
Citation: Xing, T.; Wang, X.; Ding, K.;

Ni, K.; Zhou, Q. A Multi-Source-Data

-Assisted AUV for Path Cruising: An

Energy-Efficient DDPG Approach.

Remote Sens. 2023, 15, 5607. https://

doi.org/10.3390/rs15235607

Academic Editor: Andrzej Stateczny

Received: 6 September 2023

Revised: 17 October 2023

Accepted: 20 October 2023

Published: 2 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

A Multi-Source-Data-Assisted AUV for Path Cruising:
An Energy-Efficient DDPG Approach
Tianyu Xing , Xiaohao Wang, Kaiyang Ding, Kai Ni and Qian Zhou *

Division of Advanced Manufacturing, Shenzhen International Graduate School, Tsinghua University,
Shenzhen 518055, China
* Correspondence: zhou.qian@sz.tsinghua.edu.cn

Abstract: As marine activities expand, deploying underwater autonomous vehicles (AUVs) becomes
critical. Efficiently navigating these AUVs through intricate underwater terrains is vital. This paper
proposes a sophisticated motion-planning algorithm integrating deep reinforcement learning (DRL)
with an improved artificial potential field (IAPF). The algorithm incorporates remote sensing infor-
mation to overcome traditional APF challenges and combines the IAPF with the traveling salesman
problem for optimal path cruising. Through a combination of DRL and multi-source data optimiza-
tion, the approach ensures minimal energy consumption across all target points. Inertial sensors
further refine trajectory, ensuring smooth navigation and precise positioning. The comparative
experiments confirm the method’s energy efficiency, trajectory refinement, and safety excellence.

Keywords: underwater autonomous vehicles (AUVs); deep reinforcement learning (DRL); improved
artificial potential field (IAPF); remote sensing information; multi-source data; energy consumption

1. Introduction

The marine industry has rapidly developed thanks to the increasing attention being
paid to the ocean worldwide. The intricacy and unpredictability of the marine environ-
ment present substantial challenges to the effective exploitation and utilization of ocean
resources. Autonomous underwater vehicles (AUVs) have emerged as invaluable assets for
environmental monitoring, resource exploration, military surveillance, disaster prediction,
and other critical domains due to their autonomy and mobility [1–3]. Many tasks require an
AUV to traverse multiple essential points continuously and highly emphasize the AUV’s
autonomy. A fundamental component of an AUV’s autonomy revolves around proficiently
executing motion planning and obstacle avoidance [4] while concurrently managing energy
consumption, which significantly influences the AUV’s application prospects.

AUV missions usually require reaching some target points, including underwater
target search, underwater node maintenance, underwater information collection, etc. [5].
An AUV carries limited energy, so efficiently traversing multiple target points is vital to
completing a mission. On the one hand, an AUV successfully crossing all the target points
means mission completion. On the other hand, an AUV’s energy consumption is crucial
because too much energy consumption may cause the AUV to fail to return, which will
cause significant economic losses. These two factors determine an AUV’s success and
efficiency in performing its tasks. Therefore, it is crucial to complete path cruising in the
shortest cruise sequence and complete the task efficiently.

AUVs currently focus on obstacle avoidance and path planning in the execution of
tasks, aiming to improve their security through algorithm innovation [6,7]. Zhu et al. [8]
embedded bio-inspired neural networks into self-organizing maps to realize path planning
and obstacle avoidance while ensuring comprehensive path coverage in intricate underwa-
ter environments. Hao et al. [9] introduced a motion-planning method that integrates a
genetic algorithm and vector artificial potential field algorithm (VAPF). This innovative
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approach capitalizes on the global path-planning capabilities of the genetic algorithm
and the local path-planning strengths of the VAPF to effectively address the challenges of
path planning in complex and dynamically changing marine environments. Lin et al. [10]
regarded the AUV flock as a whole and proposed an AUV flock control model based on an
artificial potential field algorithm. This method effectively realizes the obstacle avoidance
of an AUV flock in path planning. Unfortunately, the above schemes only complete the
path planning but do not realize cruising to multiple target points. Motivated by AUVs
needing to complete multiple tasks simultaneously, many scholars began studying AUV
multi-point cruising. Yu et al. [11] combined differential evolution (DE), ant colony opti-
mization (ACO), and clustering-based adjustment strategies to generate the DE-C-ACO
algorithm, which can generate an AUV’s navigation sequence. Then, they used the shortest
path faster algorithm to build the cost map between the target and candidate points. The
A* search is used to complete the path planning of multiple target points. Unfortunately, it
does not consider the AUV’s motion model, which makes it hardly applied. Ma et al. [12]
proposed an algorithm combining velocity vector synthesis and a bionic neural network,
which employs the strategy of node-space recursion and spatial decomposition to provide
dynamic navigation for AUVs and uses the grid model constructed by closed boundary
functions to avoid obstacles in motion forms. However, this algorithm only focuses on
completing the task and does not consider the AUV’s energy consumption.

Recently, with the rapid development of computer technology, reinforcement learning
has been widely used in the field of robot control [13,14] and has achieved good results
by its ability to adapt to the environment. Bu et al. [15] made AUVs communicate by
using sensing devices and combined the DQN algorithm with energy consumption, which
weighs the information age and energy consumption to generate the optimal working
path, but the obstacle avoidance ability is weakened, leading to collisions during path
planning. Yang et al. [16] designed a 3D continuous motion control algorithm based on
DRL and combined it with energy consumption, which maximizes the system’s energy
efficiency during trajectory optimization. This method realizes multi-point communication
coverage and energy optimization without fully considering the cruise sequence of target
points. Considering the shortcomings of the above algorithms, this paper proposes an AUV
multi-point cruising solution based on the DDPG algorithm, which combines the improved
artificial potential field algorithm and the traveling salesman problem (TSP) to find the best
cruise path and uses DRL to optimize the path to improve the AUV’s navigation safety and
energy optimization. Specifically, the main contributions of this paper can be summarized
as follows:

1. A novel approach is introduced that utilizes remote sensing data to tackle the local
minima inherent in APF. This methodology is suitable for 2D and 3D environments.

2. Determining an optimal cruising sequence among multiple objectives has been likened
to the traveling salesman problem (TSP). This paper proposes the TSP-IAPF method,
which substitutes the Euclidean distance in the TSP with the IAPF path distance
between two points. As a result, it automatically generates a cruise sequence with the
shortest path across all target points.

3. This paper introduces an algorithm combining the IAPF with DDPG, integrating
multi-resource data from the gyroscope, accelerometer, rangefinder, and energy con-
sumption. By embedding this multi-source data into an IAPF-DDPG-driven motion
control system, the resultant path ensures safe navigation across all target points while
emphasizing energy efficiency and trajectory smoothness.

Sections 2 and 3 present related works, motion models, and energy consumption
models. Section 4 introduces the methods used, including IAPF, TSP, utilization of inertial
devices, and path-planning algorithms based on DRL. Section 5 encapsulates the exper-
imental findings, offering an intuitive illustration of the method’s superiority through
comprehensive data analysis and comparisons. Section 6 shows the conclusions drawn
from this study and future work.
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2. Related Works

As a burgeoning type of underwater vehicle, AUVs have been widely used to perform
various underwater tasks [17,18]. Guo et al. [19] used the improved genetic algorithm to
optimize the navigation state and speed of the AUV execution task to save energy con-
sumption. The method does not adequately consider the AUV’s mechanistic constraints
and kinematic models. Wen et al. [20] used an ant colony algorithm and quasi-annealing
algorithm to optimize the genetic algorithm, which gave AUV path planning better con-
vergence and obstacle avoidance ability. Unfortunately, this method cannot complete the
multi-target task. Yang et al. [21] embedded the enhanced dynamic window into the A*
algorithm, which improved the AUV’s obstacle avoidance function and enabled the AUV
to pass through multiple target points. However, this method did not consider energy
consumption, making it difficult to apply to AUV tasks. Yu et al. [22] introduced a method
that integrates the ant colony and A* algorithms, denoted as ACO-A*. Based on ACO path
planning, the A* algorithm was used to deal with dense obstacles, realizing the purpose of
completing rescue tasks in complex underwater environments. The method can perform
tasks involving multiple target points but does not consider the AUV’s motion model. Sun
et al. [23] proposed an AUV path coverage method based on the biomimetic neural network,
which embedded discrete and centralized path planning in the biomimetic neural network
to achieve the path coverage of multiple target points. This method achieves energy savings
by reducing the AUV’s turn, but it does not consider the AUV’s kinematic constraints.

Recently, reinforcement learning has been widely used in AUV execution due to its ex-
cellent adaptability [24–26]. Zhu et al. [27] integrated sequence data into a long-short-term
memory (LSTM) network and used it together with an obstacle collision prediction model
(CPM) and proximal strategy optimization (PPO) network, which finally achieved a sophis-
ticated path-planning solution for AUV navigation in dynamic underwater environments.
The computational complexity of this approach is enormous due to the need to switch the
memory network. This method concentrates on path planning without involving energy
consumption. Chu et al. [28] introduced a path-planning methodology grounded in the
double deep Q-network (DDQN). This method effectively empowers an AUV to plan paths
in complex and dynamic ocean current environments by improving its neural networks
and dynamic reward functions. Regretfully, this method is only suitable for a single task
but cannot realize the path planning of multiple target points. Hadi et al. [29] combined
the double-delay depth deterministic strategy algorithm with the navigation information
of sensors in the AUV and proposed a composite reward function, and the AUV achieves
nonlinear motion by controlling the fins. This method realizes AUV multi-point cruising
and optimizes the AUV’s navigation control. Regrettably, this method only works for
two-dimensional scenarios and does not calculate the AUV’s energy consumption. Su
et al. [30] manually set multiple target points and used the double deep Q-learning network
(DDQN) to proficiently execute motion-planning tasks, while the mechanical properties in
the AUV are strictly limited. Energy consumption and sensor data are introduced into the
algorithm, culminating in successfully completing path-planning tasks involving multiple
target points with lower energy. Bu et al. [15] embedded the AUV energy consumption and
communication models into the DRL to complete the underwater information acquisition
task. This method uses acoustic technology to help the AUV achieve information collec-
tion, which optimizes the AUV’s energy consumption and completes multi-point cruise
tasks. The AUV’s model in the above scheme is rough, and there is no index to measure
energy consumption.

The work in this paper is different from the above literature. First, this paper over-
comes the defect in APF by combining sensor data with TSP to produce the shortest AUV
cruise sequence. Secondly, in this paper we embedded the AUV’s kinematic model, energy
consumption model, and mechanical constraints into the IAPF to easily measure the AUV’s
motion data. Finally, this paper combines the deep deterministic policy gradient algorithm
(DDPG) and IAPF algorithm to optimize the AUV’s safety and energy consumption in the
cruise path.
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3. Problem Formulation
3.1. Kinematics and Dynamics Models

With limited energy, an AUV passes through multiple target points in a complex
underwater environment. Finally, it reaches the designated location, which minimizes
energy consumption to complete obstacle avoidance and the multi-point cruise. This is
crucial in determining the AUV’s availability in the ocean. Figure 1 shows a schematic
diagram where the AUV skillfully crosses multiple target points and successfully avoids
obstacles to reach the target point during an underwater mission.
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Since an AUV needs to perform tasks mainly in underwater environments, this study
centers on motion planning for a three-degrees-of-freedom (3-DOFs) underdriven AUV
within static settings. Figure 2 visually represents the established AUV’s kinematic and
kinetic models. T.I. Fossen et al. [31] introduced the modeling approach on ships, ignoring
the AUV’s swing, pitch, and rolling motion, and the models are simplified as follows:

.
η = Ry(α) ∗ Rz(β) ∗ vr, (1)

M
.
vr + C(vr)vr + D(vr)vr = G(vr) ∗ τ, (2)

Ry(α) =

cosα 0 −sinα
0 1 0

sinα 0 cosα

, (3)

Rz(β) =

 cosβ sinβ 0
−sinβ cosβ 0

0 0 1

. (4)
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To further explain the formula, it is necessary to establish two reference coordinate
systems: {a} represents the earth coordinate system, and {b} represents the body coordinate
system. In Figure 2, η = [x, y, z]T describes the space information of the AUV within {a}.
vr = [vr, ϕ, θ]T is used to represent the vector matrix, where vr is the forward velocity. ϕ
and θ represent the pitch and yaw angles within {a}, respectively. Since the AUV’s rolling
angle has no effect on navigation, γ is not taken into account in the model constraint.
The navigation information within {a} is transformed into {b} through the matrix Ry(α)
and Rz(β). M ∈ R3∗3 denotes the mass matrix, and C(vr) ∈ R3∗3 signifies the Coriolis
centrifugal force matrix. D(vr) ∈ R3∗3 designates the damping matrix, and G(vr) ∈ R3∗3

corresponds to the input configuration matrix. The three control signals controlling AUV’s
motion are represented by τ =

[
τv, τα, τβ

]T , where τv represents the real-time forward
thrust, τα and τβ represent the real-time steering and attack angles, respectively.

The AUV’s displacement is obtained by integrating the forward velocity, and the
AUV’s acceleration is obtained by differentiating the forward velocity:

L =
∫

vrdt, (5)

ac =
∂vr

∂t
, (6)

where L represents the AUV’s displacement, and ac represents the AUV’s acceleration.

3.2. Energy Consumption Model

The AUV consumes the carried battery energy when traveling underwater. Minimiz-
ing energy consumption was achieved by analyzing the AUV’s energy consumption model
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and applying it to path planning. The AUV’s energy consumption power comprises two
main components: propulsion power (denoted as Pp) and hotel load power (denoted as
Ph) [32]. Pp is the motion-consumed power during AUV navigation, and Ph is the consumed
power by other subsystems. Therefore, the energy consumption model can be expressed
as follows:

Pp =
ρ

2ηaηp
CD Avr

3, (7)

where ρ is the fluid density, CD is the drag coefficient, A is the wet surface area of the
system, ηa is the actuator efficiency, ηp is the propulsion efficiency, and vr is the Euclidean
vector norm of the velocity.

In an ideal case, the brake efficiency ηa and the propulsion efficiency ηp are 100%, and
the formula can be simplified as:

Pp =
ρ

2
CD Avr

3. (8)

This formula is the power of the AUV to overcome resistance. The velocity-varying
AUV propulsion power is the sum of the resistance and speed change power. When the
velocity decay is greater than the effect of drag on the AUV, the AUV does not produce the
energy expenditure of the propulsion system.

4. Method
4.1. Improved Artificial Potential Field

Khatib [33] introduced a pioneering methodology known as the artificial potential
field (APF) algorithm in 1986. The methodology involves manually simulating an electric
potential field within the operational environment. The robot is subjected to repulsive and
attractive forces within the operational environment and autonomously moves based on
the integrated potential field.

4.1.1. Improved Method for Inaccessible Target

The underlying issue causing the failure to reach the target point is that the target
point is not situated at a minimum point in the integrated potential field. In the APF,
an additional correction factor is introduced into the repulsion potential field function to
address the challenge of an inaccessible target point while keeping the attraction potential
field function. This correction factor effectively balances the variations between repulsion
and attraction forces, particularly when the repulsion potential field experiences rapid
growth. Therefore, in the integrated potential field, while the robot approaches the target
point closely, the correction factor ensures that the target point situates the minimum point.
The modified repulsive function is presented as follows:

Urep =

{
1
2 krep

(
1

(Xn−X0)
− 1

r0

)2
dn(Xn, Xg

)
, (Xn − X0) ≤ r0

0, (Xn − X0) > r0

, (9)

where d
(
Xn, Xg

)
represents the Euclidean distance between the current position and

the target point, and n is a positive number. krep represents the repulsive factor in the
repulsion potential field. From Equation (9), the repulsion potential field decreases and
approaches zero while the robot approaches the target point, which guarantees the target
point maintains a minimum.

The repulsion force can be derived from the revised repulsion potential field and can
be represented as follows:

Frep = −∇Urep =

{
Frep1 + Frep2 , (Xn − X0) ≤ r0

0 (Xn − X0) > r0
, (10)
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Frep1 = krep

(
1

(Xn − X0)
− 1

r0

)
dn(Xn − Xg

)
d2(Xn − X0)

, (11)

Frep2 =
n
2

krep

(
1

(Xn − X0)
− 1

r0

)2
dn−1(Xn, Xg

)
. (12)

4.1.2. Improved Method for Local Minima

Ideally, the AUV will stop moving when it reaches the target point. However, while
traversing an integrated potential field containing multiple obstacles, the AUV may en-
counter circumstances where the resulting integrated potential force becomes zero or the
current position is the local minimum. In this case, the AUV will be unable to move and
will not finally reach the target point. The forces on the AUV are as follows:

F = Fatt + Frep = 0, (13)

where Fatt is the attraction from the target point, and the resultant force F on the AUV
is zero.

Two situations must be considered when an AUV tries to escape the “potential field
trap.” First, the AUV must avoid collision with obstacles as much as possible and complete
the path-planning task as soon as possible. Inspired by Zhou et al. [34], this paper invents
a method to solve the “potential field trap” problem by utilizing the remote sensing data in
the AUV. Remote sensing data from a sonar or photoacoustic range finder [35] are used
to measure the distance continuously between the AUV and obstacles, which helps the
AUV solve the local optimal problem in the APF and ensures the AUV safe navigation. The
accuracy of remote sensing data is critical to ensuring the AUV’s navigation safety.

In the IAPF, the application of the AUV’s navigation includes two-dimensional (2D)
and three-dimensional (3D) environments. Meanwhile, the scene is divided into a single
obstacle and multiple obstacles. Figure 3 is an improvement scheme for the local optima
case. The AUV trapped at a local minimum requires traction force to help it escape the trap.
The auxiliary forces and traction forces required to be added to the improvement strategy
are as follows:

|F aux|= |F att|, (14)

|F tra
∣∣= |F aux × Frep

∣∣, (15)

where the magnitude of the auxiliary force Faux is the same as that of the attraction force
Fatt, and the magnitude of the traction force Ftra is equal to that of the vector product by the
auxiliary force Faux and the repulsion force Frep.

In the 2D environment, the scene with a single obstacle is shown in Figure 3a, and the
resultant force of repulsion and attraction can be zero only if the target point, obstacle, and
AUV align in a straight line. In order to get the AUV out of the local minimum, an auxiliary
force needs to be constructed. Its direction should be perpendicular to the nearest obstacle
for ensuring the AUV’s navigation safety. It should be at an acute angle to the previous
displacement to ensure the AUV’s navigation smoothness, so it should be parallel with
the Faux1, and its magnitude is shown in Equation (12). The traction force is constructed
from the auxiliary force. It should be in the same direction as the auxiliary force, and
its magnitude is shown in Equation (13). The scene with multiple obstacles is shown in
Figure 3b. Similarly, in order to ensure the AUV’s navigation safety and smoothness, the
auxiliary force should be in the same direction as the Faux1, and its magnitude is shown
in Equation (12). The traction force is in the same direction as the auxiliary force, and its
magnitude is shown in Equation (13).
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In the 3D environment, the AUV trapped in the local minimum escapes the trap by
constructing the auxiliary plane. The scene with a single obstacle is shown in Figure 3c, and
the resultant force of repulsion and attraction can be zero only if the target point, obstacle,
and AUV are aligned in the same line. The auxiliary plane is constructed by previous
displacement, AUV position, and target point. In order to ensure the AUV’s navigation
safety and smoothness, the auxiliary force should be in the same direction as the Faux1,
and its magnitude is shown in Equation (12). The traction force is in the same direction
as the auxiliary force, and its magnitude is shown in Equation (13). Similarly, the scene
with multiple obstacles is shown in Figure 3d, and the auxiliary plane is constructed by
previous displacement, AUV position, and target point. The auxiliary and traction forces
are constructed to help the AUV out of the local minimum.
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4.2. Traveling Salesman Problem

The traveling salesman problem is that a businessman starting from a city wants to
navigate all the target cities, and each of which must only be visited once. The problem
to study is determining the most efficient path among all the feasible paths. The motion-
planning problem of multi-target points is similar to that of the traveling salesman problem,
finding the shortest path to cross all the points in 3D space. In multiple target tasks, it
is crucial to consider obstacle avoidance and the actual path length between two points.
Therefore, this paper integrates the IAPF with the TSP so that the AUV can autonomously
generate a 3D path that considers the path obstacle avoidance challenges and the TSP in
the underwater environment.

The mathematical expression is provided as follows:
Setting G = (V, E) as the weighted graph, V = {1, 2, L, n} is used for the vertex set,

and E is an edge set. The distance between vertices generated using the IAPF is Dij, where
Dij > 0, and i, j ∈ V, and the following is set:

xij =

{
1, Optimal path
0, other

, (16)

So, the mathematical model of the TSP problem in 3D space is:

Min Z = ∑i 6=j Dijxij, (17)

S.t ∑i 6=j xij , j ∈ V, (18)

∑i,j∈S xij ≤ |k− 1| , k ∈ V, (19)

xij ∈ {0, 1}, i ∈ V, j ∈ V, (20)

where k is all non-empty sets of V, and |K| is the number of all vertices of the set k, including
graph G.

4.3. Utilization of Inertial Devices

There are many sensors in an AUV, such as inertial devices, and their data play a
pivotal role in AUV positioning and navigation [36]. The multi-source data used in this
paper include the inertial system data and the ranging system data, where the inertial
system data come from the gyroscopes and the accelerometers, and they can provide
real-time motion information about the AUV [37]. When an AUV is sailing underwater,
it will encounter problems with speed and steering. Speed and steering angle have their
threshold values, and the AUV makes it challenging to complete extreme changes. For
this issue, Kalman filtering is employed for the inertial system, considering the structural
and kinematic constraints specific to the AUV. Kalman filtering serves a dual purpose:
it enhances AUV localization accuracy and promotes smoother motion trajectories, thus
safeguarding the mechanical structure in the AUV [38].

Kalman filtering is a recursive linear quadratic estimation method for the optimal
estimation of target variables by combining measurement and prediction information along
with statistical noise and error information. The characteristic of its recursive processing
makes it an excellent real-time property in computer applications. Kalman filtering is
widely used in vehicle and aircraft navigation, signal processing, and robot control.

Kalman filtering consists of two processes: prediction and updating. During the
prediction process, the current prediction value and the corresponding covariance are
obtained according to the previous target value and the equation of state. Based on
this, the update is combined with the measured value to obtain new target values and
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covariances to achieve recursion. The following are the prediction and update equations
for Kalman filtering:

xk+1 = Akxk + Bkuk + wk, (21)

yk = Hkxk + vk, (22)

where state x is transferred from step k to step k + 1 by a model function, xk ∈ Rn represents
the state space, xk denotes the measured state vector, and xk+1 denotes the estimated state
vector based on the function. Ak ∈ Rn∗n represents the transfer matrix, while uk represents
the linear residual in the model. Bk transforms the residual vector uk into xk. wk is set as
the model estimation error. xk is linked to the observation vector yk by the observation
function. Hk represents the measurement matrix (ensuring the system is linear), and vk
represents the measurement error.

Furthermore, assuming systematic prediction and measurement errors are Gaussian
white noise, all measurements are independent. The following equation follows:

E
[
vivT

j

]
= r ∀ i = j ∈ N, (23)

E
[
wiwT

j

]
= Q ∀ i = j ∈ N, (24)

where r is the covariance constructed by the measurement error vk, and Q is the covariance
constructed by model estimation error wk.

Figure 4 illustrates the Kalman filter process [39]. The Kalman filter operates as a
predictor–corrector methodology. Initially, it predicts the state x̂k and the covariance Pk.
Subsequently, it calculates the Kalman gain Kk for this phase. Then, it corrects the prediction
x̂+k and P+

k by weighting the difference between the actual measurement result uk and the
predicted measurement result yk using the Kalman gain Kk. Finally, this process updates x̂k
to achieve initialization.
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4.4. Markov Decision Process

This paper proposes an AUV path-planning algorithm based on RL to solve the
lowest energy consumption for AUV navigation trajectory while crossing multiple target
points. The AUV integrates the IAPF and the TSP to derive a navigation plan that covers
multiple target points with the shortest distance. Subsequently, within this navigation plan,
the combination of DRL and the IAPF is employed to optimize the navigation trajectory,
ultimately achieving the lowest energy consumption in the trajectory.

The path-planning problem based on RL can be formulated as a Markov decision
process (MDP), represented by a five-tuple, denoted as M = 〈S, A, P, R, γ〉, where S rep-
resents the state space, A represents the action space, P represents the state transition proba-
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bility, R represents the reward function, and γ represents the discount factor that determines
the priority of short-term rewards. At step n, given the state s ∈ S, the agent selects the
action a ∈ A according to the strategy π, while receiving the corresponding reward r. When
completing all actions, the total benefit is Rn = ∑N

i=n γi−nr(si, ai), while simultaneously
obtaining a series of decision trajectories τ = 〈s0, a0, r1, s1, a1, r2, ..., sT−1, aT−1, rT ,〉. RL
aims to find the optimal strategy that maximizes the expected cumulative reward. To apply
RL to the navigation trajectory planning for the AUV, it needs to model the navigation of
the AUV by MDP and then find the optimization strategy of MDP using RL. MDP is set
as follows:

1. State sn at the n step.

[xn, yn, zn]: 3D coordinates of the AUV in a given region.
Formally, sn = [xn, yn, zn, D] is set, where [xn, yn, zn] signifies the AUV’s location

information, and D signifies the environmental information in space.

2. State sn at the n step.

2.1: αn ∈ [0, 2π): the steering angle of AUV at n step. βn ∈ [0, 2π): the attack angle
of the AUV at n step.

2.1: vn ∈ [0, vmax): the navigational velocity of the AUV at n step.
Formally, the action is defined as an =

[
αn, βn, vn

]
. Since the three action vari-

ables are continuous values, trajectory optimization for the AUV constitutes a continuous
control problem.

3. Reward rn at the n step.

In the path-planning tasks, the positive reward is generally obtained only when the
target point is reached, with no rewards during the movement process. Sparse rewards are
generally used for path planning. In addition, at the outset of training, the agent uses a
random strategy and receives the reward through a series of complex maneuvers. When
the RL is directly used to optimize such problems, the training difficulty of the original
algorithm will increase exponentially with the number of target points and the convergence
is not guaranteed. For this issue, this paper proposes a reward-shaping mechanism that
transforms the original sparse reward into a dense reward. Specifically, the reward design
is defined as:

rn =


rt smooth reward
re energy reward
rp path reward

, (25)

where rt is the reward at the n step, and the smoother the path, the higher the reward. re is
the energy reward at the n step, with lower energy consumption and a higher reward. rp
is the path reward at the n step, and the closer to the target point, the higher the reward.
The dense reward designed above allows the algorithm to converge quickly and eventually
generates a path that integrates path smoothness, energy consumption, and path length.

4.5. AUV Motion-Planning Method based on DDPG Algorithm

RL, as a subfield of artificial intelligence, constructs the DRL [40]. The agent will be
rewarded during training. The primary objective of RL is to maximize the total reward
while the agent studies the optimal strategy to achieve predefined goals. Meanwhile, the
agent refines action choices based on evaluating resulting action values during interactions
with the environment. Deep learning, a pivotal part of artificial intelligence, independently
learns raw data through deep neural networks and extracts high-fidelity sample features.
DRL has significantly advanced continuous motion control by leveraging the strengths of
both DL and RL. DDPG, as a typical DRL algorithm, has found widespread application in
the transportation sector [41].
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4.5.1. DDPG

Figure 5 illustrates the AUV path-planning method assisted by multi-source data
and the DDPG algorithm. The actor–critic architecture, coupled with the DQN algorithm,
forms the DDPG algorithm. This combination addresses the challenge of continuous action
spaces while enhancing network training stability and effectiveness. Meanwhile, it solves
convergence issues when approximating function values using neural networks [42]. The
network structure of DDPG comprises an actor network and a critic network, each with
its dedicated target and online networks. The online network is responsible for real-time
action output and evaluation, as well as online parameter training and updates. In contrast,
the two target networks update the value and policy network systems without conducting
real-time parameter training and updates [43]. From Figure 5, the agents learn current
environmental information and behavioral policy to generate appropriate actions st. Data
containing information about the current state, action, reward, and next action are then
stored in an experience pool. Additionally, the neural network samples and trains the
sample data in the experience pool, fine-tunes the action strategy, and makes the behavioral
policy of the agent more adaptable to the environment.
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Aiming at minimizing the loss function L
(
θQ) in the critic network:{

L
(
θQ) = 1

N ∑i
(
yi −Q

(
si, ai

∣∣θQ))2

yi = r(si, ai) + γQ′
(
si+1, µ,(si+1|θµ′)

∣∣θQ′) , (26)

where θQ and θQ′ denote the parameters in the critic network. θµ′ denotes the parameter in
the actor network.

The following is the actor network update policy gradient:

∇θµ
J =

1
N ∑N

i ∇ai Q(Si, ai|θQ)∇θµ µ(Si|θµ), (27)

where ∇θµ
J magnifies the policy gradient.

The weight factors are updated in the target networks as follows:{
θQ′ ← τθQ + (1− τ)θQ′
θµ′ ← τθµ + (1− τ)θµ′

, (28)
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where 0 ≤ τ ≤ 1.

4.5.2. AUV Motion-Planning Model Based on DDPG Algorithm with Multi-Source Data

Figure 5 shows the multi-source-data-assisted AUV motion-planning method with
multi-source data from the ranging device and the inertial sensor in the AUV. Kalman
filtering is embedded in the IAPF algorithm to optimize the navigational path. The IAPF
algorithm provides the DDPG with information on the AUV’s current state, including
velocity, direction, angular speed, environmental obstacles, and the target point. The
energy consumption model is embedded into the reward function, and the DDPG algorithm
generates the optimal action output based on the AUV’s state information and the reward
function. The action output is converted into six-degrees-of-freedom data in the Cartesian
coordinate system. The data information is stored in the experience pool and randomly
sampled for training. Simultaneously, the AUV continuously learns from these actions,
improving subsequent control policy. Finally, the model with the highest cumulative
reward is selected from all the models as the training model for the AUV and generates the
cruise path. For the DDPG model, in the critic network, two hidden layers have 512 and
256 neurons, respectively. In the actor network, both hidden layers have 256 neurons. The
hidden layers employ the ReLU activation function, while the final layer utilizes the Tanh
activation function, constraining the output value between -1 and 1.

4.5.3. State Space

In the DDPG framework, the AUV gathers valuable information from the state space
and leverages it to optimize its decision. In this experiment, as input to the neural network,
the state space is configured as:

St = [xt, yt, zt, D], (29)

where [xt, yt, zt] denotes the position information within Cartesian coordinate space, and
D corresponds to the environment information.

4.5.4. Action Space

The motion of the AUV is 3-DOFs, including the yaw angle, pitch angle, and velocity:

at = [vt, αt, βt], (30)

where vt is the velocity. αt and βt are the yaw and attack angles, respectively.

4.5.5. Reward Function

The reward function is a critical element for algorithm convergence and plays a central
role in accomplishing the navigation task. The common sparse rewards do not converge
well in path planning with multiple objectives, so this paper uses dense rewards. This
paper adopts the following reward function:

reward =


+10 Reach target point
−30 Hit the obstacle

− dis1
dis2 − 0.01 ∗ v3 − 0.1 ∗ (|∆α|+ |∆β|) the n step

, (31)

where dis1 is the distance from the current position to the target point, and dis2 is the
distance from the starting point to the target point. v is the velocity at the n step, ∆α is
the steering angle at the n step, and ∆β is the attack angle at the n step. Using the above
dense rewards, the AUV can reduce energy consumption and keep the path smooth while
completing the path planning.
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4.5.6. Mixed Noise

The robot’s search capability is improved since the DDPG output action includes noise.
The two common types of noise used are Gaussian noise and OU noise. Gaussian noise
generates uncorrelated perturbations in time series, while OU noise generates correlated
perturbations. OU noise has the property that the previous step influences the current step,
and it is calculated using the following formula:

NOU(dat) = θ(a− at)dt + δdWt, (32)

where at represents the action at time t, θ represents the learning rate in the random process,
a represents the average of the action sampling data, δ represents the random weights of
OU, and Wt represents the Wiener process.

Mixed noise can further enhance the optimization of the search strategy, so the mixed
noise composed of Gaussian noise and OU noise in this paper is as follows:

at ∼ NGaussian(at + NOU(dat), var), (33)

where var denotes the Gaussian variance. As the robot accumulates training experience
and adapts to the environment, it becomes necessary to reduce the search rate. Thus, var is
defined as var = var ∗ C, and C is the specified decay rate.

The motion-planning method for multiple target points proposed in this paper ad-
dresses improving the APF algorithm, integrating DRL, and incorporating multi-source
data into path planning to make the generated paths safer and to lower energy consump-
tion. The quasi-code of the DDPG algorithm-based multi-source-data-assisted AUV for
path cruising with multiple target points is as follows (Algorithm 1):

Algorithm 1. Multi-source-data-assisted AUV for path cruising based on the DDPG algorithm.
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same, and the 3D environment contains the 2D environment, only the 3D environment is
required in the simulation. In this paper, we adopt the learning framework of DDPG and set
up a simulation environment for 11 * 12 * 6 hm with multiple obstacles, while embedding
both the motion and the energy models into the AUV. This simulation environment is
built on a fixed inertial coordinate system, and the AUV is cruising in that coordinate
system, which is a linear system. Information related to location variations is based on this
coordinate system. Alternatively, the information related to navigation angle is based on
the fixed body coordinate system in the AUV. The information in the fixed body coordinate
system is converted into that in the fixed ground coordinate system by matrix calculation.
In the simulation, the AUV moves using equal time intervals so that location variations,
velocity, and acceleration can be transformed into each other and directly limit each other.
The algorithm is trained a thousand times to obtain the best-trained model, which is
used to generate the optimal cruise path. The comparison experiments used advanced
reinforcement learning algorithms including PPO and TD3. The simulation experiment
mainly includes multiple cruising target points and tracking performance under the remote
sensing error for the AUV. The following conventions display data conveniently: positive
values for left turns, negative values for right turns, positive values for climb angles, and
negative values for descent angles. Table 1 shows the mechanical capacity parameters for
the AUV and the hyperparameters for DDPG.

Table 1. Capacity parameters and hyperparameters during the training process.

Category Parameter Name Parameter Values

Mechanical parameters

Velocity 1~10 m/s (0.01~0.10 hm/s)
Steering angle −40◦/s~40◦/s
Attack angle −40◦/s~40◦/s
Pitch angle −50◦~50◦

Hyperparameter

Experience replay buffer 2 × 106

Batch size 128
Max episode 1000

Max step 500
Actor learning rate 0.001
Critic learning rate 0.001

Soft update rate 0.01
Additional information. In the steering angle, the positive value represents the left turn, and the negative value
represents the right turn. In the attack angle, the positive value represents the climbing angle, and the negative
value represents the descent angle. In the pitch angle, the positive value represents the elevation angle, and the
negative value represents the depression angle.

5.1. Target Point Cruise Sequence

The start and target points were randomly set, and the cruise sequence for the target
points was automatically generated using the proposed TSP-IAPF method. In the obstacle
environment, IAPF is used for path planning and to generate the corresponding path
distance between different points. Then, the path distance is introduced into the TSP
problem, which generates the cruise sequence for multiple target points with the shortest
path. Several target points are randomly selected in the simulation environment, and the
cruise sequence pathways randomly generated according to the TSP-IAPF method are
shown in Figure 6. The cruise sequence can be clearly seen in the figure, and the subsequent
comparison experiment will continue and simulate according to it.
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5.2. Motion Planning for Multiple Target Points

The comparison algorithm adopts the RL methods to better show the motion-planning
effect of the proposed algorithm. The algorithms in the comparison experiments are
TD3-IAPF, PPO-IAPF, DDPG-IAPF, and DDPG-IAPF-data. Figure 7 displays the reward
curves of these four algorithms, with clear evidence that the proposed algorithm achieves
rapid convergence.
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Figure 8 depicts the 3D paths of motion planning generated by the four algorithms,
with Figure 8a showing the top view and Figure 8b showing the 3D view. In Figure 8,
the AUV crosses four target points in turn, and the black, blue, green, and red curves are
motion-planning curves generated by the four algorithms, respectively. It becomes evident
that the red and black curves are relatively smooth, while the blue and the green curves
have more turning line segments. To clearly show the data for the AUV in motion, this
paper exports the data during the movement-planning process and draws data including
pitch angle, the closest distance to an obstacle (collision uses negative value), attack angle,
steering angle, speed, and acceleration. Figure 9 shows the curves of the above data.
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current steps’ displacement, while the steering angle signifies the horizontal plane’s angle
between these displacements. Figure 9a shows the data about steering angle, Figure 9b
shows the data about attack angle, Figure 9c shows the data about pitch angle, Figure 9d
shows the data about the closest distance to the obstacle, Figure 9e shows the data about
velocity, and Figure 9f shows the data about acceleration. According to Figure 9a,b, it can
be clearly concluded that the turn of the AUV in underwater navigation is optimized, and
the occurrence of extreme turns is reduced, which facilitates easier steering and safeguards
the AUV’s mechanical structure. The pitch angle represents the AUV’s forward posture
while sailing, and it can be seen from Figure 9c that the posture while moving forward has
been improved. Figure 9d highlights that the proposed algorithm ensures that the AUV
maintains a safer distance from underwater obstacles when navigating underwater. The
superiority of the method proposed in this paper can be directly shown by comparing
it with other algorithms. Figure 9e indicates the velocity data of the AUV, and Figure 9f
demonstrates the acceleration data of the AUV. Figure 9e,f indicate that the proposed
algorithm excels in velocity and acceleration control. Figure 9 clearly demonstrates that the
proposed algorithm has smooth turn advantages, safety and reliability, and velocity control.

For a concise comparison, the motion data in the experiment are displayed in Table 2,
including energy consumption, average steering angle, average attack angle, pitch angle,
closest distance to the obstacle, velocity, acceleration, path length, and navigation time.
Combining the data presented in Figure 9 with the information in Table 2, it becomes
evident that the proposed algorithm achieves multi-target point cruising tasks with reduced
energy consumption while ensuring safe navigation. Meanwhile, the planned motion
trajectory has less steering, which makes turning for the AUV easier to achieve.

Table 2. Experimental data 1.

Name IAPF-PPO IAPF-TD3 IAPF-DDPG IAPF-DDPG-Data

es 188.242749 317.011388 194.030737 118.264115
cd −0.027284 0.051236 −0.077943 0.048216
as 1.903563 13.984265 4.003103 2.922921
aa 1.876285 11.784965 1.243111 0.945653
Me 50.000018 50.000018 50.000018 50.000018
Mv 10.000000 10.000000 10.000000 10.000000
Ma 4.499984 9.000000 9.000000 4.999958
pl 25.692477 31.369528 26.293851 27.032355
rt 545 957 553 567

The meaning of the abbreviations: es denotes the energy consumption. cd denotes the closest distance, and
negative values represent the distance from the entry obstacle. The rest of the data are expressed in absolute
values. as denotes the arithmetic mean of the steering angle. aa denotes the arithmetic mean of the attack angle.
Me denotes the maximum climb angle. Mv denotes the maximum velocity. Ma denotes the maximum acceleration.
pl denotes the path length. rt denotes the navigation time.

This paper uses Monte Carlo experiments to test the reliability of the four algorithms.
For facilitating the comparison of experimental results, a predefined number of obstacles
were selected in a static obstacle environment and were set to change positions randomly,
and 500 simulations were performed. Figure 10 illustrates the experimental outcomes
visually. Figure 10a shows the energy consumption and the closest distance to the obstacle
for the AUV, and Figure 10b shows the travel time and path length for the AUV. Figure 10a
shows that the proposed algorithm excels in ensuring safe navigation and minimizing
energy consumption. It can be observed from Figure 10b that the proposed algorithm
possesses better path stability when the environment changes. Based on the results from
the Monte Carlo experiments, the proposed algorithm has excellent performance in terms
of safety, energy consumption, and path stability during motion planning.
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Figure 10. Energy consumption, the closest distance to the obstacle, path length, and navigation time
for the four algorithms under Monte Carlo simulation. (a) Simulation of energy consumption and
closest distance to the obstacle. (b) Simulation of path length and navigation time.

This study conducts simulations for dynamic underwater environments to better
adapt to realistic underwater navigation scenarios. This simulation environment is built
on a fixed inertial coordinate system, wherein static obstacles remain stationary while
dynamic obstacles undergo linear motion. For a concise comparison, the obstacle positions
in the static environment are simply adjusted so that none of the paths generated by the
four algorithms collide, and then the dynamic obstacles are added. Figure 11 shows the
motion-planning curves generated by the four algorithms in the dynamic environment,
and the AUV’s motion data in the dynamic environment are extracted and presented in
Table 2.
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It is obvious from Figure 11 that the IAPF-PPO algorithm and the IAPF-DDPG-data
algorithm have fewer turns in the path profile for motion planning. Combining the data
in Table 3, it becomes evident that the proposed algorithm has obvious advantages in
navigation safety. Additionally, the algorithm displays strong performance in energy
consumption and turning control. It is illustrated that embedding multi-source data into
the DRL algorithm and using the algorithm to assist the AUV in motion planning have
more significant potential.
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Table 3. Experimental data 2.

Name IAPF-PPO IAPF-TD3 IAPF-DDPG IAPF-DDPG-Data

es 162.028648 991.704624 282.105936 176.921956
cd −0.041092 −0.095522 −0.024499 0.007177
as 3.365245 7.667607 3.385832 2.942140
aa 1.313024 2.552670 1.649219 1.101778
Me 50.000018 50.000018 50.000018 50.000018
Mv 9.979185 10.000000 10.000000 10.000000
Ma 5.637515 9.000000 9.000000 9.000000
pl 28.723478 36.953162 26.600114 27.097279
rt 1052 1252 1160 1012

5.3. Trajectory Tracking and Path Optimization with Remote Sensing Information

The AUV must follow a pre-designed route when performing path cruising with
multiple target points. The remote sensing equipment’s performance differences and
detection errors caused the AUV to deviate from its intended cruise path when navigating
underwater. Consequently, this research emphasizes the trajectory-tracking task under
detection errors and the impact of remote sensing equipment performance differences on
energy consumption and navigation safety.

Since the accuracy of the underwater detection equipment is above one percent, this
experiment sets the detection error to one percent. It explores the AUV’s trajectory-tracking
capability in a static environment. Figure 12 shows that the AUV’s movement under the
detection error.
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During the trajectory tracking, the AUV’s main task is to avoid collision. For showing
the tracking ability of the four algorithms, the shortest distance from the target curve during
the motion is taken as the trajectory-tracking error. This error is shown in Figure 13, from
which the trajectory-tracking capability of the four algorithms with the detection error can
be clearly observed. The experimental results highlight the superior trajectory-tracking
capabilities of the proposed algorithm.
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Figure 13. Energy consumption and closest distance to the obstacle for different remote sensing
detection distances: (a) energy consumption; (b) nearest distance to the obstacle.

This paper also explores the effects of different remote sensing devices on AUV motion
planning. The detection distance of the remote sensing equipment used in this paper during
the simulation is 5 hm. Simulation of the motion planning at different detection distances is
carried out to ensure that all four algorithms can accomplish the cruising task for multiple
target points. The experimental results are presented in Figure 14. By comparing the energy
consumption generated and the closest distance to the obstacle by the four algorithms, it
becomes evident that the proposed algorithm completes the cruising task of multiple target
points with the lowest energy consumption and safer navigation.
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For estimating the computational resources consumed by the algorithm during its
operation, it is essential to analyze the computational complexity. The computational
complexity primarily considers the path generation based on the trained model, which
involves executing a motion cruising task. Since only one iteration is performed, the dense
neural network in the DRL algorithm determines the computational complexity. In the
DNN, the computational complexity is O

(
µγ2). In the neural network, γ represents the

number of layers, and µ represents the biggest number of layer neurons. In the neural
network, the dimensionality in the input layer determines the number of neurons per
layer, and the operational complexity is independent of the number of layers, so the
computational complexity is O

(
n2).



Remote Sens. 2023, 15, 5607 22 of 24

6. Conclusions and Future Work

In this paper, we introduced the TSP-IAPF-DDPG-data algorithm, which is a method
to autonomously generate cruise sequences for multiple target points and generate the
safest motion-planning path while consuming the least energy by using multi-source data
for AUVs. The method improves the local optimum in APF and embeds the AUV’s motion
model into the IAPF, which is combined with the TSP to automatically generate a cruising
sequence to multiple target points in the 3D environment. The multi-source data and
energy consumption models are embedded in the DDPG algorithm and combined with
the IAPF algorithm, which contains a motion model, to optimize the path for cruising at
multiple target points. We have simulated and compared the proposed algorithm with
three related algorithms in multiple environments to demonstrate the superiority of the
proposed algorithm in this paper. It also further verifies the proposed algorithm’s excellent
performance when tracking trajectory with remote sensing information. The simulation
data prove that the cruising path generated by this method has significant advantages in
terms of minimum energy consumption, safe navigation, and turning smoothness.

In the future, we will work on multiple AUVs cruising and returning with minimal
energy to multiple target points with path coverage. We will also work on migrating the
algorithm to physical tests and further optimizing the proposed algorithm by using the
data from physical tests.
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