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Abstract: Mangroves as an important blue carbon ecosystem have a unique ability to sequester
and store large amounts of carbon. The height of mangrove forest is considered to be a critical
factor in evaluating carbon sink capacity. However, considering the highly complicated nature of
the mangrove system, accurate estimation of mangrove species height is challenging. Gaofen-2
(GF-2) panchromatic and multispectral sensor (PMS), Gaofen-3 (GF-3) SAR images, and unmanned
aerial vehicle-light detection and ranging (UAV-LiDAR) data have the capability to capture detailed
information about both the horizontal and vertical structures of mangrove forests, which offer a
cost-effective and reliable approach to predict mangrove species height. To accurately estimate
mangrove species height, this study obtained a variety of characteristic parameters from GF-2 PMS
and GF-3 SAR data and utilized the canopy height model (CHM) derived from UAV-LiDAR data
as the observed data of mangrove forest height. Based on these parameters and the random forest
(RF) regression algorithm, the mangrove species height result had a root-mean-square error (RMSE)
of 0.91 m and an R2 of 0.71. The Kandelia obovate (KO) exhibited the tallest tree height, reaching a
maximum of 9.6 m. The polarization features, HH, VV, and texture feature, mean_1 (calculated based
on the mean value of blue band in GF-2 image), had a reasonable correlation with canopy height.
Among them, the most significant factor in determining the height of mangrove forest was HH. In
areas where it is difficult to conduct field surveys, the results provided an opportunity to update
access to acquire forest structural attributes.

Keywords: tree height; GF-2 optical; GF-3 SAR; UAV-LiDAR; random forest

1. Introduction

Mangrove forests are plant communities consisting of evergreen trees or shrubs,
thriving in the tropical and subtropical inter tidal coasts [1]. They play a crucial role in
preventing coastal erosion, maintaining water quality, and preserving biodiversity [2–4].
Despite mangrove forests only constituting less than 1% of the total tropical forest area,
they remarkably contribute to 11% of the total terrestrial carbon input into the ocean [5–7].
However, human activities like deforestation, coastal development, and pollutant discharge
have significantly reduced the global mangrove forest area [8,9], endangering their ecologi-
cal services and carbon storage. Therefore, mapping the spatial distribution of mangrove
species and height can furnish a crucial database for the conservation and management of
mangrove forests. In addition, accurately and promptly identified tree height provides a
key data basis for estimating mangrove forests’ carbon storage and carbon fluxes. How-
ever, accurately mapping mangrove forest height presents numerous challenges due to the
absence of sensitive image features and the low accuracy of existing retrieval models.
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Mangrove forest heights are influenced by complex factors such as tides and com-
munity structure [10]. Traditional surveys, while comprehensive, are time-consuming
and labor-intensive, making it challenging to meet the demands of real-time, large-scale
monitoring [11]. Recently, remote sensing technology has gained popularity as a tool for
acquiring tree height information due to its extensive geographical coverage, real-time
data acquisition, and multi-angle imaging capabilities. For example, Hyyppä et al. [12]
used Spot PAN and Landsat TM data to retrieve forest mean height; Kayitakire et al. [13]
assessed the ability of 1 m resolution IKONOS-2 images to estimate the tree height of
common spruce. However, these methods often yield low estimation accuracies as optical
imagery is not sensitive to the vertical information of trees [14]. The advent and rapid
adoption of light detection and ranging (LiDAR) technologies, which provide precise
three-dimensional information, have significantly improved the accuracy of tree height
capture [15]. Simard et al. [16] produced a global wall-to-wall canopy height map based
on the Shuttle Radar Topography Mission (SRTM) 30 m resolution global digital eleva-
tion model (DEM), and Geoscience Laser Altimeter System (GLAS) global Lidar altimetry
products. A study by Lefsky et al. [17] indicated that stand structure and the mean height
and height variability found in LiDAR data are closely associated. However, spaceborne
LiDAR data is typically used only for obtaining large-scale tree height information due
to its large laser beam width and low laser point density. Furthermore, the high cost of
acquiring airborne LiDAR data for the same area is likely one of the biggest obstacles
hindering research on large-area tree height extraction. As a result, an increasing number
of studies are combining optical images and LiDAR data to accurately map tree heights
across large areas. For example, Wang et al. [18] estimated the mangrove forests’ overall
height and above-ground biomass (AGB) throughout Hainan Island by combining field
sample plots, UAV-LiDAR data and Sentinel-2 image. Zhu et al. [19] combined Landsat-8
images and Multiple Altimeter Beam Experimental Lidar (MABEL) data to create a map
of tree height with a 30 m spatial resolution. However, optical images have limitations
including saturation problems and the influence of weather conditions, atmosphere, and
moisture [20].

With its all-weather, day-and-night operation and penetration capabilities, Synthetic
Aperture Radar (SAR) is widely utilized for tree height retrieval [21,22]. Previous stud-
ies have demonstrated a strong correlation between tree height and polarization de-
composition parameters, as well as radar vegetation indices extracted from polarization
SAR [23–25]. Furthermore, SAR data can be integrated with optical imagery to capture
three-dimensional structural information of forests [26]. Ghosh et al. [27] investigated the
potential of Sentinel-2 optical and Sentinel-1 SAR data to develop a novel approach for
canopy height estimation in the Bhitarkanika wildlife sanctuary. Existing research primarily
integrated Sentinel-2 optical and Sentinel-1 SAR data to construct a feature set for tree
height inversion, enabling regional tree height mapping. As the spatial resolution of images
is improved, more abundant structural details regarding mangrove forests can be obtained.
Compared with the most commonly used Sentinel-1 SAR and Sentinel-2 optical imagery,
the high-spatial-resolution Gaofen-3 SAR and Gaofen-2 optical imagery could provide more
spectral and structural information for mapping tree height. However, it is not yet clear the
capacity of integrating GF-2 Optical and GF-3 SAR for estimating mangrove forest height.

For tree height retrieval, machine learning is a currently widely employed method,
with the advantages of low sample consumption and few parameters [28]. In these studies,
a common task is use a series of remote sensing observations to develop a predictive model,
aiming to predict forest conditions or attributes in unfamiliar scenarios [29]. Among these
methods, RF is the most popular and widely used [30]. In a study by Wilkes et al. [31],
canopy height was predicted in a 2.9 million ha area of heterogeneous temperate forests by
utilizing the RF algorithm, which linked LiDAR-derived canopy height with a combination
of satellite imagery (Landsat and MODIS), resulting in an RMSE of 5.68 m. Wang et al. [18]
combined field sample plots, UAV-LiDAR data and Sentinel-2 image to retrieve the height
of Hainan Island’s mangrove forest using the RF algorithm, resulting in an R2 value of 0.67.
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These studies demonstrated the ability of RF regression model to unveil intricate non-
linear connections among variables and the simplicity in tuning the model parameters [30].
Currently, there is a lot of research focused on obtaining forest structure information using
RF model [18,19], but there are few studies on mangrove forest height estimation based
on GF-2, GF-3, and UAV-LiDAR data. On the other hand, the addition of the mangrove
species information could improve the accuracy and stability of the RF regression model in
retrieving mangrove forest height.

Based on the above, the purpose of this research is to examine the possibility of using
the RF algorithm to estimate the height of mangrove species combining GF-2, GF-3, and
UAV-LiDAR data. We extracted characteristic parameters of estimating mangrove species
height based on GF-2 and GF-3 imagery. And the CHM derived from UAV-LiDAR data
was used as the observed height data of mangrove forest for model training and validation.
The specific objectives of this paper include (1) extracting mangrove extent and species
information; (2) mining the characteristic parameters related to mangrove species height
from GF-2 and GF-3 imagery; (3) mapping the height of the mangrove species by com-
bining UAV-LiDAR, characteristic parameters and RF regression model in the study area;
and (4) analyzing the validity parameters used to retrieve the mangrove species height and
the spatial characteristics of the mangrove species height in our study area. The results
of this study will contribute to a better understanding of mangrove ecosystems and their
ecological dynamics, providing basic data for conservation and management efforts. Fur-
thermore, the proposed methodology combining satellite imagery and UAV-LiDAR data
with the RF algorithm can serve as a foundation for future research in vegetation height
estimation and monitoring in other coastal regions.

2. Materials and Methods
2.1. Study Area

The Fujian Zhangjiangkou National Mangrove Nature Reserve (FZNNR)
(117◦24′~117◦30′E, 23◦53′~23◦56′N) is situated in the Zhangjiang River Estuary in Yunxiao,
Fujian Province, with a total area of 2360 hm2. The reserve was established in 1992 and
was designated as a National Nature Reserve in 2003. In 2008, it was recognized as a
Wetlands of International Importance. The reserve was established in 1992, and in 2003,
it received the designation of National Nature Reserve. It was recognized as an Interna-
tionally Significant Wetland in 2008. This region boasts the most extensive and thriving
natural mangrove community located north of the Tropic of Cancer [32]. The mangroves of
FZNNR provides an ideal habitat for more than 150 species of birds, 240 species of aquatic
animals, and nearly 400 species of aquatic organisms. The majority of the mangrove forests
are concentrated within the core zone of the FZNNR (Figure 1).

FZNNR is a warm humid temperate region with a subtropical maritime monsoon
climate. The average yearly temperature is 21.2 ◦C, and the average yearly precipitation is
1714.5 mm, with the majority of the precipitation falling between April and September. The
reserve is generally composed of estuarine waters, intertidal forest wetlands (mangrove
swamps), mudflats (intertidal mudflats), and salt marshes, of which the most important
type is mangrove forests. Kandelia obovate (KO), Aegiceras corniculatum (AC), and Avicennia
marina (AM) are dominant species which account for 55% of the total wetland of FZNNR.
Since 2014, Spartina alterniflora (SA) has been expanding explosively in the mudflats at the
seaward mudflats. Nowadays, the invasion is still intensifying, Spartina alterniflora is
competing with the mangroves at the fringe, and threatening the habitat of local mangroves.
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Figure 1. Location of the study area.

2.2. Data and Pre-Processing
2.2.1. UAV Multi-Spectral Data

The UAV multi-spectral image utilized within the scope of the research was acquired
from a DJI Genie 4pro (DJI, Shenzhen, China) equipped with a 1-inch CMOS (Complemen-
tary Metal-Oxide-Semiconductor) image sensor. The data were collected on 12 November
2020 when weather was clear and sunny. The collection conditions were low tide period.
The flight altitude was set to 200 m, and the course overlap and side overlap were 75%
and 80%, respectively. Using Agisoft Metashape-pro 1.8.5 software, we carried out the
pre-processing of the UAV image. The processed UAV multi-spectral image has a 0.05 m
resolution with the near-infrared band, green band, red band, and blue band, and is used
for mangrove extent extraction and species classification.

2.2.2. Gaofen-2 and Gaofen-3 Data

GF-2 PMS image and GF-3 polarimetric SAR data were used to calculate the character-
istic indices for the retrieval of mangrove species height. GF-2 is the first civilian optical
remote sensing satellite independently developed by China with a revisit period of 5 days.
The images include four multispectral bands with 4 m resolution and one panchromatic
band with 1 m resolution. The cloud-free GF-2 images were obtained from the website
of the China Resources Satellite Application Center (http://www.cresda.com, accessed
on 24 June 2023) during low-tide on 25 November 2020. The GF-2 images pre-processing
include radiometric calibration, atmospheric correction, geometric correction, and image
fusion. Atmospheric correction was carried out using FLAASH atmospheric correction
module to remove the effects of atmospheric scattering and absorption. Multispectral bands
and panchromatic band were fused using the nearest neighbor diffusion pan-sharpening
algorithm. The pre-processing was conducted using the Chinese Domestic Satellite Support
Tool in ENVI 5.3.

Developed by the China National Space Administration (CNSA), GF-3 SAR was
launched in August 2016 and it is the first Chinese satellite to gather C-band SAR data
with multiple polarizations. The spatial resolution of GF-3 data can range from 1 m to
500 m, and the imaging modes cover both single and full polarizations. GF-3 has the
most imaging modes (12 imaging modes) covering the traditional strip imaging mode and

http://www.cresda.com
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scanning imaging mode, as well as wave imaging mode for ocean applications and global
observation imaging mode. The China Resources Satellite Application Center website
(http://www.cresda.com, accessed on 12 April 2023) provided the GF-3 polarimetric SAR
data. We acquired two images covering the study area, with level 1A products of SLC
(Single-Looking Complex Product) type. One FSI (Fine Striping I) mode image was taken
on 29 December 2020, with dual polarization (VV and VH) at 2.6 m spatial resolution. The
other FSII (Fine Striping II) mode image was taken on 4 June 2022, with dual polarization
(HH and HV) at 4.8 m spatial resolution. The pre-processing was carried out making use
of the SARscape module in ENVI 5.6, including data import and generation of SLC files,
multi-view processing, filtering, geocoding, and radiometric calibration.

2.2.3. UAV-LiDAR Data

We collected the UAV-LiDAR data on 24 September 2022 during low-tide period by
a HS40P sensor mounted on a DJI M600 PRO UAV (DJI, Shenzhen, China). Capable of
producing up to 720,000 points per second, the laser sensor operates at a wavelength of
905 nm. In the study area, a total of four flights were conducted at a speed of 6 m/s and
an altitude of 100 m. The main processing steps for UAV-LiDAR data include point cloud
decomposition, denoising, and ground point classification. Based on base station and POS
data, the point cloud decomposition was conducted to calculate accurate geographical
positions using LiAcquire 3.3.0 software. The rest of data processing was conducted in
LiDAR360 5.3.0 software, including point cloud denoising, and ground and non-ground
point classification [33]. At a spatial resolution of 0.5 m, a digital surface model (DSM) and
digital elevation model (DEM) were created. UAV-LiDAR data can obtain mangrove forest
height with high accuracy [34]. The CHM was produced by deducting the DEM from the
DSM. The CHM was used for training and verifying the height prediction model. A total
of 340 sample points were randomly selected, and the values of LiDAR-derived height and
47 features were extracted for the training and validation of the height model.

2.2.4. Reference Data

We carried out field surveys in FZNNR from 12 to 15 November 2020. To record the
species of mangrove forest and their respective coordinates, a Global Navigation Satellite
System (GNSS) equipment was used. Finally, we determined 140 ground points within the
scope of the research as a result of the complex growing environment of mangrove forests.
According to the field surveys, KO, AC, and AM are the primary mangrove species found
in the study area.

2.3. Methods

Figure 2 displays the overall workflow of this study. Firstly, we identified mangrove
species based on object-based random forest (OBRF) method and the UAV multi-spectral
images. This classification process encompassed multi-scale segmentation, feature extrac-
tion, classification, and accuracy assessment. Then, we built a mangrove species height
model based on RF regression algorithm and GF-2 images, GF-3 images, and UAV-LiDAR
to retrieve the mangrove species height of FZNNR. The retrieval step included feature
extraction, model construction, retrieval, and evaluation. Finally, we analyzed the spatial
distribution characteristics of mangrove species height and explored the key features for
mangrove species height retrieval.

http://www.cresda.com
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2.3.1. Mangrove Species Classification

To extract mangrove species, we set six landscape types, AC, KO, AM, SA, water, and
mudflat, based on the field investigation of landscape types in the study area. In the study,
OBRF method was implemented on the Trimble’s eCognition Developer version 9 software
to identify mangrove species.

OBRF classification method takes the image object as the fundamental unit of analysis,
incorporating spectral features, texture, shape, and contextual information to distinguish
landscape types. In this method, multi-scale segmentation was used to establish a hierar-
chical network structure of image objects, including the shape, compactness, and shape
parameters [35]. The scale parameter is the determining parameter for the segmentation
effect. The optimal scale parameter depends on the sensor type, resolution, segmentation
objectives, and target objects. In this study, the optimal scale parameter for mangrove
species classification was determined by visual experience based on the principle of “ho-
mogeneity” of the spectral and spatial. Finally, the shape value, compactness value and
scale value were set to 0.2, 0.8, and 75, respectively.

We extracted the spectral reflectance, spectral indices, and texture information as
the classification features based on UAV multi-spectral images. The specific classification
features included mean and standard deviation of the four spectral bands (blue, green,
red, and NIR), six spectral indices (NDVI, DVI, FDI, Cig, EVI, and SR), two geometry
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indices, and seven texture indices (Table 1). Then, the RF algorithm was applied to classify
mangrove species based on the homogeneous image objects. RF algorithm can handle
high and non-normal distribution data, and can integrate image data sources of different
dimensions with auxiliary data into the workflow of image classification, which is a mature
machine classification model at present. Ntree and mtry are two important parameters that
affect the accuracy and operational efficiency of RF model. The variables ntree and mtry
indicate the number of decision trees needed to construct the RF model and the maximum
number of features randomly selected from the dataset for split decisions made during
each decision tree creation, respectively. In this RF model, we set mtry and ntree to 5 and
500, respectively.

Table 1. The formulas of the 47 features for mangrove species height retrieval.

Features Formula

Features based
on GF-2

Spectral bands B1, B2, B3, B4 -

Vegetation indices

Cig [36] (B4/B2) – 1
DVI [37] B4 – B3
EVI [38] 2.5×(B4−B3)

B4+6×B3−7.5×B1+1
FDI [39] B4 – (B2 + B3)

NDVI [40] (B4 – B3)/(B4 + B3)
SR [41] B4/B3

TNDVI [42]
√

0.5 + B4−B3
B4+B3

Texture features

Mean [43] 1
MN

M−1
∑

i=0

N−1
∑

j=0
f (i, j, d, θ)

Variance [43] M−1
∑

i=0

N−1
∑

j=0
(i− µ)2 f (i, j, d, θ)

Homogeneity [43] M−1
∑

i=0

N−1
∑

j=0

f (i,j,d,θ)
1+(i−j)2

Contrast [43] M−1
∑

i=0

N−1
∑

j=0
(i− j)2 f (i, j, d, θ)

Dissimilarity [43] M−1
∑

i=0

N−1
∑

j=0
|i− j| f (i, j, d, θ)

Entropy [43] −
M−1
∑

i=0

N−1
∑

j=0
f (i, j)lg f (i, j, d, θ)

Second Moment [43] M−1
∑

i=0

N−1
∑

j=0
f (i, j, d, θ)2

Correlation [43] M−1
∑

i=0

N−1
∑

j=0

(i−µ)(j−µ) f (i,j,d,θ)2

δ2

Features based
on GF-3

Polarization parameters

HH -
HV -
VV -
VH -

2.3.2. Mangrove Species Height Retrieval

To estimate the mangrove species height within the FZNNR, we extracted 47 features
from GF-2 and GF-3 data for building the height model. Based on GF-2, we extracted four
band reflectance features (blue, green, red, and NIR), seven vegetation index features (CIg,
DVI, EVI, FDI, NDVI, SR, TNDVI), and 32 texture features (Mean, Variance, Homogeneity,
Contrast, Dissimilarity, Entropy, Second Moment, and Correlation for each single band).
Based on GF-3 SAR image, we obtained four polarization features (HH, HV, VV, and VH).
The 47 features are shown in Table 1.
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2.3.3. Random Forest Regression Model

The height of mangrove species in FZNNR was estimated using the RF regression
algorithm. The RF regression algorithm is a nonparametric statistical estimation method
that explores the complex nonlinear relationships between dependent variables and pre-
dictor variables [44]. The basic theory of RF regression model is the building of numerous
decision trees [45], and subsequently calculating the final predicted value by averaging
the predicted values of all trees [46]. Usually, the algorithm randomly selects 2/3 of the
original sample to build the decision tree, and the remaining 1/3 of the data is used as
out-of-bag data (OOB) to validate the decision tree.

Large amounts of features can affect the accuracy of RF models. Therefore, it is
one of the most important steps to filter out the effective features for building mangrove
species model [47]. In this study, we use SHapley Additive exPlanations (SHAP) value to
evaluate and filter feature variables. SHAP is a methodology employed to elucidate the
contribution of features in model predictions. It employs the concept of Shapley Value
from game theory to determine the contribution value of each feature in model prediction.
It incorporates existing machine learning algorithms, like neural networks and RF, and
calculates all possible feature combinations in the model to accurately obtain relative
importance information for each feature [48]. The computation method of SHAP value
surpasses other indicators like Gini importance and information entropy by considering all
combinations of features, which provided a more precise assessment of highly correlated
features and nonlinear combination features [49].

2.3.4. Accuracy Assessment

For accuracy assessment of the mangrove species classification result, we calculated
the overall accuracy (OA), the producer’s accuracy (PA), the user’s accuracy (UA), and
Kappa coefficient based on the confusion matrix (the rows of the matrix represent ground
truth classes and the columns of the matrix represent predicted classes). The equations are
as follows:

OA = ∑n
i=1

Pii/P (1)

PAi = Pii/Pi+ (2)

UAi = Pii/P+i (3)

Kappa =
P∑n

i=1 Pii −∑n
i=1(Pi+P+i)

P2 −∑n
i=1(Pi+P+i)

(4)

In the above categories, p represents the sum of samples, Pii represents the number
of samples in row i and column i of the error matrix, P+i represents the sum of class i in
the classification results, Pi+ represents the sum of class i in the ground reality data, and n
represents the number of categories.

For accuracy assessment of the mangrove species height result and the ability of the
model, we used the 10-fold cross-validation method. The 10-fold cross-validation divides
the dataset equally (or approximately) into 10 subsets, uses nine of them to build the model,
and leaves one as the validation set. The coefficient of determination (R2) and root-mean-
square-error (RMSE) between the predicted mangrove specie height and the CHM data
were calculated to evaluate the accuracy of the model. The equations are as follows:

R2 = 1− (yi − ŷi)
2

(yi − y)2 (5)

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(6)
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where n is the number of samples, yi and ŷi represent the true and predicted values of
mangrove specie height at sample point i, respectively, and y represents the average of the
true values of tree height.

3. Results
3.1. Accuracy Assessment

The result of accuracy assessment of the mangrove species classification is displayed in
Table 2. The OA of the mangrove species result was 91.43% (kappa = 0.89). KO reached the
highest producer’s accuracy (94.74%), followed by AC with 90.32% and AM with 88.89%.
The error was mainly due to the misclassification between KO, AC, and AM at the center
of the research area and the misclassification between AM and SA.

Table 2. The confusion matrix of the mangrove community classification results.

Community
Type

Validation Samples
UA (%)

KO AC AM SA Mudflat Water Total

KO 36 2 1 0 0 0 39 92.31
AC 0 28 1 0 0 0 29 96.55
AM 2 1 24 1 0 0 28 85.71
SA 0 0 1 20 0 0 21 95.24

Mudflat 0 0 0 1 10 1 12 83.33
water 0 0 0 0 1 10 11 90.91

Total 38 31 27 22 11 11 140

PA (%) 94.74 90.32 88.89 90.91 90.91 90.91 94.74

Kappa: 0.89 OA: 91.43%

We randomly selected 600 sample points based on the CHM derived from the LiDAR
data to evaluate the mangrove species height model constructed by RF regression method.
The RMSE of the result was 0.91 m, and R2 was 0.71. Figure 3 shows the accuracy assessment
of the mangrove species height result.
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3.2. The Distribution of Mangrove Species of FZNNR

The distribution of mangrove species in FZNNR is shown in Figure 4, which was
obtained based on the UAV multi-spectral image and OBRF method. The total area of
mangrove forest in FZNNR was 50.92 ha. KO was the dominant mangrove species in
FZNNR, with a total area of 32.73 ha. The total area of AC was 11.04 ha, mainly distributed
on both sides of the water; and the total area of AM was 7.15 ha, mainly distributed in the
central and southern part of the study area.
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3.3. Feature Importance for Mangrove Species Height Retrieval

In this study, the 47 features extracted from GF-2 PMS and GF-3 SAR images were
filtered using the SHAP value in machine learning, and the results are presented in Figure 5.
The RF model picked ten features for the purpose of estimating the height of mangrove
species. Of these ten characteristics, the most important feature was the backward scattering
coefficients of HH polarization from GF-3 SAR images, followed by VV polarization
feature and the texture features of mean_1 (Calculated based on the blue band) from GF-2
images. The results indicated that the backscattering coefficient features of GF-3 images
and the texture features of GF-2 images are the effective features for the mangrove species
height estimation.
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3.4. The Spatial Distribution of Mangrove Species Height in FZNNR

To retrieve the mangrove species height in FZNNR (Figure 6), we used the RF regres-
sion model based on the UAV-LiDAR, GF-2, and GF-3 images. Our findings suggested
that mangrove forests varied in height from 0.4 to 9.6 m (Figure 7). Heights exceeding
5.5 m were primarily found in the central zone of the study area, while heights less than
2 m were observed at the edges of the study area. The distribution map indicated that the
height ranges for AC, KO, and AM were, respectively, between 4 and 7 m. The height map
of the mangrove species, presented at a resolution of 0.8 m, is shown in Figure 6. For the
species AC, the largest area (2.876 ha) is observed in the height interval of 4 m to 4.5 m.
The second and third largest areas are found in the intervals of 3.5 m to 4 m (2.427 ha)
and 4.5 m to 5 m (1.716 ha), respectively. In the case of KO, the largest area is within the
4 m to 4.5 m range, covering approximately 8.386 ha. The next largest areas are within
the ranges of 4.5 m to 5 m (7.838 ha) and 3.5 m to 4 m (4.932 ha). For AM, the largest
area (2.885 ha) is within the 4 m-to-4.5 m height interval, followed by the intervals of
4.5 m to 5 m (1.490 ha) and 3.5 m to 4 m (1.294 ha).
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4. Discussion

In our research, we combined UAV-LiDAR data, GF-2 Optical, and GF-3 SAR images
to map the height of mangrove species at a resolution of 0.8 m in FZNNR, utilizing an RF



Remote Sens. 2023, 15, 5645 13 of 17

regression model. We extracted a total of 47 feature variables and selected the 10 most
relevant features which have a strong correlation with the height of mangrove species.
These 10 selected features were used to construct the prediction model for mangrove forest
height retrieval. The results demonstrated that these selected features effectively predict
the height of the mangrove forest. Furthermore, the results validated the exceptional
effectiveness of GF-3 SAR and GF-2 PMS in estimating the height of the mangrove species.

4.1. Feature Variable Importance

In this study, the machine learning SHAP value was utilized to filter the 47 features
that were extracted from GF-2 PMS and GF-3 SAR data. The SHAP value calculates the
contribution of each feature to the model output, considering the interactions between
features [50]. Consequently, it provides a more precise depiction of feature impact on
predicted outcomes, particularly for nonlinear models, surpassing other methods (such as
feature importance) in terms of accuracy. Therefore, we choose the SHAP value to evaluate
the importance of 47 features in RF model. Finally, ten features were selected by the SHAP
value in order to estimate mangrove species height. The analysis of feature importance
revealed that the HH of GF-3 SAR data was pivotal in predicting mangrove species height,
followed by the VV of GF-3 SAR data. SAR imagery can emit radiation to identify and
measure branches and trunks in order to determine the structure of the canopy [51]. This
finding aligns with Liu et al., who affirmed the efficacy of backscattering variables (VV,
VH) from Sentinel-1B images in estimating the mean height of forest stands at a 10 m
resolution [20]. Zhu et al. [52] estimated the AGB of mangrove plantations by integrating
fixed-wing UAV-based DSM, GF-2 optical, and GF-3 SAR data. They found that HH and
HV played significant roles in AGB prediction. The texture features of mean_1 and mean_2
was ranked third and fourth in importance, respectively. These features represent the mean
of the texture indices calculated by the blue and red bands of GF-2. This observation mirrors
Kayitakire et al., who also discovered that texture indices extracted from IKONOS-2 were
effective in inverting forest structure parameters [13]. Similarly, Sarker and Nichol [53]
confirmed that texture indices of ALOS AVNIR-2 can enhance their estimation accuracy of
forest biomass. Texture indices from high-resolution remote sensing images augment the
discrimination of spatial information based on the original brightness of images, thereby
playing a crucial role in inverting forest structure parameters.

4.2. Accuracy of Random Forest Regression Model

This study set out to construct a robust and precise model for estimating the height of
mangrove species. In order to build non-linear connections between the height and features,
we utilized an RF regression model, owing to its resilience to outliers in the training data,
capability to handle non-parametric data, ability to reveal complex non-linear relationships
between variables, and ease of model parameter tuning.

Previous studies have utilized machine learning algorithms such as stepwise multiple
regression and multiple regression for forest height estimation. For instance, Zhu et al. [19]
developed forest height models using both RF and stepwise multiple regression algorithms.
Their findings revealed that estimates of forest height produced by the stepwise multiple
regression model were less accurate than those generated by the RF model. Similarly, for
the purpose of estimating forest properties, Luther et al. [54] used multiple regression
and RF models, with the RF model outperforming the multiple regression model. These
studies collectively demonstrated that the RF algorithm provides more accurate regression
prediction results than other machine learning algorithms.

In our study, we constructed an RF model to estimate mangrove species height, achiev-
ing a good performance (R2 = 0.71, RMSE = 0.91 m). Compared with previous studies on
tree height prediction, our study demonstrated some improvement in prediction accuracy.
For example, Simard et al. [55] successfully estimated mean tree height and biomass in
mangrove forests in the Everglades National Park using Shuttle Radar Topography Mission
(SRTM) elevation data, with an RMSE of 2.0 m for mean mangrove height estimation. Our
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study improved upon this precision, potentially due to the high spatial resolution of the
data we used. Wang et al. [18], who retrieved the height of Hainan Island’s mangrove
forest using Sentinel-2 imagery, achieved an RMSE of 1.90 m and an R2 of 0.67—a lower R2

than that in our study and a higher RMSE. This could be because Sentinel-2 images have
a lower spatial resolution than GF-2 images. The higher RMSE in Wang’s study could be
caused by the reality that the average height of mangroves in Hainan Island is greater than
that in Zhangjiang Estuary. Overall, our model achieved a good performance (R2 = 0.71,
RMSE = 0.91 m), demonstrating that the RF algorithm holds significant potential for esti-
mating mangrove forest height.

4.3. Limitations and Potentials

In our study, the RF regression model for estimating mangrove species height was
influenced by raster matching issues between multiple data sources (GF-2, GF-3). The
collection time of various data sources also had an impact on model accuracy, but this was
within the error range, given the slow growth and relatively stable height of mangrove
forests over several years.

The inherent limitations of GF-2 optical data may have contributed to the discrepancy
between predicted height and the CHM. Despite its high spatial resolution, GF-2 image
only has four bands and lacks the red-edge band and short-wave infrared band, which are
sensitive to mangrove growth. Active sensors such as SAR and UAV-LiDAR could have
mitigated this problem. The GF-3 SAR data used in this study address this limitation to
mangrove species height prediction.

The RF algorithm can effectively handle high-dimensional and nonlinear regression
problems, demonstrating high generalization ability and stability. However, it has some
limitations. The RF model assumes a normal or approximate normal distribution of the data
due to its reliance on the Mean Squared Error (MSE) as the loss function. This assumption
could lead to large bias and variance in the model if not met [56]. Moreover, the RF model
is sensitive to noise data and outliers, which may affect its accuracy and stability [57,58].
In addition to the limitations of the RF model, only spectral features, texture features, and
SAR features were considered in this study, and other factors such as species and climate
were not considered.

5. Conclusions

Combining GF-2, GF-3, and UAV-LiDAR data, our research investigated the possibility
of estimating mangrove species height in FZZNR. We constructed a height retrieval model
by integrating both GF-2 and GF-3 imagery with the CHM derived from UAV-LiDAR,
based on the RF regression algorithm. The suggested the height retrieval model had an R2

of 0.71 and an RMSE of 0.91 m, indicating good performance. Of the all features, the texture
features and SAR features were crucial in mangrove height estimations. This method can
overcome the accuracy limitations of a single remote sensing data source and improve the
accuracy and reliability of mangrove forest height estimation. This study also demonstrated
the advantage of using the CHM derived from UAV-LiDAR as the training data, which can
reduce the cost and time of field measurements. Our study provided an effective technical
means for further monitoring and managing mangrove ecosystems using multi-source
remote sensing data. In future studies, we will explore the potential of using other remote
sensing data, such as hyperspectral data, for mapping mangrove forest height and explore
the ability of GF-2 and GF-3 data for mapping other structural information.
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