry out lunar lander reconnaissance and exploration
at the lunar south pole region [2–4]. The Moon has an orbital period of approximately
27 days, with most regions experiencing about 14 days of sunlight followed by a similar
length of darkness. This prolonged day–night cycle presents challenges for lunar missions
and human habitation on the Moon’s surface. Previous studies have indicated that certain
high-elevation areas such as the edges of impact craters, mountain peaks, and ridges in
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the polar regions receive ample sunlight and exhibit more stable temperatures, making
them suitable for surface exploration and the establishment of lunar bases [5]. Due to the
small inclination angle (1.54◦) between the lunar equatorial plane and the ecliptic plane and
rugged terrain, the lunar south pole contains numerous PSR with extremely low surface
temperatures [6], which have the potential to harbor water ice and other volatile substances.
In the 1960s, the existence of water ice deposits in these PSR was first suggested [7], and
lots of subsequent remote sensing observations and research also gave evidence of the
existence of water ice [8]. Water ice not only serves as a crucial resource for future human
life and work on the lunar surface, but also poses an important scientific question regarding
its origin.

Exploration missions to the lunar poles require a thorough understanding of the il-
lumination conditions in the polar regions [9]. They play a crucial role in environmental
analyses for lunar polar explorations and in selecting suitable locations for lunar research
stations [10–12]. Depending on the data sources used, analysis of lunar polar illumination
can be categorized into two approaches: analysis based on the Digital Elevation Model
(DEM) and analysis based on images. DEM-based illumination analysis is limited by the
accuracy and resolution of the DEM. Particularly for mission planning involving lunar
rovers, its reliability and precision need further validation. Image-based illumination
analysis, on the other hand, provides precise analysis of the illumination conditions with
the resolution of the image at the time of image acquisition. However, the temporal reso-
lution is usually limited by the frequency and periodicity of image acquisitions. With the
increasing acquisition of high-resolution images, the number of revisits has increased, espe-
cially in polar regions, which makes the multi-temporal images available for illumination
condition analysis.

To address the demand for high-precision illumination environment analysis in future
exploration missions, this research proposes a method for lunar south pole illumination
analysis using multi-temporal high-resolution remote sensing imagery. By taking full
advantage of high image resolution and direct analysis of illumination conditions, as well
as utilizing the multi-coverage and multi-temporal characteristics of existing orbiters, the
research aims to conduct a high-precision illumination environment analysis in specific
areas of the south pole. The feasibility and effectiveness of using multiple coverage images
to support illumination analysis for lunar polar exploration are investigated.

The rest of the paper is organized as follows. Section 2 briefly reviews previous
research relevant to this paper, including illumination analysis research based on DEM
and imagery. The study area and data are introduced in Section 3. Section 4 describes the
methodology for constructing a high-resolution lunar polar image dataset and performing
geographical registration and illumination analysis. Section 5 presents the results and
discussions of the illumination condition analysis at the study area, which is a pre-selected
landing area for the Chang’E-7 mission. Section 6 gives some conclusions of this research.

2. Related Work

DEM-based illumination condition analyses have been performed and widely used
in many studies. In the 1990s, Margot et al. [13] conducted simulations of illumination
conditions using lunar DEM obtained from ground-based radar observations. Subsequently,
with the launch of JAXA’s Kaguya spacecraft carrying a laser altimeter, detailed topographic
data of the lunar polar regions became available, leading to an increasing focus on lunar
polar illumination studies based on DEM [14–16]. Noda et al. [16] used the laser altimeter
data from Kaguya to generate a polar DEM with a resolution of 470 m/pixel. They
simulated the polar illumination conditions for a duration of 2000 days based on this DEM
and compared it with images from the Clementine mission, verifying the reliability of DEM-
based illumination simulations. NASA’s Lunar Reconnaissance Orbiter (LRO), equipped
with the Lunar Orbiter Laser Altimeter (LOLA), subsequently obtained a large amount
of high-precision lunar data [17,18]. Mazarico et al. [19] used over 2600 LOLA tracks of
point cloud data to construct a polar DEM with a resolution of 240 m/pixel and calculated
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the illumination ratios of the lunar polar regions using the maximum terrain height angle
method. De Rosa et al. [20] further improved the resolution of the DEM to 40 m/pixel and
applied it to site selection for future lunar landing missions by the European Space Agency.
Gläser et al. [21] combined the LOLA DEM with photogrammetric techniques to achieve
an overall resolution of 20 m/pixel and a local resolution of 2 m/pixel, enabling a detailed
analysis of the illumination conditions at potential landing sites in the south pole region.

The above-mentioned analysis of lunar south pole illumination based on DEM primar-
ily utilizes the horizon method [19]. This method involves calculating the horizon for each
grid in the research area using the DEM, and constructing a horizon database. Subsequently,
the database can be used to generate illumination maps for different periods using the solar
ephemerides, or to obtain simulated binary images representing the lighting conditions.
One limitation of this method is the huge computational cost of constructing the horizon
database, making it very time-consuming. So some researchers have started exploring
approaches such as multi-threading, GPU acceleration, and construction of pyramidal
horizon databases to simplify the computations and reduce processing time [20,22]. Using
DEM for illumination condition analysis can not only simulate the illumination image
and extract the shadow area at any time, but also can calculate the average illumination
for a period of time, and extract the permanent lighting and shadowed areas. However,
this method is limited by the resolution and accuracy of the DEM. Existing global or re-
gional DEM products of the Moon have limited resolution (a hundred meters to tens of
meters), and the accuracy assessment of them is difficult [23]. Currently, the highest resolu-
tion DEM of the lunar south pole is a 5 m/pixel resolution product derived from LOLA
data [24,25]. The shape from shading [26,27] and deep learning [28,29] methods can be
used to produce a DEM with the same resolution as the image from a single high-resolution
image. Liu et al. proposed a generative adversarial network (GAN) called LDEMGAN,
which generates pixel-scale lunar DEM from monocular LROC NAC imagery aided by
existing low-resolution DEM [28]. Tao et al. proposed a network based on GAN for fast
reconstruction of DEM from images [29]. However, the lunar polar region has a low solar
elevation angle, which results in poor image quality and a lot of shadow coverage in the
image. This restricts the accuracy of DEM generated from single imagery. Overall, there
are still limitations when using this DEM to analyze the illumination conditions in polar
regions for supporting lunar landing and rover operation.

The illumination conditions can be directly observed using high-resolution images.
The spatial accuracy depends on the resolution of the images, which is always higher than
DEM, while the temporal resolution is related to the orbital period. For example, early
missions like Clementine only obtained polar illumination data for 2.5 lunar days due to
their short mission lifetimes. Previous studies have explored the illumination conditions in
the lunar polar regions using LRO Camera (LROC) Wide-Angle Camera (WAC) images.
Speyerer and Robinson [30] surveyed the lighting conditions in the lunar polar regions
using approximately 7800 images from the LROC WAC. They constructed image-based
illumination maps and created movie sequences to depict lunar lighting variations. The
LRO team has also produced numerous mapping products for the lunar south pole using
LROC Narrow-Angle Cameras (NAC) images. These include uncontrolled 1 m/pixel
resolution mosaics of the lunar south pole and maps of permanent shadowed regions
derived from long-exposure images [31,32]. These studies demonstrate that LROC images
have extensive coverage of the lunar polar regions, providing images under various lighting
conditions, which is highly relevant for lunar polar illumination research.

In the 21st century, several lunar orbital missions have observed the polar regions,
including JAXA’s Kaguya, NASA’s LRO, and ISRO’s Chandrayaan-1 and Chandrayaan-2,
as well as CNSA’s Chang’E-1 and Chang’E-2 [33]. In particular, the LRO mission has
achieved sub-meter-level resolution with its long-term observations and extensive image
coverage in the polar regions. It operates in a polar orbit around the Moon and provides
images under different illumination conditions, which is highly suitable for lunar polar
lighting studies.
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3. Study Area and Data
3.1. Study Area

In this research, a pre-selected landing area of Chang’E-7 southeast of Shackleton
impact crater (Figure 1), a popular landing area studied in many studies [9,19,34,35],
was selected as the study area of this research. This region with an approximate size
of 3 km × 3 km features a flat plateau. The average slope is about 6◦, and the average
illumination is approximately 0.35. Some parts of the plateau experience relatively long
periods of illumination (>80%). The favorable topographic and illumination conditions
make it an ideal landing area for rover traversing and exploration.
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Figure 1. Overview of the study area: (a) is shaded relief of LOLA DEM of the south pole of the
Moon and 3D display of the study area (the red box area in the left map); (b,c) are the slope and
average illumination of the study area, respectively.

3.2. Data

1. Multi-temporal high-resolution orbital images

Thorough investigation of existing orbital optical images, LROC NAC images are
selected to construct the image database, supplemented by Terrain Mapping Camera-2
(TMC-2) images from Chandrayaan-2. The NAC is composed of NAC-L and NAC-R, each
has a focal length of 700 mm and a field of view of 2.85 degrees. Each camera can capture
a swath width of 2.5 km with a resolution of 0.5 m for panchromatic image when the
spacecraft is at an orbital altitude of 50 km. The NAC image has a spatial resolution ranging
from 0.5 m to 2 m with different orbital altitudes. One of the primary objectives of LRO
is to assess features at the meter-scale and smaller resolutions in polar regions, aiming
to survey polar resources and conduct safety analyses for potential landing sites on the
Moon [36]. Therefore, the spacecraft is designed to operate in a lunar polar orbit, which
provides the highest revisit frequency over the polar regions, enabling LROC NAC image
to have extensive high-resolution repetitive coverage in the lunar polar regions. In this
research, 226 LROC NAC images were selected and downloaded from the PDS Geosciences
Node Lunar Orbital Data Explorer website (https://ode.rsl.wustl.edu/moon/index.aspx,
accessed on 11 September 2023). The images were acquired from July 2009 to September
2020, with resolutions from 0.69 m/pixel to 1.97 m/pixel, azimuth angles from 0.99◦ to
359.24◦, and elevation angles from −2.57◦ to 2.73◦.

TMC-2 of Chandrayaan-2 can provide high-resolution images of the Moon’s polar
regions. TMC-2 is configured to provide panchromatic images, and stereo triplets at

https://ode.rsl.wustl.edu/moon/index.aspx
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5 m/pixel spatial resolution from a 100 km circular orbit around the Moon for preparing
detailed DEM of the complete lunar surface [37,38]. To supplement the LROC NAC images,
5 TMC-2 images were selected and downloaded from the Indian Space Science Data
Center website (https://pradan.issdc.gov.in/ch2/protected/payload.xhtml, accessed on 11
September 2023). These images were acquired from 11 November 2021, and 12 November
2021, with resolutions of 5 m/pixel, azimuth angles from 318.78◦ to 333.02◦, and elevation
angles from 0.59◦ to 0.72◦.

2. LOLA DEM (LDEM)

LOLA is a laser altimetry system carried on the LRO spacecraft. Its main objective
is to establish a precise geodetic framework and provide a unified geodetic reference for
other lunar data. With an orbit reconstruction error of around 7 m, LOLA provides the
highest resolution and best accuracy lunar surface topographic data available [39].

An improved 5 m/pixel LOLA DEM (https://pgda.gsfc.nasa.gov/products/78, ac-
cessed on 11 September 2023), corrected through orbit self-alignment, was utilized in this
research. The orbit self-alignment process reduced the orbit error by more than 10 times; the
LDEM surface height uncertainty has typical RMS values of ~0.30 to 0.50 m, significantly
minimizing terrain artifacts caused by orbit errors and noises [25].

4. Method

Based on the multi-temporal high-resolution orbital images, this paper proposes an
analysis method for the lunar south pole illumination conditions. It fully utilizes the
high-resolution and multi-temporal coverage characteristics of the images to conduct high-
spatiotemporal-resolution analyses of the illumination environment in specific regions of
the lunar south pole. The overall workflow of the method is illustrated in Figure 2.
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Figure 2. Workflow of illumination condition analysis using multi-temporal images.

Firstly, multi-temporal images of the study area are selected, radiometrically processed,
geometrically processed, and registered (see Section 4.1.1 for details). Then, according
to the image acquisition time and area, the solar elevation angle and azimuth angle at
the time of image acquisition are calculated (see Section 4.1.2 for details). After that, a
database including image acquisition time, solar elevation angle and azimuth angle, and
image storage location is established for subsequent illumination condition studies and
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exploration support. During mission execution, according to the time required for mission
planning, images with the nearest solar elevation and azimuth angle are retrieved from
the database for subsequent usage. The differences in the actual solar positions at the
mission moments from that of the nearest sun position image are calculated and their
impact on illumination conditions is evaluated using DEM-based illumination simulation
(see Section 5.2 for details). Finally, comprehensive illumination analysis is performed at
the study area using high-resolution multi-temporal images, with the assistance of the
DEM in some cases.

4.1. Image Database Construction
4.1.1. Image Preprocessing and Registration

Firstly, muti-temporal images of the study area were downloaded. Then, images with
excessive shadow areas and significant noises (Figure 3 for example) were excluded through
visual interpretation. Subsequently, the selected images underwent image preprocessing,
orthorectification, and image registration.
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bright noise in the shadow area; (b) is an image (M128439353RE) with uneven and inconsistent bright
stripe noise.

The ISIS (Integrated System for Imagers and Spectrometers) [40,41] software was used
for image preprocessing and orthorectification. Taking LROC NAC image processing as an
example, the downloaded raw image data in the IMG format were first converted to the
ISIS-readable CUB format using the lronac2isis command. The Spiceinit command was
then used to read the relevant kernel files and construct the camera model. The 1ronaccal
command was used to perform basic radiometric calibration, effectively eliminating some
vertical striping issues in the images. The lronacecho command was applied to remove
the echo noise present in the image, which was caused by the high-speed motion of the
NAC detector during image acquisition. After processing, the boundaries of features in
the images were enhanced and became clearer. Finally, the cam2map command was used
for orthorectification at the south-polar stereographic projection. For TMC-2, orthoimages
can be downloaded directly from the Indian Space Science Data Center website (https:
//pradan.issdc.gov.in/ch2/protected/payload.xhtml, accessed on 11 September 2023).

Due to the presence of orbit and attitude measurement errors, there is geolocation
deviation among the multi-temporal images of the same area [42,43]. The tens-of-meter-
level positioning errors cause noticeable displacement of geologic features (e.g., craters)
and significantly affect the subsequent analysis. In order to perform joint processing, the
image also needs to be registered with DEM. Due to the very different azimuth angles, the
visual appearances of the multi-temporal images are significantly different (see examples
in Figure 4), making the image matching and registration very difficult in the lunar polar
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regions. To tackle this problem, we propose a matching strategy for the high-resolution
images with different illumination conditions using the DEM as a bridge.
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Firstly, the muti-temporal images are divided into several groups based on their
azimuth angles in a way that the lighting differences among the images within the group
do not affect the subsequent image matching. Within each group, the image with the
highest sun elevation angle and the least shadow coverage is selected as the reference
image of the group. This image is chosen because it contains visually richest information
within the group. Next, the reference images of all groups are matched with the DEM by
using the DEM-simulated illumination images (see Section 4.1.3 for details), which are
generated based on solar azimuth and elevation angles of the reference images for each
group. The DEM-simulated illumination images are much similar to the actual orbital
images, making it much easier to match the reference images to the DEM. SIFT (Scale-
Invariant Feature Transform) feature matching [44] is used to match the reference images
with their corresponding simulated illumination images. SIFT feature matching is a local
feature detection algorithm based on scale, rotation, and affine invariant features, which can
maintain a certain degree of stability against light, noise, and viewing angle variations. An
outlier rejection algorithm based on Random Sample Consensus (RANSAC) [45] and affine
transformation is employed to eliminate mismatched points and retain correctly matched
points. The process of RANSAC is as follows: First, several sample points in the sample
set are randomly selected to calculate the parameters of an affine transformation model.
Second, other sample points are calculated using the model parameters, and whether or not
they are “inner points” in line with the model is judged according to the set threshold value.
If not, they are divided into “outer points”, and the set of inner points and the number of
inner points is recorded. Then, the algorithm repeats the above steps, selects the inner point
set with the largest number of inner points, and recalculates the parameters of the affine
transformation model. SIFT feature matching and RANSAC are open-source algorithms.

The reference images are registered to the DEM using affine transformations, achieving
sub-pixel-level registration precision. Other images in each group are registered to the
reference image of the group using SIFT feature matching, thus completing the registration
of all images and the DEM.



Remote Sens. 2023, 15, 5691 8 of 22

4.1.2. Sun Position Calculation

Due to the wide longitudinal span (could be tens to a hundred degrees) of the polar
region images, there is significant variation in the solar azimuth angle within the study area.
Estimating the solar azimuth at a specific location in the image based on the solar azimuth
at the image center (which is provided in the image header) is not accurate. Therefore, it is
necessary to calculate the solar azimuth for any specific location within the study area.

In this research, SpiceyPy, which is a Python version of the SPICE toolkit [46], was
used to calculate the precise location of the subsolar point at a specific moment using
the DE440 ephemeris [47]. The coordinates were transformed into the lunar body’s fixed
coordinate system. Using spherical geometry methods, the elevation angle and azimuth
angle at different observation points were calculated.

Based on the geometric position information of the Moon and the Sun (Figure 5), the
elevation angle and azimuth angle at different times can be calculated. The elevation angle
can be obtained using the following formula [48],

δ =
π

2
− (α+ θ) (1)

α = arccos[sinϕAsinϕd + cosϕAcosϕd cos(λA − λB)] (2)

θ = arcsin

 Rmoonsinα

(R2
sm + R2

moon − 2RsmRmooncosα)
1
2

 (3)

where δ is the solar elevation angle at the observation point; λA and ϕA are the lunar
longitude and latitude of the observation point A; λd and ϕd are the lunar longitude
and latitude of the subsolar point (or the solar elevation point), respectively; Rmoon is the
average radius of the Moon; and Rsm is the distance between the Sun and the Moon (in
astronomical units, AU).
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The azimuth angle A of the observation point can be calculated as follows. Considering
that the range of the arcsine function and arccosine function is −90◦ to 90◦ and 0◦ to 180◦,
respectively, to represent the azimuth angle between 0◦ and 360◦, the following formula
is used.

sin(A) =
sinγ sin C

sin α
=

cosϕB sin(λB − λA)

sin α
(4)
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cos(A) =
cosγ − cosα cosβ

sinα sinβ
=

sinϕB − cosα sinϕA

sinα cosϕA
(5)

A =


arccos(cosA) , sinA > 0
2π + arcsin(sinA) , sinA < 0, cosA > 0
π − arcsin(sinA), sinA < 0, cosA < 0

(6)

where α is ∠AOB, β is ∠COA, γ is ∠COB (Figure 5). λB and ϕB are the lunar longitude
and latitude of the observation point B, respectively.

4.1.3. Image Simulation Using DEM

The hill shade technique was employed to generate DEM-simulated illumination
images in this research. This method assumes that the lunar surface is an ideal reflector and
follows the Lambertian reflectance model. The reflected intensity at a point on the surface
depends only on the angle θi between the direction of sunlight and the surface normal
vector (Figure 6).
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and Φ are the solar elevation angle and azimuth angle at the observation point; γ, λ are slope and
aspect, respectively; i is the solar incidence angle.

The slope and aspect can be obtained from a DEM using a third-order inverse distance
squared weighting algorithm. The angle θi between the direction of sunlight and the surface
normal vector can be obtained by solving spherical triangles.

I = ρcosθi = ρn·s = ρ(cos i cos α + sin i sin α cos(Φ − β)) (7)

where ρ is the surface albedo, and is assumed to be a constant in this study. s is the direction
of solar rays, and n is the direction of surface normal lines.

4.2. Illumination Analysis
4.2.1. Illumination Condition Accuracy Assessment

Solar elevation angle and azimuth angle at a specific moment and location for future
exploration can be calculated using the ephemeris. The image that closely matches a specific
illumination condition in the future can be obtained by querying the nearest solar position
from the image dataset. However, affected by various orbital cycles, the images could not
fully cover all possible illumination conditions. By analyzing the distribution of azimuth
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and elevation angles in the dataset, the deviation between the image dataset and the actual
illumination conditions is investigated by analyzing the difference in shadows. To quantify
the inconsistency in shadow areas, the mismatch rate is used as a measure to analyze the
impact of the deviation. The mismatch rate is calculated as follows.

First, images are separately thresholded to obtain their binary matrices, where a value
of one represents brightness (sunlit area) and zero represents darkness (shadow area).
The threshold is selected to be the 10% of the DN value range in this research. Then,
the binary matrix Miss(i, j), which stands for the mismatch of two binary matrices M(i, j)
and N(i, j), is obtained using the XOR (Exclusive OR) operation. The total mismatch rate
(TMR) is obtained by the ratio of the mismatch region to the total region in the statistical
mismatch matrix. N is the total pixel number of the images, and Nmiss is the total number
of mismatched pixels.

Miss(i, j) = M(i, j) ⊕ N(i, j) (8)

TMR =
Nmiss

N
(9)

In order to distinguish different mismatch types, the ratio between the number of
mismatch points and the total pixels in the light zone of the reference image (such as the
simulated image) is defined as the light zone mismatch rate (LZMR), and the ratio between
the number of mismatch points and the total pixels in the dark zone of the reference image
is defined as the dark zone mismatch rate (DZMR) (Figure 7). The dot product of M(i,j)
and Miss(i,j) is used to represent the bright mismatch matrix L(i,j), and the dark mismatch
matrix D(i,j) is the total mismatch matrix minus the bright mismatch matrix. The TMR,
LZMR, and DZMR are used as indices for illumination conditions analysis accuracy.

L(i, j) = M(i, j) · Miss(i, j) (10)

D(i, j) = Miss(i, j)− L(i, j) (11)
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Figure 7. (a) The binarization map of the DEM-simulated illumination image. (b) The binarization
map of NAC image. (c) Shadow-mismatch map using DEM-simulated illumination image as reference
(cyan is the consistent area, yellow is the mismatched pixels in the light area, and blue is the
mismatched pixels in the dark area. With the TMR is 7.64%, the LZMR is 5.11% and the DZMR
is 9.97%).

The distribution of shadow variations is presented using a binary map. By comparing
the differences between images within the same azimuth range but different elevation
angles, as well as images within the same elevation angle range but different azimuth angles,
we can select the image with the lowest mismatch rate as the basis of the illumination
conditions for a specific moment.

4.2.2. Adaptive Illumination Condition Analysis by Combining Images and DEM

In most cases, images that closely match the required illumination conditions can
directly support engineering applications. However, some retrieved nearest sun posi-
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tion images still exhibit significant discrepancies from the actual illumination conditions
at certain moments. Combining existing DEM products may improve the accuracy of
illumination condition analysis in these situations.

The accuracy of the DEM is the key factor affecting the performance of its illumination
condition analysis. As there are no absolute control points and high-precision reference
data in the lunar polar region, direct evaluation of DEM accuracy is very challenging. In
this paper, we propose a method to evaluate the DEM height errors using mismatched
shadow length (MSL) between DEM-simulated image and the actual optical image. By
considering the shadow length in the optical image as the ground truth, the mismatched
shadow length between the DEM-simulated image and the optical image is statistically
calculated in the direction of illumination. This difference in distance between the optical
image and the DEM-simulated image in the direction of sunlight is then used to infer
height errors based on their geometric relationship. When the actual terrain is higher than
the DEM, the shadow length generated by the occlusion of high points (assume that the
high point is the measurement base and there is no elevation error) in optical images is
shorter than the shadow in the simulated image. Conversely, the shadow length in the
optical image is longer than in the simulated image if the actual terrain is lower than the
DEM (Figure 8).
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Figure 8. The figure shows the geometric relationship between the difference in shadow length and
the difference in elevation; the right diagram shows the overview diagram of the shadow area change
in the corresponding case: (a) The situation where the actual terrain is lower than the DEM terrain.
(b) The situation where the actual terrain is higher than the DEM terrain. The solid curve represents
the true terrain corresponding to the actual optical image, while the dashed curve represents the
DEM data corresponding to the simulated image. The yellow line represents the solar rays. The black
ellipse represents the shadow area, and the green line area is shown as light in the real image and
with shadow in the DEM-simulated image. The blue line area is shown as shadow in the image and
with light in the DEM-simulated image.

Let ∆h be the elevation difference between the DEM data and the actual terrain at the
location of the elevation point, with α denoting the solar elevation angle, and ∆d indicating
the mismatched shadow length. Based on the geometric relationship depicted in Figure 8,
the equation can be derived:

∆h = ∆dtanα+ hB − hA (12)
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where hA and hB are elevations of points A and B, respectively, which can be derived
from DEM.

The height error calculated by this method is called shadow-based height error (SBHE).
Please note that although the formulas used to calculate the mismatch in shadow lengths
for dark and bright areas are the same in this method, they reflect different types of height
errors. Figure 8a illustrates the case of shadow-mismatch in bright areas of reference, where
the shadow length in the actual image is greater than that in the simulated image. The
left graph represents the profile view, while the right graph shows the plan view of this
situation. The height error location is denoted as point A, which refers to the starting
point error, representing the height error at the shadow-mismatch starting position. For
the case of shadow-mismatch in dark areas of reference, as shown in Figure 8b, the height
error location is denoted as point B, referred to as the endpoint error, representing the
height error at the shadow-mismatch endpoint position. The statistical analysis of this error
distribution can represent the relative accuracy of the regional DEM in terms of elevation
accuracy. This method requires high precision in the matching between simulated and
optical images. The datasets obtained through pixel-level registration mentioned earlier
are well suited to this method.

By comparing the accuracy of multi-temporal image-based illumination condition anal-
ysis with that of DEM-based, we can adaptively select lighting analysis data and methods
for engineering support (e.g., task planning) at different locations and different moments.

5. Results and Discussions
5.1. Image Database Construction

As described in Section 2, 226 LROC NAC images and 5 TMC-2 images were selected
in this research. These images were preprocessed and orthorectified with ISIS software.
Then, the registration of images under different lighting conditions and DEM was per-
formed using the proposed strategy (Figure 9). All images were divided into six groups at
60◦ azimuth intervals. Six reference images were selected in each group for registration
with DEM.
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Figure 9. Results of registration between DEM and a reference NAC image (M108606146RE). The
simulated image is based on LOLA DEM. Green crosses are feature points extracted by SIFT. Image is
registered to the LOLA DEM using affine transformation.

The registration precision between images is high, reaching the sub-meter level, which
is higher than the registration precision between the reference image and the DEM. There-
fore, the overall accuracy of the dataset depends on the registration precision between the
reference image and the DEM (as shown in Table 1). The average precision can reach 2.7 m,
achieving the sub-pixel level of the DEM resolution (5 m/pixel).
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Table 1. Registration precision of reference image and DEM.

Image ID Azimuth (◦) Elevation (◦) Resolution (m/pixel) Matching Precision RMS (m)

M108211830LE 21.7 2.5 1.6 2.8
M112938905RE 75.3 1.6 1.7 2.4
M115334726RE 98.0 0.6 1.7 2.5
M108606146RE 325.9 2.4 1.7 2.7
M105925266RE 344.6 2.0 1.0 2.8
M177361050RE 345.7 1.3 1.4 3.1

The solar azimuth and elevation at the time of image acquisition of all the images were
calculated. Their distribution is shown in Figure 10.
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Figure 10. The distribution of solar azimuth and elevation. Blue line is the horizon of the center point
of the study area (shown in Figure 1). Red and yellow crosses stand for the light and shadow of the
center point of the study area in the image, respectively.

To cross-verify the results, we calculated the horizon of the center point of the study
area using the 5 m/pixel DEM. For the images with the solar position above the hori-
zon, they should appear light, while those below the horizon should appear dark. By
manually inspecting the brightness of the central point, we classified 184 images as light
and 47 images as dark, which are marked as red and yellow crosses in Figure 10. The
image-based results were found to be consistent with the DEM-based results, with only a
few small discrepancies. These discrepancies could be attributed to limitations in the DEM
accuracy and resolution. These validation results demonstrate the reliability and accuracy
of our solar position calculation method, providing support for the subsequent analysis
and interpretation of the data.

5.2. Illumination Analysis Results

The multi-temporal image dataset can directly support engineering tasks such as
environmental perception. It allows retrieval of the image with the nearest sun position
during the task moment. As an example, assuming Chang’E-7 will land on 12 December
2026, at 13:00 UTC, the elevation angle of the landing site is 2.56◦, and the azimuth angle is
15.63◦. Using the nearest sun position query, the M108252552RE image is obtained with an
elevation angle of 2.51◦ and an azimuth angle of 15.88◦. The elevation angle deviation is
1.95%, and the azimuth angle deviation is 1.59%. The lighting conditions are remarkably
similar, effectively mirroring the actual illumination scenario. The image’s elevation angle
is slightly lower than the actual solar elevation angle, leading to a slightly larger shadow



Remote Sens. 2023, 15, 5691 14 of 22

area. Analyzing landing safety based on this image would yield more conservative results,
ensuring the security of the landing process.

By utilizing M108252552RE for the extraction of impact craters and shadow areas,
a risk distribution map of the landing is generated and shown in Figure 11. Due to the
extreme illumination conditions, high-precision automatic extraction of impact craters is
still a challenge in the polar region. Here, we manually identified and extracted the impact
craters. And we used the threshold segmentation method (see Section 4.2.1 for details)
for the shadow extraction. This map can be used to effectively mitigate the risks caused
by illumination conditions, providing favorable assurance for the rover exploration of the
specific time.
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Figure 11. Example of environmental perception using the constructed multi-temporal image dataset:
(a) M108252552RE with the nearest sun position of demand. (b) Image-based risk distribution map,
the red circles represent impact craters, and the blue curves are the shadow boundaries.

5.2.1. Illumination Condition Accuracy Assessment

From the aforementioned case, it can be seen that the images in the dataset cannot
be completely consistent with the actual illumination conditions. In order to evaluate
the accuracy of using multi-temporal images for illumination analysis, the distribution of
azimuth and elevation angles in the dataset was investigated. Considering that Chang’e-7
plans to conduct a soft landing and surface exploration in 2026, the hourly solar azimuth
and elevation angles at the pre-selected landing area were calculated and compared with
that of the image dataset. Figure 12a shows the hourly solar elevation and azimuth angles
in each month of the year 2026. The images in the dataset were acquired between 2009 and
2012. So, the solar azimuth and elevation angles of these images, which are also shown in
Figure 12a, do not exactly match the illumination conditions in 2026. It should be noted
that 5 TMC-2 images (represented with yellow crosses in Figure 12a with a resolution of
5 m/pixel are added to the database as supplementary data to increase the coverage of
the sun position. There are few LRO images with an azimuth angle of 300◦~330◦ and an
elevation angle of 0◦~1◦. The 5 TMC-2 images can increase the image density in this region.
The deviations of the actual solar position from that of the nearest sun position image are
then calculated, as shown in Figure 12b. The average deviation of the solar elevation for
the nearest sun position image is 0.84◦, and the average deviation of the azimuth is 1.27◦.
The maximum deviation of the solar elevation is 3.16◦, and the maximum deviation of
the azimuth is 7.78◦. Thanks to the acquisition of a large number of overlapping multi-
temporal images, this deviation is minimal, but we still need to evaluate its impact on
shadow analysis.
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Figure 12. Deviation distribution of solar elevation and azimuth angle: (a) Distribution of azimuth
and elevation angles in the dataset and the hourly solar positions in 2026. The solar positions for
each month are shown in a different color. Red crosses represent the NAC images and yellow
crosses represent the TMC-2 images. (b) The difference between hourly solar positions in 2026 and
that of the images of the nearest sun positions. (c) Azimuth distribution histogram. (d) Elevation
distribution histogram.

The variation in shadow region is related to the solar elevation angle, azimuth angle,
and terrain. To separate various influencing factors, three pairs of images with similar
azimuth angles but different elevation angles were selected to demonstrate the influence
of elevation angle on shadow areas. We selected a test region with consistent terrain
and located on the boundary between light and dark areas. The information of the test
images is listed in Table 2. The elevation angle intervals for the three pairs of images
are 0.9473, 2.1466, and 3.0625, respectively. The image with the lower elevation angle
was chosen as the reference image, and the calculated mismatch rates were measured
within a 1 km × 1 km area (same for all three pairs). The total mismatch rates are 8.38%,
29.01%, and 18.54%, respectively. The shadow-mismatch map is shown in Figure 13. The
results demonstrate a significant impact of elevation angle variation on shadow areas.
Additionally, the relationship between the variation in shadow areas and elevation angle is
not consistent in different directions. The difference in shadow areas between images with
a smaller elevation angle interval may be greater than that between images with a larger
elevation angle interval caused by the different azimuth angles of test images.

Table 2. The effect of elevation angle on shadow mismatch.

Image ID Azimuth (◦) Elevation (◦)
TMR

(Total Mismatch
Rate)

LZMR
(Light Zone

Mismatch Rate)

DZMR
(Dark Zone

Mismatch Rate)

Group1 M146535043RE 15.4002 1.5691
8.38% 9.85% 1.80%M108252552RE 15.8858 2.5164

Group2 M126091501LE 22.5770 −0.4195
18.54% 21.50% 0.73%M110759138RE 22.2712 2.6430

Group3 M180056477RE 326.2872 0.2814
29.01% 42.07% 0%M108599352RE 326.8527 2.4280
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on image shadow areas. The image information is listed in Table 3. The azimuth angle 
intervals for the three sets of images were 9.45°, 28.60°, and 49.81°, respectively. Taking 
the image with a smaller azimuth angle variation as the reference image, the mismatch 
rates were calculated within a 1 km × 1 km area, resulting in total mismatch rates of 11.72%, 
18.63%, and 20.73% respectively. 

Compared to elevation angle variations, the impact of azimuth angle variations on 
shadow areas is relatively smaller. Figure 14 illustrates the effects of different azimuth 
angle variations on shadow areas. The azimuth angle variations exhibit distinct regional 
characteristics on the mismatch map, with noticeable differences between shadow mis-
match and illumination mismatch locations. According to the analysis, when selecting il-
lumination conditions close to the image for illumination analysis, the proximity of the 
elevation angle should be considered first. 

Figure 13. The effect of elevation angle on shadow-mismatch: (a,b,d,e,g,h) are the binary maps of
M146535043RE, M108252552RE, M126091501LE, M126091501LE, M180056477RE, and M108599352RE,
respectively. (c,f,i) are shadow-mismatch maps of the three test groups, respectively, blue and yellow
pixels are the shadow-mismatch pixels in the dark and light zone of reference respectively, and cyan
represents the area with consistent pixel values.

We also selected three pairs of images with relatively consistent elevation angles but
different azimuth angles to demonstrate the influence of solar azimuth angle variations
on image shadow areas. The image information is listed in Table 3. The azimuth angle
intervals for the three sets of images were 9.45◦, 28.60◦, and 49.81◦, respectively. Taking the
image with a smaller azimuth angle variation as the reference image, the mismatch rates
were calculated within a 1 km × 1 km area, resulting in total mismatch rates of 11.72%,
18.63%, and 20.73% respectively.

Table 3. The effect of azimuth angle on shadow mismatch.

Image ID Azimuth (◦) Elevation (◦)
TMR

(Total Mismatch
Rate)

LZMR
(Light Zone

Mismatch Rate)

DZMR
(Dark Zone

Mismatch Rate)

Group4 M1101147258LE 229.1365 0.7592
11.72% 6.99% 15.15%M167914376RE 238.5657 0.7575

Group5 M184488316LE 62.6314 −0.9826
18.63% 27.67% 11.12%M189391940RE 91.2346 −0.9765

Group6 M139444670RE 294.7701 0.0293
20.73% 23.89% 18.01%M105925266RE 344.5866 2.0290

Compared to elevation angle variations, the impact of azimuth angle variations on
shadow areas is relatively smaller. Figure 14 illustrates the effects of different azimuth
angle variations on shadow areas. The azimuth angle variations exhibit distinct regional
characteristics on the mismatch map, with noticeable differences between shadow mis-
match and illumination mismatch locations. According to the analysis, when selecting
illumination conditions close to the image for illumination analysis, the proximity of the
elevation angle should be considered first.
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and height errors, obtaining the following nine indicators to assess the quality of lighting 
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Figure 14. The effect of azimuth angle on shadow mismatch: (a,b,d,e,g,h) are the binary
maps of M1101147258LE, M167914376RE, M184488316LE, M189391940RE, M139444670RE, and
M105925266RE, respectively. (c,f,i) are shadow-mismatch maps of the three test groups, respectively,
blue and yellow pixels are the shadow-mismatch pixels in the dark and light zone of reference
respectively, and cyan represents the area with consistent pixel values.

5.2.2. Adaptive Illumination Conditions Analysis

We evaluated the accuracy of illumination condition analysis using the 5 m DEM,
as well as the DEM elevation accuracy. Six NAC images of the aforementioned dataset
were used to serve as the reference images for shadow-based error detection. The sun
azimuth at the time of image acquisition in the test area was calculated, and the corre-
sponding simulated images were rendered with the appropriate illumination conditions.
The aforementioned shadow testing method was then used to calculate the mismatch
conditions and height errors, obtaining the following nine indicators to assess the quality
of lighting simulation and the relative height accuracy of the DEM, TMR, DZMR, LZMR,
average MSL (m), maximum MSL, MSL 3σ, average SBHE, maximum SBHE, and SBHE 3σ
(three standard deviations). Table 4 presents these indicators, along with the sun azimuth
information for the images. The resolution of images ranges from 0.5 to 1 m/pixel and
the DEM gird size is 5 m. For convenient comparison, all the data were resampled to
1 m/pixel.

Table 4. Accuracy evaluation of illumination conditions analysis using DEM.

Image ID Azimuth
(◦)

Elevation
(◦) TMR DZMR LZMR Average

MSL(m)
Max
MSL

MSL
3σ(m)

Average
SBHE

(m)

Max
SBHE(m)

SBHE
3σ (m)

M108585571RE 2.4396 328.8039 7.64% 5.11% 9.97% 4.345 40.9625 24.7064 0.1702 2.7965 1.4864
M110738772RE 2.6189 25.1531 9.96% 13.54% 7.16% 4.3737 40.9625 24.3238 0.2123 2.7906 1.5052
M115378448RE 0.7124 92.2500 10.29% 30.81% 0.03% 4.3077 32.4006 23.2036 0.1177 2.0013 1.2323
M115701210RE 1.5035 46.2911 9.10% 25.17% 2.96% 4.4076 32.5753 23.3607 0.0909 1.2622 0.7323
M1101147258LE 0.7592 229.1366 11.85% 12.96% 10.46% 4.2089 36.2278 20.103 0.123 2.7116 1.2138
M1103454419LE 1.0990 263.2305 10.33% 11.96% 8.73% 4.0299 30.0689 23.3607 0.0947 2.7256 1.14
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Figure 15 illustrates the mismatched shadow locations and the resulting shadow-based
height error. The total mismatched rate ranges from 7.64% to 11.85%, while the mismatched
shadow length at 3σ ranges from 20.105 to 24.7064 m, and the mismatch height error at
3σ ranges from 0.7323 to 1.5052 m. The mismatched rate in the bright and dark areas is
mainly influenced by the size of the corresponding image regions, leading to significant
fluctuations in the results. The overall mismatch rate indicator (TMR) is more robust.
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Figure 15. Shadow-mismatch distribution map (a,c,e,g,i,k) and shadow-based height error map
(b,d,f,h,j,l) in test area. The resultant figures are generated from M108585571RE, M110738772RE,
M115378448RE, M115701210RE, M1101147258LE, and M1103454419LE, respectively.

The reliability of using mismatched shadow length to estimate DEM elevation accuracy
relies on the number of mismatched shadows as measurements. Images with a sufficient
number of shadows were selected as reference images so as to obtain more mismatched
shadows for height error estimation. Meanwhile, in order to capture wide and evenly
distributed measurements covering the entire area, reference images taken under different
illumination conditions were selected. In our experiment, we selected six reference images
with different illumination conditions, and obtained a large number of measurements at the
same location from different reference images, which we call corresponding measurements.
The height errors generated from different reference images should be consistent. We
calculated the variance in the shadow-based height error for these corresponding measure-
ments for a consistency check. We conducted 6699 sets of corresponding measurements.
The average variance is 0.012 m and the maximum variance is 1.346 m. The frequency
distribution result shows that 95% of the variance in the point set is below 0.05 (Figure 16b).
This indicates a high level of consistency in the height errors calculated from different
reference images under varying illumination conditions, demonstrating the robustness and
reliability of this method. Using the height error measurements obtained from all reference
images, we interpolated an evaluation accuracy map of the DEM (Figure 16). This can serve
as an important reference when using the DEM.
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Figure 16. (a) Shadow-based height error map of DEM. (b) The variance frequency distribution of
the corresponding measurements.

According to the above experimental results, the total mismatch rate of the DEM-
simulated images is mostly around 10%. Compared with multi-temporal image-based
illumination analysis results, a mismatch rate of 10% approximately corresponds to an
elevation angle difference within 1◦ or an azimuth angle difference within 10◦. Therefore,
when selecting similar images, using images with an elevation angle difference within 1◦

or an azimuth angle difference within 10◦ of a specific moment can yield better results
compared to the DEM-simulated images.

The retrieval of the nearest neighboring solar position images in 2026 resulted in a
maximum azimuth angle deviation of 7.78◦, with all deviations falling within 10◦. The
average deviation of the elevation angle is 0.84◦, with a maximum deviation of 3.16◦. Thus,
the similarity of the nearest solar position image is mainly influenced by the distribution of
elevation angles.

Evaluation angle intervals were interpolated with a 10◦ azimuth angle range
(Figure 17), by which we can assess the azimuth angle deviation between the nearest
sun position image and the true situation. For instance, in the 180–270◦ azimuth interval,
the overall deviation is negative, indicating that the image’s elevation angles are gener-
ally higher than the true elevation angles. Consequently, the image’s lighting conditions
will be better than the true conditions. In intervals with large elevation angle deviations,
the DEM-simulated images are better than that of the nearest sun position image for
illumination analysis.
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6. Conclusions

We proposed a method for lunar polar region illumination condition analyses using
multi-temporal high-resolution orbital images. The feasibility of using a nearest solar
position image for environmental analysis to support engineering tasks was demonstrated
at the study area. Our contributions can be summarized as follows:

(1) A high-resolution image dataset of a pre-selected landing area of Chang’E-7 was
constructed using multi-temporal high-resolution images. And the feasibility of using
this dataset for environmental analysis during the mission was demonstrated.

(2) A registration strategy for multi-temporal overlapping images and DEM was em-
ployed to achieve a matching precision of sub-pixel level, effectively eliminating the
geometric inconsistencies within the dataset.

(3) We proposed a mismatch-shadow-length-based approach for an assessment of DEM
accuracy, and the precision of illumination condition analysis using a nearest sun
position image. The effectiveness and reliability of this method was demonstrated.
According to our assessment, an adaptive illumination condition analysis combining
images and DEM is proposed.

Due to the different image coverage situations, the effectiveness of the proposed image-
based illumination condition analysis varies in different regions. With the continuous
acquisition of more high-resolution images, the accuracy of using multi-temporal images
for illumination environment analysis will also continue to improve.

Author Contributions: Conceptualization, Y.Z., B.L. and K.D.; Data curation, W.W. and B.X.; Formal
analysis, Y.Z., S.L., Z.Y., S.H. and J.W.; Funding acquisition, B.L. and K.D.; Investigation, Y.Z. and B.L.;
Methodology, Y.Z. and B.L.; Project administration, B.L. and K.D.; Resources, K.D., S.L., S.H. and J.W.;
Software, Y.Z.; Supervision, B.L. and Z.Y.; Validation, S.L., S.H., J.W. and W.W.; Visualization, Y.Z.,
Z.Y. and B.X.; Writing—original draft, Y.Z. and B.L.; Writing—review and editing, B.L., K.D., S.L. and
Z.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the National Key Research and Development Program of
China (grant no. 2022YFF0503100) and the Open Fund of the Key Laboratory of Aerospace Flight
Dynamics Technology (grant no. KGJ6142210220204).

Data Availability Statement: The LROC NAC images and TMC-2 images are available from the
PDS Geosciences Node Lunar Orbital Data Explorer website (https://ode.rsl.wustl.edu/moon/
index.aspx) and the Indian Space Science Data Center website (https://pradan.issdc.gov.in/ch2
/protected/payload.xhtml) respectively. The improved LDEM is available from https://pgda.gsfc.
nasa.gov/products/78. Other datasets generated and analyzed in this study are available from the
corresponding author upon reasonable request.

Acknowledgments: We are grateful to the LRO mission team and all those who worked on the
Planetary Data System archive for their tireless work in making the LROC images and LDEM publicly
available. We thank Barker M.K. and his collaborators for providing the improved LDEM. We
are also thankful to the people at the Indian Space Science Data Center for making the TMC-2
images available.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhang, P.; Dai, W.; Niu, R.; Zhang, G.; Liu, G.; Liu, X.; Bo, Z.; Wang, Z.; Zheng, H.; Liu, C. Overview of the Lunar In Situ Resource

Utilization Techniques for Future Lunar Missions. Space Sci. Technol. 2023, 3, 37. [CrossRef]
2. Liu, J.; Zeng, X.; Li, C.; Ren, X.; Yan, W.; Tan, X.; Zhang, X.; Chen, W.; Zuo, W.; Liu, Y.; et al. Landing Site Selection and Overview

of China’s Lunar Landing Missions. Space Sci. Rev. 2020, 217, 6. [CrossRef]
3. Li, C.; Wang, C.; Wei, Y.; Lin, Y. China’s present and future lunar exploration program. Science 2019, 365, 238–239. [CrossRef]
4. Smith, M.; Craig, D.; Herrmann, N.; Mahoney, E.; Krezel, J.; McIntyre, N.; Goodliff, K. The artemis program: An overview of

nasa’s activities to return humans to the moon. In Proceedings of the 2020 IEEE Aerospace Conference, Big Sky, MT, USA, 7–14
March 2020; pp. 1–10.

5. McKay, C.P. The case for a NASA research base on the Moon. New Space 2013, 1, 162–166. [CrossRef]
6. Carruba, V.; Coradini, A. Lunar cold traps: Effects of double shielding. Icarus 1999, 142, 402–413. [CrossRef]

https://ode.rsl.wustl.edu/moon/index.aspx
https://ode.rsl.wustl.edu/moon/index.aspx
https://pradan.issdc.gov.in/ch2/protected/payload.xhtml
https://pradan.issdc.gov.in/ch2/protected/payload.xhtml
https://pgda.gsfc.nasa.gov/products/78
https://pgda.gsfc.nasa.gov/products/78
https://doi.org/10.34133/space.0037
https://doi.org/10.1007/s11214-020-00781-9
https://doi.org/10.1126/science.aax9908
https://doi.org/10.1089/space.2013.0018
https://doi.org/10.1006/icar.1999.6192


Remote Sens. 2023, 15, 5691 21 of 22

7. Watson, K.; Murray, B.C.; Brown, H. The behavior of volatiles on the lunar surface. J. Geophys. Res. 1961, 66, 3033–3045. [CrossRef]
8. Qiao, L.; Ling, Z.; Head, J.W.; Ivanov, M.A.; Liu, B. Analyses of Lunar Orbiter Laser Altimeter 1,064-nm Albedo in Permanently

Shadowed Regions of Polar Crater Flat Floors: Implications for Surface Water Ice Occurrence and Future In Situ Exploration.
Earth Space Sci. 2019, 6, 467–488. [CrossRef]

9. Rao, W.; Fang, Y.; Peng, S.; Zhang, H.; Sheng, L.; Ma, J. Landing Site Selection Method of Lunar South Pole Region. J. Deep Space
Explor. 2022, 9, 571–578. [CrossRef]

10. Gläser, P.; Oberst, J.; Neumann, G.A.; Mazarico, E.; Speyerer, E.J.; Robinson, M.S. Illumination conditions at the lunar poles:
Implications for future exploration. Planet. Space Sci. 2018, 162, 170–178. [CrossRef]

11. Hu, T.; Yang, Z.; Li, M.; van der Bogert, C.H.; Kang, Z.; Xu, X.; Hiesinger, H. Possible sites for a Chinese International Lunar
Research Station in the Lunar South Polar Region. Planet. Space Sci. 2023, 227, 105623. [CrossRef]

12. Wei, G.; Li, X.; Zhang, W.; Tian, Y.; Jiang, S.; Wang, C.; Ma, J. Illumination conditions near the Moon’s south pole: Implication for
a concept design of China’s Chang’E−7 lunar polar exploration. Acta Astronaut. 2023, 208, 74–81. [CrossRef]

13. Margot, J.L.; Campbell, D.B.; Jurgens, R.F.; Slade, M. Topography of the lunar poles from radar interferometry: A survey of cold
trap locations. Science 1999, 284, 1658–1660. [CrossRef]

14. Vanoutryve, B.; De Rosa, D.; Fisackerly, R.; Houdou, B.; Carpenter, J.; Philippe, C.; Pradier, A.; Jojaghaian, A.; Espinasse,
S.; Gardini, B. An analysis of illumination and communication conditions near lunar south pole based on Kaguya Data. In
Proceedings of the International Planetary Probe Workshop, Barcelona, Spain, 15 June 2010; pp. 1–7.

15. Bussey, D.; McGovern, J.; Spudis, P.; Neish, C.; Noda, H.; Ishihara, Y.; Sørensen, S.-A. Illumination conditions of the south pole of
the Moon derived using Kaguya topography. Icarus 2010, 208, 558–564. [CrossRef]

16. Noda, H.; Araki, H.; Goossens, S.; Ishihara, Y.; Matsumoto, K.; Tazawa, S.; Kawano, N.; Sasaki, S. Illumination conditions at the
lunar polar regions by KAGUYA (SELENE) laser altimeter. Geophys. Res. Lett. 2008, 35, 24. [CrossRef]

17. Henriksen, M.; Manheim, M.; Burns, K.; Seymour, P.; Speyerer, E.; Deran, A.; Boyd, A.; Howington-Kraus, E.; Rosiek, M.R.;
Archinal, B.A. Extracting accurate and precise topography from LROC narrow angle camera stereo observations. Icarus 2017, 283,
122–137. [CrossRef]

18. Barker, M.; Mazarico, E.; Neumann, G.; Zuber, M.; Haruyama, J.; Smith, D. A new lunar digital elevation model from the Lunar
Orbiter Laser Altimeter and SELENE Terrain Camera. Icarus 2016, 273, 346–355. [CrossRef]

19. Mazarico, E.; Neumann, G.; Smith, D.; Zuber, M.; Torrence, M. Illumination conditions of the lunar polar regions using LOLA
topography. Icarus 2011, 211, 1066–1081. [CrossRef]

20. De Rosa, D.; Bussey, B.; Cahill, J.T.; Lutz, T.; Crawford, I.A.; Hackwill, T.; van Gasselt, S.; Neukum, G.; Witte, L.; McGovern, A.
Characterisation of potential landing sites for the European Space Agency’s Lunar Lander project. Planet. Space Sci. 2012, 74,
224–246. [CrossRef]

21. Gläser, P.; Scholten, F.; De Rosa, D.; Figuera, R.M.; Oberst, J.; Mazarico, E.; Neumann, G.; Robinson, M. Illumination conditions at
the lunar south pole using high resolution Digital Terrain Models from LOLA. Icarus 2014, 243, 78–90. [CrossRef]

22. Tong, X.; Huang, Q.; Liu, S.; Xie, H.; Chen, H.; Wang, Y.; Xu, X.; Wang, C.; Jin, Y. A high-precision horizon-based illumination
modeling method for the lunar surface using pyramidal LOLA data. Icarus 2023, 390, 115302. [CrossRef]

23. Xin, X.; Liu, B.; Di, K.; Yue, Z.; Gou, S. Geometric quality assessment of chang’E-2 global DEM product. Remote Sens. 2020, 12, 526.
[CrossRef]

24. Di, K.; Liu, B.; Xin, X.; Yue, Z.; Ye, L. Advances and applications of lunar photogrammetric mapping using orbital images. Acta
Geod. Et Cartogr. Sin. 2019, 48, 13.

25. Barker, M.K.; Mazarico, E.; Neumann, G.A.; Smith, D.E.; Zuber, M.T.; Head, J.W. Improved LOLA elevation maps for south pole
landing sites: Error estimates and their impact on illumination conditions. Planet. Space Sci. 2021, 203, 105119. [CrossRef]

26. Wöhler, C.; Grumpe, A.; Berezhnoy, A.; Bhatt, M.U.; Mall, U. Integrated topographic, photometric and spectral analysis of the
lunar surface: Application to impact melt flows and ponds. Icarus 2014, 235, 86–122. [CrossRef]

27. Wu, B.; Liu, W.C.; Grumpe, A.; Wöhler, C. Shape and albedo from shading (SAfS) for pixel-level DEM generation from monocular
images constrained by low-resolution DEM. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 521–527. [CrossRef]

28. Liu, Y.; Wang, Y.; Di, K.; Peng, M.; Wan, W.; Liu, Z. A Generative Adversarial Network for Pixel-Scale Lunar DEM Generation
from High-Resolution Monocular Imagery and Low-Resolution DEM. Remote Sens. 2022, 14, 5420. [CrossRef]

29. Tao, Y.; Muller, J.-P.; Conway, S.J.; Xiong, S.; Walter, S.H.G.; Liu, B. Large Area High-Resolution 3D Mapping of the Von Kármán
Crater: Landing Site for the Chang’E-4 Lander and Yutu-2 Rover. Remote Sens. 2023, 15, 2643. [CrossRef]

30. Speyerer, E.J.; Robinson, M.S. Persistently illuminated regions at the lunar poles: Ideal sites for future exploration. Icarus 2013,
222, 122–136. [CrossRef]

31. Cisneros, E.; Awumah, A.; Brown, H.; Martin, A.; Paris, K.; Povilaitis, R.; Boyd, A.; Robinson, M. Lunar Reconnaissance Orbiter
Camera permanently shadowed region imaging—Atlas and controlled mosaics. In Proceedings of the 48th Annual Lunar and
Planetary Science Conference, Houston, TX, USA, 20–24 March 2017; p. 2469.

32. Brown, H.; Boyd, A.; Sonke, A.; Huft, A.; Robinson, M.; Cisneros, E. Lunar Reconnaissance Orbiter Camera Permanently
Shadowed Region Images: Updates to PSR Atlas and PSR Mosaics. LPI Contrib. 2022, 2703, 5033.

33. Li, C.; Liu, J.; Ren, X.; Yan, W.; Zuo, W.; Mu, L.; Zhang, H.; Su, Y.; Wen, W.; Tan, X. Lunar global high-precision terrain
reconstruction based on Chang’E-2 stereo images. Geomat. Inf. Sci. Wuhan Univ. 2018, 43, 485–495. [CrossRef]

https://doi.org/10.1029/JZ066i009p03033
https://doi.org/10.1029/2019EA000567
https://doi.org/10.15982/j.issn.2096-9287.2022.20220072
https://doi.org/10.1016/j.pss.2017.07.006
https://doi.org/10.1016/j.pss.2022.105623
https://doi.org/10.1016/j.actaastro.2023.03.022
https://doi.org/10.1126/science.284.5420.1658
https://doi.org/10.1016/j.icarus.2010.03.028
https://doi.org/10.1029/2008GL035692
https://doi.org/10.1016/j.icarus.2016.05.012
https://doi.org/10.1016/j.icarus.2015.07.039
https://doi.org/10.1016/j.icarus.2010.10.030
https://doi.org/10.1016/j.pss.2012.08.002
https://doi.org/10.1016/j.icarus.2014.08.013
https://doi.org/10.1016/j.icarus.2022.115302
https://doi.org/10.3390/rs12030526
https://doi.org/10.1016/j.pss.2020.105119
https://doi.org/10.1016/j.icarus.2014.03.010
https://doi.org/10.5194/isprs-archives-XLI-B4-521-2016
https://doi.org/10.3390/rs14215420
https://doi.org/10.3390/rs15102643
https://doi.org/10.1016/j.icarus.2012.10.010
https://doi.org/10.13203/j.whugis20170400


Remote Sens. 2023, 15, 5691 22 of 22

34. Flahaut, J.; Carpenter, J.; Williams, J.-P.; Anand, M.; Crawford, I.; van Westrenen, W.; Füri, E.; Xiao, L.; Zhao, S. Regions of interest
(ROI) for future exploration missions to the lunar South Pole. Planet. Space Sci. 2020, 180, 104750. [CrossRef]

35. Liu, N.; Shi, X.; Xu, F.; Jin, Y. Analysis of High Resolution SAR Data and Selection of Landing Sites in the Permanently Shadowed
Region on the Moon. Deep. Space Explor. 2022, 9, 42–52. [CrossRef]

36. Robinson, M.S.; Brylow, S.M.; Tschimmel, M.; Humm, D.; Lawrence, S.J.; Thomas, P.C.; Denevi, B.W.; Bowman-Cisneros, E.; Zerr,
J.; Ravine, M.A.; et al. Lunar Reconnaissance Orbiter Camera (LROC) Instrument Overview. Space Sci. Rev. 2010, 150, 81–124.
[CrossRef]

37. Chowdhury, A.R.; Patel, V.D.; Joshi, S.R.; Arya, A.S.; Ghonia, D.N. Terrain Mapping Camera-2 onboard Chandrayaan-2 Orbiter.
Curr. Sci. 2020, 118, 566. [CrossRef]

38. Chowdhury, A.R.; Saxena, M.; Kumar, A.; Joshi, S.; Amitabh, A.D.; Mittal, M.; Kirkire, S.; Desai, J.; Shah, D.; Karelia, J. Orbiter
high resolution camera onboard Chandrayaan-2 orbiter. Curr. Sci. 2019, 117, 560. [CrossRef]

39. Smith, D.E.; Zuber, M.T.; Jackson, G.B.; Cavanaugh, J.F.; Neumann, G.A.; Riris, H.; Sun, X.; Zellar, R.S.; Coltharp, C.; Connelly, J.
The lunar orbiter laser altimeter investigation on the lunar reconnaissance orbiter mission. Space Sci. Rev. 2010, 150, 209–241.
[CrossRef]

40. Becker, K.J.; Anderson, J.A.; Weller, L.A.; Becker, T.L. ISIS support for NASA mission instrument ground data processing systems.
In Proceedings of the 44th Annual Lunar and Planetary Science Conference, Woodlands, TX, USA, 18–22 March 2013; p. 2829.

41. Gaddis, L.; Anderson, J.; Becker, K.; Becker, T.; Cook, D.; Edwards, K.; Eliason, E.; Hare, T.; Kieffer, H.; Lee, E. An overview of
the integrated software for imaging spectrometers (ISIS). In Proceedings of the Lunar and Planetary Science Conference XXVIII,
Houston, TX, USA, 17–21 March 1997; p. 387.

42. Liu, B.; Jia, M.; Di, K.; Oberst, J.; Xu, B.; Wan, W. Geopositioning precision analysis of multiple image triangulation using LROC
NAC lunar images. Planet. Space Sci. 2018, 162, 20–30. [CrossRef]

43. Mazarico, E.; Neumann, G.A.; Barker, M.K.; Goossens, S.; Smith, D.E.; Zuber, M.T. Orbit determination of the Lunar Reconnais-
sance Orbiter: Status after seven years. Planet. Space Sci. 2018, 162, 2–19. [CrossRef]

44. Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [CrossRef]
45. Fischler, M.A.; Bolles, R.C. Random sample consensus: A paradigm for model fitting with applications to image analysis and

automated cartography. Commun. ACM 1981, 24, 381–395. [CrossRef]
46. Annex, A.; Pearson, B.; Seignovert, B.; Carcich, B.; Murakami, S.Y. SpiceyPy: A Pythonic Wrapper for the SPICE Toolkit. J. Open

Source Softw. 2020, 5, 2050. [CrossRef]
47. Park, R.S.; Folkner, W.M.; Williams, J.G.; Boggs, D.H. The JPL planetary and lunar ephemerides DE440 and DE441. Astron. J. 2021,

161, 105. [CrossRef]
48. Li, X.; Wang, S.; Zheng, Y.; Cheng, A. Estimation of solar illumination on the Moon: A theoretical model. Planet. Space Sci. 2008,

56, 947–950. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.pss.2019.104750
https://doi.org/10.15982/j.issn.2096-9287.2022.20210134
https://doi.org/10.1007/s11214-010-9634-2
https://doi.org/10.18520/cs/v118/i4/566-572
https://doi.org/10.18520/cs/v118/i4/560-565
https://doi.org/10.1007/s11214-009-9512-y
https://doi.org/10.1016/j.pss.2017.07.016
https://doi.org/10.1016/j.pss.2017.10.004
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1145/358669.358692
https://doi.org/10.21105/joss.02050
https://doi.org/10.3847/1538-3881/abd414
https://doi.org/10.1016/j.pss.2008.02.008

	Introduction 
	Related Work 
	Study Area and Data 
	Study Area 
	Data 

	Method 
	Image Database Construction 
	Image Preprocessing and Registration 
	Sun Position Calculation 
	Image Simulation Using DEM 

	Illumination Analysis 
	Illumination Condition Accuracy Assessment 
	Adaptive Illumination Condition Analysis by Combining Images and DEM 


	Results and Discussions 
	Image Database Construction 
	Illumination Analysis Results 
	Illumination Condition Accuracy Assessment 
	Adaptive Illumination Conditions Analysis 


	Conclusions 
	References

