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Abstract: The massive increase in the amount of greenhouse gases in the atmosphere, especially
carbon dioxide (CO2), has had a significant impact on the global climate. Research has revealed that
lakes play an important role in the global carbon cycle and that they can shift between the roles of
carbon sources and sinks. This study used Landsat satellite images to analyze the spatiotemporal
characteristics and factors influencing the CO2 changes in Chagan Lake in China. We conducted
six water sampling campaigns at Chagan Lake in 2020–2021 and determined the partial pressure of
carbon dioxide (pCO2) from 110 water samples. Landsat surface reflectance was matched with water
sampling events within ±7 days of satellite overpasses, yielding 75 matched pairs. A regression
analysis indicated strong associations between pCO2 and both the band difference model of the near-
infrared band and green band (Band 5-Band 3, R2 = 0.83, RMSE = 27.55 µatm) and the exponential
model [((exp(b3) − exp(b5))2/(exp(b3) + exp(b5))2, R2 = 0.82, RMSE = 27.99 µatm]. A comparison
between the performances of a linear regression model and a machine learning model found that
the XGBoost model had the highest fitting accuracy (R2 = 0.94, RMSE = 16.86 µatm). We used
Landsat/OLI images acquired mainly in 2021 to map pCO2 in Chagan Lake during the ice-free period.
The pCO2 in the surface water of Chagan Lake showed considerable spatiotemporal variability within
a range of 0–200 µatm. pCO2 also showed significant seasonal variations, with the lowest and highest
mean values in autumn (30–50 µatm) and summer (120–150 µatm), respectively. Spatially, the pCO2

values in the southeast of Chagan Lake were higher than those in the northwest. The CO2 fluxes
were calculated based on the pCO2 and ranged from −3.69 to −2.42 mmol/m2/d, indicating that
Chagan Lake was absorbing CO2 (i.e., it was a weak carbon sink). Temperature, chlorophyll a, total
suspended matter, and turbidity were found to have reinforcing effects on the overall trend of pCO2,
while the Secchi disk depth was negatively correlated with pCO2. The results of this study provide
valuable insights for assessing the role of lakes in the carbon cycle in the context of climate change.

Keywords: CO2 flux; remote sensing; CO2 budget; carbon cycle; Chagan Lake

1. Introduction

For decades, the release of greenhouse gases (GHGs), especially carbon dioxide (CO2),
into the atmosphere by human activities and environmental changes has increased dramat-
ically [1,2]. There is a consensus that the greenhouse effect caused by the continuous rise
in atmospheric CO2 concentration is the principal factor causing global climatic change,
which is seriously threatening sustainable societal and economic development [3]. The
reduction in GHGs has become a critical topic of intense research focus [4–6].

A large number of studies have shown that lakes, as important contributors to inland
waters, play a nonnegligible role in the global carbon cycle [7]. Although the total surface
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area of global lakes accounts for only 3.7% of the global non-glacial land area [8], lake
waters are often a significant CO2 emission source due to their relative saturated dissolved
atmospheric CO2 concentrations (cCO2) [9–11], whose emission potential may offset about
22% of the net CO2 absorption of terrestrial ecosystems [12]. This plays a key role in the
global carbon budget. At the same time, many lakes in the world are rich trophic lakes.
Theoretically, phytoplankton growing vigorously in these lakes consume large amounts of
water CO2 through photosynthesis and absorb atmospheric CO2 through respiration, thus
increasing the carbon exchange at the water–air interface and acting as a carbon sink [13].
It is important to study the carbon emissions at the lake water–air interface for carbon
emission reduction and regulation of the role of lakes in global warming. Currently, most
lakes around the world are oversaturated, but the amount of CO2 that lakes contribute to
the atmosphere varies from 0.11 to 0.57 Pg·Cy−1 according to different studies [10,14,15].
Such a large variation in the estimates is mainly caused by the lack of field monitoring
data, especially for small- and medium-sized lakes [16,17]. Therefore, comprehensive and
accurate monitoring of lake GHG emissions is an important prerequisite for regulating lake
CO2 emissions and is required for further evaluating the influence of lakes on the pattern
of atmospheric GHG sources and sinks.

Studies of lake CO2 flux based on measured data provided a clearer understanding
of the source–sink patterns of global inland water carbon [18,19]. The flux of lake CO2
can be directly measured by the flux chamber, but the more common approach is to
indirectly calculate it from in situ monitoring data of the partial pressure of CO2 (pCO2)
and Henry’s law [20–22]. However, in situ monitoring over long time periods and vast
geographical regions is challenging, and water pCO2 has strong spatial heterogeneity and
time variability [23]. When conducting spatial-scale extrapolation, time integration, and
water–air interface flux estimation using monitoring data, the routine statistical analysis
methods adopted in environment sciences and ecology have obvious shortcomings. Remote
sensing data have multiple spatial and temporal scales and are multi-spectral, which enables
continuous spatiotemporal observation of water parameters. In recent years, there has been
a technological breakthrough in the space satellite remote sensing observation of watercolor
elements of inland waters, and a series of inversion algorithms and models suitable for the
study of spatiotemporal variations of lake water quality parameters have been developed,
including the concentration of chlorophyll a and suspended matter in water, the depth of
the true light layer, the lake surface water temperature, and the colored dissolved organic
matter (CDOM) [24–29]. However, since there is no optical signal from the water body
cCO2 and it is affected by atmospheric absorption and scattering due to signal receiving
by sensors and other surface processes, remote sensing technology cannot directly capture
the flux characteristics of a water body and water–air interface, and can only achieve
pCO2 remote sensing inversion by building an indirect relationship between pCO2 and the
physical or biological parameters that can be retrieved from remote sensing. For the remote
estimation of inland water body CO2, exploratory work has been carried out overseas
based on large measured datasets, but research on using the remote sensing technology to
estimate inland water body CO2 flux is still in the exploration stage. Although the method
itself has certain limitations, because of its ability to cover considerable spatiotemporal
scales, it is gradually becoming an internationally growing research focus [30].

Chagan Lake is the seventh-largest freshwater lake in China and the largest natural
lake in Jilin Province, with a surface area of 420 km2 and a mean water depth of 2.5 m [31,32].
The main input source of Chagan Lake is the Songhua River, and the lake is one of the
eutrophication lakes in China [33]. Chagan Lake is endowed with rich natural resources
and is a well-known fishery and reed industry base. Although the main economic value of
the lake lies in its fish resources, it is also important for agricultural and recreational use.

The specific objectives of this study are: (1) to determine the factors impacting the pCO2
variability and establish a remote sensing model for pCO2; (2) to evaluate the variations in
the lake pCO2 based on image data and multi-site measurements; and (3) to quantify the
Chagan Lake’s contribution to the atmospheric CO2 budget. Chagan Lake was selected
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as a typical lake in Northeast China to perform remote sensing CO2 flux estimations for
further understanding of the lake carbon cycle. The long-term monitoring of the lake is
important for agricultural and recreational uses.

2. Materials and Methods
2.1. Study Area and Field Data Acquisition

Chagan Lake is the seventh-largest freshwater lake in China. It is located in the
northwest of Jilin Province; in the Golden Triangle area of the Inner Mongolia Autonomous
Region, Heilongjiang Province, and Jilin Province; at the end of the Huolin River; and
at the confluence of the three rivers of Songhua River, Songhua River south source, and
Nenjiang river (Figure 1). The lake has a water surface area of 420 km2 and 2.5 m of mean
water depth [32]. The ice cover period of Chagan Lake is about 4–5 months, freezing in the
middle of November every winter and melting in April of the following year. The major
features of the geomorphology of Chagan Lake are high in the southeast, slightly higher
in the southwest, and low in the central part and the northeast. The Chagan Lake area is
rich in natural resources; it is the largest natural lake and important fishery base in Jilin
Province. However, large amounts of receding water from the newly built saline–alkali
irrigation area are discharged into Chagan Lake, resulting in the deterioration of lake water
quality and aggravation of eutrophication, which poses a threat to the ecological security
of lake water and the sustainability of its ecological products [33,34].
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Lake water sample collection was conducted during the ice-free periods (May to
October) between 2020 and 2021. Surface water samples from depths of 0.1–0.5 m were
acquired. The locations of sampling points are shown in Figure 1. The specific sampling
times were 26 September 2020, 26 May 2021, 18 July 2021, 31 August 2021, 1 September 2021,
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and 17 September 2021. A total of 110 sampling points were selected. After a water
sample was collected, it was immediately put in a car refrigerator at 4 ◦C and delivered
to the laboratory in this state. The water samples were kept in the laboratory at 4 ◦C in
a refrigerator until the analytical tests were complete, which took 2–3 days. Generally,
3–4 L of water was collected at each point to measure various water quality indicators
in the laboratory. In this study, the collection of CO2 in lakes was carried out using the
headspace equilibrium method [35,36], and 250 mL atmospheric air was equilibrated with
250 mL water by shaking vigorously in a gas bottle for 1 min. The headspace gas was
transferred by a 30 mL plastic syringe to a gas collection bag (Delin, China) and carried to
the laboratory within 24–48 h. The measurements of CO2 concentrations were made by a
gas chromatography analyzer (Agilent, 7890B). The measurement for each sampling site
was repeated three times using a similar operation, and the value used in the calculation
was the mean value [37]. In the calculation, we needed to convert the volume fraction into
the molarity through the basic unit conversion, subtract the air CO2 concentration from the
measured concentration of CO2 in water, multiply the volume ratio of air above the bottle
and water to obtain the final CO2 dissolution in the water, and then convert it into partial
pressure. For measuring the in situ water temperature (T), PH, dissolved oxygen (DO) and
water transparency, the HQ40D Portable Multi-Parameter Meter (HQ40d, Hach) was used.
Wind speed data were also measured simultaneously [38,39].

2.2. Data Acquisition and Processing

Landsat 8 images were downloaded to coincide with the in situ measurement dates.
Detailed information on the selection of the Landsat 8 satellite images is provided (Table 1).
Landsat 8 images (Landsat 8 OLI/TIRS Collection 2 Tier 1 atmospherically corrected
surface reflectance) with no clouds or less cloud cover (which have been processed by
atmospheric correction) were selected on the Google Earth Engine (GEE) platform and
used in subsequent model inversions. The Landsat5/7 Surface Reflectance Collection 2 Tier
1 products were created with the Landsat Ecosystem Disturbance Adaptive Processing
System (LEDAPS) algorithm (version 3.4.0) according to the 6S radiative transfer model to
obtain the surface reflectance products. The Landsat 8 Surface Reflectance Collection 2 Tier
1 products were created with the Land Surface Reflectance Code (LaSRC). Image reflectance
was equal to the image DN values multiplied by 0.0000275 and with 0.2 subtracted, and
the model was constructed based on the image surface reflectance and the measured
partial pressure value of carbon dioxide. Landsat surface reflectance was matched with
water sampling events within ±7 days of satellite overpasses, yielding 75 matched pairs.
Because the number of suitable images with less cloud cover in 2021 was insufficient, we
downloaded supplementary images from 2020 to 2022 (Table 1). For images that were
only used to match measured data, the cloud cover was ignored. Band surface reflectance
conversion between Landsat TM/ETM+ and Landsat OLI was available [40].

Weather research and forecasting (WRF) is a widely used numerical weather prediction
and atmospheric research tool jointly developed by the National Center for Atmospheric
Research, the National Oceanic and Atmospheric Administration, and their partners. It
is used for short-term weather forecasting, atmospheric processes, and long-term climate
simulations. The WRF is more accurate than traditional numerical weather prediction
models and has a higher spatiotemporal resolution, making it a popular tool in the meteo-
rological and atmospheric research community. FNL (Final) Operational Global Analysis
data is a global reanalysis database with a spatial accuracy of 1◦ × 1◦ provided by the
National Center for Environmental Prediction (NCEP)/National Center for Atmospheric
Research (NCAR). In this paper, the FNL data were used as input data to the WRF; then,
temperature, wind speed, and precipitation data were extracted from the WRF simulations.
The highly accurate WRF simulation results were compared to the experimental site data.
Furthermore, we downloaded the ground meteorological data for China, available from
the National Climatic Data Center (NCDC), which is a part of the National Oceanic and
Atmospheric Administration (NOAA). Using this dataset, the 1990 average temperature
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and U10 wind speed ware calculated for flux estimations. The annual global atmospheric
carbon dioxide data were also downloaded from the Global Monitoring Laboratory (GML).

Table 1. The date and quantity of images downloaded.

Image Date Resolution Cloud Cover

LC08_119029_20200722 22 July 2020 30 m <5%
LC08_119029_20201010 10 October 2020 30 m <5%
LC08_119029_20210420 20 April 2021 30 m <5%
LC08_119029_20210522 22 May 2021 30 m <5%
LC08_119029_20210607 7 June 2021 30 m <5%
LC08_119029_20210623 23 June 2021 30 m <20%
LC08_119029_20210709 9 July 2021 30 m -
LC08_120028_20210902 2 September 2021 30 m -
LC08_119029_20210911 11 September 2021 30 m -
LC08_119029_20211013 13 October 2021 30 m <5%
LC08_119029_20221016 16 October 2022 30 m <5%
LT05_119029_19890802 2 August 1989 30 m <20%
LT05_119029_19891021 21 October 1989 30 m <5%
LT05_119029_19900704 4 July 1990 30 m <20%
LT05_119029_19900906 6 September 1990 30 m <5%
LT05_119029_19901024 24 October 1990 30 m <5%
LT05_119029_19910418 18 April 1991 30 m <5%
LT05_119029_19910504 4 May 1991 30 m <5%
LT05_119029_19910605 5 June 1991 30 m <5%
LT05_119029_19910824 24 August 1991 30 m <20%
LT05_119029_19910909 9 September 1991 30 m <5%
LT05_119029_19911027 27 October 1991 30 m <5%

2.3. pCO2 Modeling, Model Calibration, and Validation
2.3.1. Band Ratio Modeling

The measured data were randomly divided at a 2:1 ratio into 50 training samples and
25 testing samples. To select the appropriate model parameters, the correlation between the
50 pCO2 values and five bands (B1–B5) or multiple band combinations of the Landsat 8 im-
ages were analyzed using linear regression in the Statistical Package for the Social Sciences
(SPSS). The factors with strong correlations were selected to form a band ratio model.

2.3.2. Machine-Learning Modeling

The random forest regression model establishes multiple unrelated decision trees
using randomly selected samples and features, and makes parallel predictions. Extreme
gradient boosting (XGBoost) uses multiple Classification and Regression Trees (CART)
for prediction and has good generalization capabilities, which is very useful for solving
complex nonlinear regression problems. K-fold cross-validation can be used to check
the stability of a model and effectively avoid the influence of information leakage on the
model’s hyperparameters. Cross-validation divides the available data into K parts, uses
each of them in turn as the testing data and the other K-1 parts as the training sets, and
assesses the accuracy of the model multiple times to obtain the average accuracy of the
model. XGBoost traverses the search with a 5-fold cross-validation and grid method.

2.3.3. Model Calibration and Validation

The 25 test sampling points data were used to model calibration and validation.
The errors between the inverted values and the measured values of the linear regression
model were compared and analyzed. The coefficient of determination (R2), root mean
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square error (RMSE), and mean absolute percentage error (MAPE) were used as accuracy
evaluation indices.

RMSE =

√
∑N

i=1
(
y′i − yi

)2

N
(1)

MAPE =
100%

N

N

∑
i=1

∣∣∣∣y′i − yi

yi

∣∣∣∣ (2)

where N is the number of samples in the dataset and yi and y′i are in situ-measured
pCO2 and model-predicted pCO2 values. The determination coefficient (R2) is often used
to represent model prediction performance. MAPE is also used to examine agreement
between the measured and predicted values.

2.4. Data Analysis

pCO2 in the surface water of lakes was calculated using Henry’s law [20].

pCO2 = CB × kC (3)

where p is the gas partial pressure in the surface water of lake (atm), which has CB as the
molarity (mol·m−3); and kC is Henry’s constant [atm·(mol·m−3)−1].

The areal (per unit surface area) CO2 flux (FCO2, in mmol·m−2·d−1) across the
water–air interface was estimated based on a theoretical diffusion model:

FCO2 = k× kH × (pCO2 − pCO2air) (4)

where pCO2 is the gas partial pressure of CO2 in surface water (µatm); pCO2air is the
concentration of CO2 in air (µatm); kH (mol·L−1·atm−1) is the solubility for CO2 corrected
for temperature (T, ◦C) [41] and pressure (µatm) (Equation (4)); and k is the gas transfer
velocity (cm·h−1) [42]. The estimation of k (cm·h−1) was related to k600 (gas transfer velocity
normalized to a Schmidt number of 600 in fresh water) and U10 (wind speed measured at
10 m height) (Equations (5)–(8)) [43–45]. Then, 0.24 times k (cm·h−1) obtained k (m·d−1),
which is used in Equation (4). A −2/3 power dependence of the Schmidt number (Sc)
was assumed below a wind speed of 3 m/s (measured at 1 m height) with the smooth
lake surface, and a −1/2 power dependence of Sc was assumed above 3 m/s for a surface
with waves [44,46]. SC was calculated from the surface water temperature T (◦C) using
Equation (9) [45]:

kH = 10−(1.11+0.016T−0.00007T2) (5)

k = k600 × (Sc/600)−1/2or−2/3 (6)

k600 = 0.251×U2
10 (U10 > 3.7 m/s) (7)

k600 = 2.07 + 0.215×U1.7
10 (U10 < 3.7 m/s) (8)

SC = 1911.1− 118.11T + 3.4527T2 − 0.04132T3 (9)

WRF was used to simulate the Chagan Lake selected from the FNL data. The annual
average temperature and U10 wind speed data of the station were extracted from the
simulation results as known quantities into the carbon dioxide flux calculation formula,
and the final carbon dioxide flux results were obtained. In 2021, the U10 wind speed
was 0.718923 m/s and the temperature was 4.1810225 ◦C. In 1990, the temperature was
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3.149914 ◦C and the U10 wind speed was 0.045115 m/s. And the CO2 in the atmosphere
was 354.45 ppm in 1990 and 416.45 ppm in 2021.

3. Results
3.1. pCO2 Model Calibration and Validation

The correlations between the pCO2 values and the five bands and multiple band
combinations of the Landsat 8 images are listed in Table 2. The potential model factors
were selected from among those with strong correlations, indicated in Table 2, to form a
one-way linear regression model and an exponential regression model (Table 3).

Table 2. Pearson correlation coefficient (p) between pCO2 and bands of Landsat 8 images.

Factors B1 B2 B3 B4 B5 B6 B7

p −0.252 −0.168 0.182 −0.048 −0.382 0.046 0.228

Factors B3 − B2 B5 − B3 B5 − B4 B4 − B3 exp(B3) − exp(B5))/
(exp(B3) + exp(B5)

(B5 − B2)/
(B5 + B2)

p 0.703 −0.911 −0.636 −0.600 −0.910 −0.621

Table 3. Regression models.

Regression Model Formula R2

Band difference model
y = −4639.749 × (B5 − B3) − 353.845 0.83
y = 3824.755 × (B3 − B2) − 109.721 0.48

y = −3976.502 × (B5 − B4) + 157.229 0.39

Band ratio model
y = −93.365 × ((B5 − B2)/(B5 + B2)) + 22.669 0.37

y = −156.216 × ((B5-B2)/(B5 + B2)) + 1928.883 × ((B3 + B4)/2) − 214.638 0.67
Exponential model y = 93273.487 × (exp(B3) − exp(B5))2/(exp(B3) + exp(B5))2 − 127.066 0.82

Pure band calculations for regression models inevitably produce negative inversion
values in the imagery, which skew the overall results. Nonlinear data are not well fitted.
The model was optimized and parameterized using multiple experiments, and the final pa-
rameter values are shown in Table 4. Other parameters were assigned default values. Using
the same training samples as in the linear model, the random forest and XGBoost pCO2
models were constructed. The pCO2 values predicted by the models vs. those measured
in situ are plotted in Figure 2, which reflects the differences between the two types of
results for each model. The closer the verification sample points are to the diagonal line,
the smaller the model error.

Table 4. Important model parameter values.

Random Forest
Parameters Values XGBoost Parameters Values

n_estimators 80 n_estimators 50
random_state 110 learning_rate 0.11
max_features sqrt booster gbtree
max_depth 5 max_depth 5

min_samples_leaf 3 gamma 2
n_jobs −1 lambda 7

All the tested models from pCO2 collected at 110 sites across Chagan Lake achieved
accurate calibration, with R2 ranging from 0.82 to 0.97. Validation results also exhibited
stable performance (R2 = 0.87–0.94) (Figure 2). The linear model and band difference
model (Figure 2a), i.e., unary one-time models, had R2, RMSE, and MAPE values of 0.83,
27.54 µatm, and 32.25%, respectively. The quadratic model (Figure 2b) showed validation
accuracy, with R2, RMSE, and MAPE values of 0.90, 22.13 µatm, and 40.63%, respectively.
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In general, the accuracy of the linear models was similar and relatively good. The accuracy
of the random forest model was high, with R2, RMSE, and MAPE of 0.93, 17.50 µatm,
and 21.09% (Figure 2c), respectively, but the validation accuracy was not high, with R2

of 0.87, RMSE of 25.42 µatm, and MAPE of 49.74%. The XGBoost model (Figure 2d) had
significantly smaller errors, and its R2, RMSE, and MAPE of 0.97, 11.40 µatm, and 11.76%,
respectively, were better than those of other models. The validation accuracy (R2 = 0.94
and RMSE = 16.87 µatm) was also better than those of the remaining three models. The
XGBoost model showed the best performance, indicating that it effectively utilized various
feature information supporting its nonlinear regression prediction ability.
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3.2. Spatiotemporal Analysis of pCO2 Based on the Inversion Results

We applied the XGBoost model to map the pCO2 of Chagan Lake in 2021 and obtained
satisfactory results (Figure 3). The corresponding inversion result accuracy of the sampling
points was also better (R2 = 0.80) (Figure 4). A full-scale assessment of pCO2 in Chagan
Lake in 2021 was conducted using the Landsat OLI surface reflectance product in the
ice-free season. The pCO2 values of Chagan Lake ranged from 0 to 200 µatm, with 25–75%
of them concentrated between 30 and 150 µatm. The minimum value changes were small,
concentrated in the range of 15–25 µatm. The spatial distribution of the pCO2 values was
higher in the southeast of Chagan Lake than in the northwest. Because of the occurrence
of large individual extrema in the models, the maximum and minimum values were not
included in the following trend analysis.
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A seasonal analysis of the model results was conducted (Figure 3, spring: March–May;
summer: June–August, autumn: September–November). The highest seasonal mean pCO2
values in Chagan Lake were in the summer (mean = 132.45± 24.44 µatm), followed by spring
(mean = 98.11 ± 18.24 µatm), and the lowest was in autumn (mean = 44.03 ± 8.46 µatm).
The characteristic values were analyzed (Figures 5 and 6) and it was revealed that the
lowest pCO2 was found in autumn, followed by spring, and highest value was found
in summer. The trends of the eigenvalues were essentially consistent (Figure 6a). The
mean, lower quartile, median, and upper quartile changes were the highest in summer
(120–150 µatm), followed by spring (80–110 µatm) and autumn (30–50 µatm) (Figure 6b). It
was observed that the autumn pCO2 values were the lowest; the spring pCO2 values were
about twice those of autumn; and the summer pCO2 values were thrice those of autumn
and about 1.5 times those of spring. Then, the XGBoost model was used to invert the
images and the ENVI Quick Stats function was adopted to obtain the eigenvalues of the
inversion results, including the maximum and minimum values; mean; and the lower,
median, and upper quartiles, as shown in the Figure 5.

The annual mean pCO2 in Chagan Lake was calculated based on the XGBoost model
results. The values significantly increased between 1990 (mean = 42.45 ± 8.50 µatm)
and 2021 (mean = 91.52 ± 14.31 µatm) (Figure 7). This trend of annual mean pCO2 was
consistent with the increase in nutrient levels in Chagan Lake over the same years. We
can see that the values were higher at the boundary of the lake than on the surface in 1990,
while in 2021, this was the opposite, as seen in Figure 7. The reason may be that in 2021,
the lake biomass of Chagan Lake was large, most of it was concentrated on the lake water
surface, and the low biomass at the lake boundary led to low pCO2 values. In the 1980s
and 1990s, on the other hand, Chagan Lake was in the process of “introducing loose water
into the lake”; the water area was in a period of rapid growth [47]; the development of
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fishery was slow; there was overfishing; and the overall biomass was small, resulting in
high pCO2 values only in the southeast region and low ones overall. The abnormally high
value of red in the eastern part of the lake in 1990 was due to the fact that the water area of
Chagan Lake was fluctuant between 1990 and 2021. Moreover, we used the same shapefile
of Chagan lake, and the boundary of lake may include the transition zone from the lake
to the land. In 1990 and 2021, the overall pattern was the same, with the southeast being
higher than the northwest.
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3.3. CO2 Flux through Water–Atmosphere Interface of Chagan Lake

CO2 flux through the water–atmosphere interface of Chagan Lake was calculated
based on the modeled pCO2 values. This negative value of CO2 flux values indicates that
Chagan Lake was absorbing CO2 from atmosphere (i.e., the lake functioned as a weak car-
bon sink). The CO2 flux was lowest in summer, ranging between 2.4 and 2.64 mmol/m2/d,
followed by spring (2.64–3.12 mmol/m2/d), and it was highest in autumn, with values
above 3.36 mmol/m2/d (Figure 8). The study also compared these CO2 fluxes to those
in 1990 (Figure 9), which showed that Chagan Lake was a carbon sink in 1990 and 2021
and the CO2 flux increased between 1990 (mean = −2.53 ± 0.07 mmol/m2/d) and 2021
(mean = −2.96 ± 0.13 mmol/m2/d).
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3.4. Correlation between pCO2 and Its Influencing Factors

The climatic factors, including temperature, wind speed, and precipitation, were
extracted using WRF. The climatic factors were positively correlated with the overall trend
of monthly pCO2 with the water temperature showing the highest correlation. However,
the relationships between wind speed, precipitation, and pCO2 were not very conclusive
(Figure 10). In addition, water quality parameters, chlorophyll a, total suspended solids,
and turbidity showed high positive correlations (R2 > 0.8) with the pCO2 values, while the
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Secchi disk depth (SDD), total nitrogen (TN) and total phosphorus (TP) were all negatively
correlated with them. TN varied from 0.74–1.35 mg/L and TP varied from 0.03–0.22 mg/L
(Figure 11); this indicates a high degree of eutrophication in the lake.
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In addition, several influencing factors (chlorophyll a, total suspended solids, turbidity,
Secchi disk depth, water temperature) that showed a high correlation with pCO2 were
analyzed for their changing trends; these factors mainly presented seasonal fluctuations
(Figure 12). Among them, the fluctuations in TSM and turbidity were closest to those
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of pCO2, with more intense fluctuations, while the changes in chlorophyll and water
temperature are relatively gentle, with the values all showing summer > spring > autumn.
That is, the values of TSM, turbidity, chlorophyll a, and water temperature are higher in
summer, and pCO2 values are also higher, with the lowest values occurring in autumn. The
trend of changes in transparency, with autumn > spring > summer, is opposite to pCO2
changes: the lowest transparency is found in summer, while pCO2 is the highest.
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4. Discussion
4.1. Temporal and Spatial Variations of pCO2 in Chagan Lake

Because Chagan Lake freezes in the winter, we only studied the seasonal distribution of
pCO2 values during the ice-free period of 2021. We found that it exhibited a pattern of high
pCO2 values in summer and low ones in autumn (Figure 3), which was similar to the pCO2
value distribution at actual sampling points (Figure 4). This distribution was consistent
with the seasonal distributions of the pCO2 values in Beihu Lake and Changchun Park [48],
but different from the western part of Chaohu Lake [22] or Taihu Lake [23]. The difference in
summer pCO2 values evident in Figure 4 was attributed to the difference between the actual
summer sampling time (18 July) and the sampling times of available satellite images (7 June,
23 June and 22 July). Moreover, the measured water temperature, chlorophyll, TSM, and
turbidity of Chagan Lake revealed high values in summer and low values in autumn, and
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their Pearson correlation coefficients with the pCO2 values were 0.61, 0.82, 0.85, and 0.84,
respectively (Figure 10). Water temperature is one of the main influencing factors on the
horizontal distribution of phytoplankton. Phytoplankton and biomass abundance increase
with rising water temperature [49,50], leading to increased photosynthesis and decreased
carbon dioxide in lakes. However, in the Chagan Lake wetland, although the water
temperature in summer is higher than that in autumn, the number, abundance, and biomass
of phytoplankton species are lower than they are in autumn [21,32]. This results in higher
pCO2 in summer than in autumn. On the one hand, precipitation increases in summer, and
receding water from farmland in the Qianguo irrigation area also flows into Chagan Lake,
increasing the water level and diluting phytoplankton and biomass. This leads to a decrease
in hydraulic retention time and an increase in water flow speed, significantly affecting
the horizontal distribution of phytoplankton [51]. A faster water flow is not conducive to
the accumulation of phytoplankton biomass, but simultaneously carries larger amounts
of pollutants such as TN and TP, which provide nutrients for phytoplankton growth,
manifested as high pigment content [26,50]. On the other hand, as an important fishery
industry base in Jilin Province, the Chagan Lake wetland releases hundreds of thousands
of catties of fry every spring and autumn. This increases the carbon dioxide concentration
in the lake, and as the fish grow, their feed intake also decreases phytoplankton abundance
and biomass [50]. This was also visible in the phytoplankton distribution measured at the
2020–2021 sampling points, which was presented by Chang et al. [32].

The pCO2 values in Chagan Lake in 2021 were high in the southeast region and
low in the northwest region (Figure 7b). According to the 2020–2021 phytoplankton
sampling analysis of Chang et al. [32], the phytoplankton biomass in the southeast of
Chagan Lake was essentially smaller than that in the northwest. It comprised mainly
chlamydomonas and chlamydomonas ovate, the biomass in summer was lower than in autumn,
and photosynthesis absorbed less CO2. This produced a spatial distribution with high pCO2
values in the southeast region and low pCO2 values in the northwest region. Compared to
the spatial changes between 1990 and 2021 (Figure 7), the spatial distribution was consistent,
but the pCO2 values in 2021 were higher than those in 1990, and the high-value area in
southeast China in 2021 was significantly larger than that in 1990, which could be due to
the increase in eutrophication in Chagan Lake.

4.2. Chagan Lake as Carbon Source or Sink

In view of the important role and significance of lakes to economic and social devel-
opment, the ecological environment of lakes has always attracted widespread attention.
Since the 18th National Congress of the Communist Party of China, the Party and the
state have attached great importance to the cultivation of ecological civilization, and a
number of affiliated units have produced five reports. On the basis of these five reports,
the Proceedings of the Chinese Academy of Sciences published a series of papers entitled
“Progress and Effectiveness of China’s Ecological Civilization Construction”, which sci-
entifically analyzed the long-term ecological environment changes of the aforementioned
typical ecosystems and regions, especially the changes since the 18th National Congress of
the Communist Party of China, and formulated suggestions for ecological environmental
protection [52,53]. From a single treatment measure to a systematic plan for upstream and
downstream and left and right bank coordination, the water quality of Chagan Lake has
shown a promising trend. The transparency increased from 0.45 m in 2011 to 0.58 m in 2020;
the water quality improved from Class V before 2012 to Class IV in 2020; and the fluoride
concentration decreased by 13% year-on-year [53]. Chagan Lake has progressed from “no
water” to “water” to “clear water”, and the lake area has been stable at 300 km2 since 2012.
The concentration of nitrogen and phosphorus in the water has decreased significantly,
with mean nitrogen and phosphorus concentrations of 0.949 mg/L and 0.088 mg/L in 2021,
respectively (Figure 11).

The analysis of CO2 fluxes conducted in this study showed that Chagan Lake, between
1990 (mean = −2.53 ± 0.07 mmol/m2/d) and 2021 (mean = −2.96 ± 0.13 mmol/m2/d),
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has been a weak carbon sink. This may be due to the increase in the nutrient content
and temperature of lakes in recent years, leading to the vigorous growth of algae and
phytoplankton as well as strong photosynthesis, which absorbs and uses large amounts
of CO2. Furthermore, the flow rate of lake water was slow, and, in such an environment,
photosynthesis consumed more CO2 than the amount of CO2 produced by phytoplankton
respiration. Thus, biophotosynthesis was the main factor contributing to the carbon sink
state of Chagan Lake [54,55]. As chlorophyll a concentrations increased, the pCO2 values
increased too (Figure 10), possibly because phytoplankton is an important primary producer
in aquatic ecosystems, with fundamental links to the food chain. However, the rates of
increase in CO2 partial pressure in the lake (42.45 ± 8.50 µatm in 1990; 91.52 ± 14.31 µatm
in 2021) were lower than the rates of increase in atmospheric CO2 (354.45 ppm in 1990;
416.45 ppm in 2021), keeping Chagan Lake in a carbon sink state. In other words, the degree
of eutrophication increased from 1990 to 2021, and the photosynthesis by lake organisms
also increased, which in turn promoted carbon dioxide absorption. Eutrophication refers to
an abnormal increase in the primary productivity of lake water ecosystems due to excessive
intake of nutrients, such as nitrogen and phosphorus, mainly manifested as abnormal
reproduction of algae and other plankton [56]. An increase in primary productivity means
that water ecosystems fix more CO2, which in turn reduces CO2 emissions [22,57].

In addition, in Chagan Lake, the correlations between total suspended matter con-
centration and turbidity and pCO2 were high (Figure 10). High turbidity increases the
respiration rate of aquatic animals and plants and promotes CO2 production and release [58].
SDD is negatively correlated with pCO2, and with decreasing SDD, CO2 emissions fall and
the degree of eutrophication increases.

Among the meteorological factors influencing pCO2, temperature (R2 = 0.36) was
the strongest, wind speed (R2 = 0.20) came second, and precipitation (R2 = 0.15) third, all
positively correlated with pCO2 (Figure 10). However, none of these were dominant factors.
When cool lakes warm up due to seasonal or long-term climate changes, they may begin
to emit more CO2 [37]. Wind speed can affect the water–CO2 flux of CO2 by affecting the
gas transport coefficient, the decomposition of carbon matter in water, and the production
of carbon dioxide [54,59]. Precipitation affects exogenous inputs, such as rivers that carry
substantial amounts of organic matter and inorganic carbon into lakes, promoting CO2
emissions [60].

4.3. Uncertainty Analysis

In this paper, a spatiotemporal analysis of the partial pressures and emission fluxes of
CO2 in Chagan Lake was conducted and the factors affecting CO2 emissions in Chagan
Lake were discussed, which provided reference values for studying the contribution of
inland lakes to global GHG emissions. However, with the limited measured data available,
this study still requires several improvements, as follows:

(1) Although the lake water samples we collected met the basic requirements (including
water sample collection depth (0.1–0.5 m), water sample storage temperature (4 ◦C),
etc.), due to the limitations of time and in situ sampling conditions, the number of
samples acquired was only modest. This might have had an impact on the accuracy
of the models we subsequently constructed using the in situ data. Thus, we will
endeavor to collect more in situ samples to improve our models and the accuracy of
their predictions.

(2) Because the time span of our data was small, it needs to be increased. Also, the
influence of wind speed on CO2 needs to be more accurately assessed in the analysis
of climate impact factors.

5. Conclusions

This study used Landsat 8 satellite images to monitor the pCO2 and CO2 flux changes
in Chagan Lake. A comparison of the predictive performance of a linear regression model
and a machine learning model revealed that the XGBoost model had the highest fitting
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accuracy (R2 = 0.94, RMSE = 16.86 µatm), and hence was used to map the pCO2 variation in
Chagan Lake in 2021. The pCO2 in the surface water of Chagan Lake showed a considerable
spatial variability within a range of 0–200 µatm during the ice-free period. In terms of
seasonal variation, the highest values were found in the summer, followed by spring
and autumn. The CO2 fluxes calculated from the pCO2 values ranged from −3.69 to
−2.42 mmol/m2/d, which indicates that Chagan Lake was absorbing CO2 (i.e., it was a
weak carbon sink). Increasing temperature drove the increase in pCO2, and CO2 emissions
in Chagan Lake, along with the deterioration of the trophic states. Based on the results
of this study, actively carrying out eutrophication management, reducing the degree of
eutrophication in lakes, and maintaining the reasonable development of fisheries can make
important contributions to reducing carbon dioxide emissions in lakes and strengthening
the carbon sink function of lakes. The results of this study provide important data and
insights needed to implement effective practices for the regulation of the carbon cycle
in lakes.
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