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Abstract: The use of remote sensing imagery has significantly enhanced the efficiency of building
extraction; however, the precise estimation of building height remains a formidable challenge. In
light of ongoing advancements in computer vision, numerous techniques leveraging convolutional
neural networks and Transformers have been applied to remote sensing imagery, yielding promising
outcomes. Nevertheless, most existing approaches directly estimate height without considering the
intrinsic relationship between semantic building segmentation and building height estimation. In
this study, we present a unified architectural framework that integrates the tasks of building semantic
segmentation and building height estimation. We introduce a Transformer model that systematically
merges multi-level features with semantic constraints and leverages shallow spatial detail feature
cues in the encoder. Our approach excels in both height estimation and semantic segmentation tasks.
Specifically, the coefficient of determination (R2) in the height estimation task attains a remarkable
0.9671, with a root mean square error (RMSE) of 1.1733 m. The mean intersection over union (mIoU)
for building semantic segmentation reaches 0.7855. These findings underscore the efficacy of multi-
task learning by integrating semantic segmentation with height estimation, thereby enhancing the
precision of height estimation.

Keywords: height estimation; multi-task learning; Vision Transformer; remote sensing; synthetic
aperture radar

1. Introduction

Buildings play a pivotal role in urban areas, and the analysis of their distribution holds
substantial value for a variety of applications, including the assessments of urban livabil-
ity [1,2] and urban planning [3]. Consequently, continuous monitoring of building changes
remains an essential task. Furthermore, the precise determination of relative building
heights is of paramount importance in the domains of urban planning and development.

Traditional methods of updating building data are burdened with substantial costs
in terms of labor and resources, rendering comprehensive coverage and standardized
information a challenging endeavor [4]. Thankfully, remote sensing technology provides a
highly accurate means of obtaining a wide range of data related to building heights. These
data can be effectively harnessed for the formulation of comprehensive urban planning
schemes, the evaluation of urban volume and floor area ratios [5], and its utilization
as fundamental data for urban disaster prevention and mitigation [6]. In practice, the
increasing utilization of multi-source high-resolution satellite data offers a promising
avenue for efficiently extracting building information over expansive areas through remote
sensing techniques [7].
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The remote sensing data used for estimating the height of surface objects can be
broadly categorized into three groups: optical images [8,9], synthetic aperture radar (SAR)
images [10–14], and the fusion of these two data sources [15,16].

Optical remote sensing images offer a rich source of visual information, encompass-
ing attributes such as building size, shape, and relative positioning. By integrating the
analysis of visual cues like perspective relationships, shadows, and textures, along with
the application of image measurement principles and feature extraction algorithms, it
becomes possible to deduce relative height differences between buildings [17,18]. SAR
serves as an active ground detection technique, providing robust penetrability that allows
it to effectively penetrate through clouds, smoke, and vegetation. This capability yields
valuable information about terrain and ground objects [19]. The estimation of the height
of ground objects in SAR images relies on the analysis of phase information, particularly
examining the phase differences between adjacent pixels. Consequently, SAR is widely
utilized for the height estimation of ground objects [11–13]. The fusion of SAR and optical
images for building height extraction capitalizes on the distinctive imaging characteristics
of both modalities. By combining the respective strengths of SAR and optical data through
image fusion, more accurate building height data can be extracted [20].

The rapid progress in computer vision has enabled the estimation of relative height
from a single image. This achievement is realized through data-driven methods that learn
implicit mapping relationships [21], which are not explicitly derived from mathematical
modeling. Unlike conventional mathematical modeling approaches, this data-driven
method does not require precise modeling of physical parameters like depth of field, and
the camera’s internal and external characteristics. Instead, it leverages extensive image
datasets for training, facilitating the acquisition of more intricate representations of height-
related features. Consequently, significant advancements have been made in monocular
depth estimation (MDE) tasks [22–25]. MDE involves the estimation of object depths in a
scene from a single 2D image, a task closely related to building height estimation. Several
methods based on Vision Transformers (ViTs) [25,26] have been introduced. ViT offers
superior feature extraction capabilities, robustness, interpretability, and generalization
abilities in comparison to convolutional neural networks (CNNs). It can adapt to images of
various sizes and shapes, allowing the learning of comprehensive feature representations
from extensive image data.

ViT [27] has made significant strides in the past three years and has found extensive
applications in semantic segmentation [28–30] and depth estimation [25,26]. In the realm
of semantic segmentation, ViT restores the feature map to the original image size and
conducts pixel-wise classification by incorporating an upsampling layer or a transposed
convolutional layer into the network architecture. This approach allows for efficient
processing and precise prediction of large-scale image data, providing robust support for
a variety of computer vision tasks. In the context of depth estimation, ViT facilitates the
reconstruction of 3D scenes by estimating depth information from a single image. This
data-driven approach learns implicit mapping relationships, enabling the prediction of
scene depth information from the image.

Currently, there is a paucity of research on height estimation using multi-source remote
sensing images, especially within the context of multi-task learning with semantic con-
straints to enhance height estimation. Existing studies primarily concentrate on analyzing
remote sensing mechanisms or utilizing multi-view remote sensing images for relative
height estimation through dense matching [17,31,32]. Recent endeavors have explored
the utilization of SAR or optical remote sensing data for multi-task learning [7,33–35].
Additionally, some studies have integrated ground object height and RGB images to per-
form semantic segmentation tasks [36]. These studies have showcased promising results,
signifying that the joint processing of SAR and high-resolution remote sensing data can
bolster the accuracy of building extraction and height estimation tasks. Moreover, they
underscore the intrinsic relationship between semantic information and ground object
height, highlighting the effectiveness and necessity of simultaneously conducting semantic
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segmentation and height estimation tasks. In recent years, deep learning methods have
been employed for relative height estimation through generative techniques [37–39], as
well as end-to-end approaches [40,41]. For semantic segmentation, regressing the height
of the building area using a height estimation model necessitates the effective separation
of the building from the background while estimating its height. The continuity of the
regression model presents challenges in distinguishing the foreground and background in
the height estimation task. Traditionally, a threshold is set for post-processing, but semantic
segmentation tasks are adept at learning to differentiate the foreground and background,
offering significant assistance in this regard.

In this study, our objective is to enhance the accuracy of height estimation by incorpo-
rating building semantic information constraints into the relative height estimation task.
To accomplish this, we introduce a novel approach named the multi-level feature fusion
Transformer with semantic constraint(s) (MFTSC), designed to jointly address building
extraction and height estimation. Our methodology leverages multimodal optical and
SAR satellite imagery as the input data. In the context of single-view satellite imagery,
the process of extracting buildings and estimating their heights heavily relies on semantic
features derived from the imagery. By integrating multiple tasks and capitalizing on feature
reuse, our approach presents a potentially superior solution when compared to conven-
tional individual implementations, enabling the establishment of implicit constraints across
these tasks.

Our study makes several noteworthy contributions, which are summarized as follows:
(1) We introduce a high-precision height estimation method that employs the Swin

Transformer as the backbone of the encoder and incorporates the use of prompts for shallow
information. In the decoder, we employ a straightforward cross-connection design and
utilize the Transformer to fuse shallow and deep features. This approach significantly
enhances the model’s ability to capture ground details.

(2) We devise a unified architecture that integrates building height estimation and
building semantic segmentation tasks, with both sharing the same encoder. This joint
training approach establishes an implicit constraint, thereby improving the accuracy of
both tasks.

(3) To bridge the existing gap in the field of combining building extraction and height
estimation tasks from multi-source remote sensing images, we conducted a comprehensive
series of comparative experiments. The aim was to provide detailed experimental results
that contribute to the current body of knowledge in this domain.

2. Related Work
2.1. MDE

Estimating building height is conceptually similar to MDE, a well-explored field in
computer vision. MDE focuses on estimating the depth of objects within a scene from a
single 2D image [24]. This task shares common challenges with the estimation of ground
object height from remote sensing images. Both involve the complexity of recovering
depth information from a 2D image projection of a 3D scene, where depth information
is inherently lost, and its retrieval from a single image is challenging. MDE has diverse
applications, including 3D reconstruction [42], autonomous navigation [43], augmented
reality [24], and virtual reality [24]. Recent years have witnessed significant progress in
MDE, primarily driven by advancements in deep learning techniques and the availability
of extensive datasets for training depth estimation models. The prevalent approach in MDE
is to train deep neural networks to directly predict depth maps from 2D images. These
networks are typically trained on large-scale image datasets that include corresponding
depth maps, employing techniques such as supervised learning [25,26,44,45], unsupervised
learning [46], or self-supervised learning [47].
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2.2. Semantic Segmentation

Semantic segmentation is a pixel-level classification task, and many semantic seg-
mentation models adopt the encoder–decoder architecture, exemplified by models like
Unet [48,49], LinkNet [50,51], PSPNET [52], and more. Various studies utilizing Unet-based
approaches have been instrumental in automatically extracting buildings from remote sens-
ing imagery [53,54]. In recent times, there has been a surge of interest in directly integrating
semantic segmentation with the task of height estimation, all from a single remote sensing
image [55–57]. These studies have consistently demonstrated that the incorporation of
semantic information can significantly enhance the accuracy of height estimation. Nonethe-
less, the manual annotation of tags can be a cumbersome process, necessitating exploration
into methods to streamline the semantic tagging procedure. Given this imperative, there
is an urgent need to investigate the feasibility and efficacy of employing building tags
exclusively for this purpose.

2.3. ViT

The advent of the Vision Transformer (ViT) [27] has captured the interest of computer
vision researchers. However, pure Transformers exhibit high computational complexity
and involve a substantial number of model parameters, demanding extensive optimization
efforts for ViT. A promising development in this regard is the Swin Transformer [29], which
represents a hierarchical Transformer and offers a versatile backbone for various computer
vision tasks. By implementing shifted window computations, self-attention is constrained
within non-overlapping local windows while also allowing for cross-window connections,
leading to enhanced computational efficiency. This layered architecture excels in modeling
across different scales and maintains linear computational complexity concerning image
size. The Swin Transformer has found wide applications in remote sensing, including
hyperspectral classification [58] where a multi-scale mixed spectral attention model based
on the Swin Transformer achieved top-class performance across multiple datasets. Addi-
tionally, the work of Wang et al. [28] introduced BuildFormer, a novel Vision Transformer
featuring a dual-path structure. This innovative design accommodates the use of a large
window for capturing global context, substantially enhancing its capabilities for processing
extensive remote sensing imagery.

2.4. Multi-Modal Fusion and Joint Learning for Remote Sensing

SAR offers the capability to retrieve height information of ground objects by analyzing
the phase and amplitude information of radar echoes. However, the accurate retrieval of
height information using SAR data is a complex process, as it is influenced by various
factors, including terrain, vegetation, and buildings. This extraction process typically
involves intricate signal processing and data analysis techniques. Nevertheless, deep
learning has emerged as a promising approach to simplify the height extraction process
and enable end-to-end elevation information extraction [40,41]. However, most existing
research in this domain focuses on single data sources or single-task-based high-level
information extraction, which may not generalize well to multi-source remote sensing
data or multi-task joint learning. Researchers are actively exploring various methods, such
as multi-modal fusion and multi-task learning, to enhance the accuracy and efficiency of
height extraction from SAR data. Multi-task learning using both optical and SAR data is
a complex endeavor that involves intricate processing and analysis. Acquiring suitable
datasets that contain high-resolution optical and SAR data to support such tasks is also
a challenging issue. Recent studies have started to investigate the use of SAR or optical
remote sensing data for multi-task learning [33–35], demonstrating the potential of multi-
task learning in remote sensing. However, numerous challenges remain, such as integrating
multi-source data and developing effective algorithms for joint learning. Further research is
essential to address these challenges and fully exploit the potential of multi-task learning in
remote sensing applications. In recent remote sensing research, there is growing interest in
utilizing combined ground object height and RGB images for semantic segmentation tasks.
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For example, Xiong et al. [36] demonstrated a strong correlation between the geometric
information in the normalized digital surface model (nDSM) and the semantic category of
land cover. Jointly utilizing two modalities, RGB and nDSM (height), has the potential to
significantly improve segmentation performance, underlining the reliability of Transformer-
based networks for multimodal fusion. This research highlights the interplay between
semantic information and feature height information. Additionally, recent studies have
investigated the use of RGB images for joint height estimation and semantic segmentation
tasks in deep learning for remote sensing.

2.5. Multi-Task Learning

Previous studies [15,36] have yielded promising results, underscoring that joint pro-
cessing of SAR and high-resolution remote sensing data can significantly enhance the
accuracy of building extraction and height estimation tasks. These investigations have
emphasized the connection between semantic and height information of ground objects,
highlighting the effectiveness and necessity of simultaneously performing semantic seg-
mentation and height estimation tasks. Currently, many deep learning tasks predominantly
rely on single-task learning, yet multi-task learning, which allows the simultaneous learn-
ing of multiple related tasks and the sharing of information between them, offers superior
generalization abilities compared to single-task learning [59].

Srivastava et al. [60] employed joint height estimation and semantic labeling on
monocular aerial images, utilizing a single decoder with a fully connected layer to perform
both height estimation and semantic segmentation tasks. In contrast, Carvalho et al. [61]
proposed a framework for joint semantics and local height, processing the two tasks
separately in the middle part of the decoder. Gao et al. [62] harnessed contrastive learning
with an encoder featuring shared parameters, alongside cross-task contrast loss and cross-
pixel contrast loss for height estimation and semantic segmentation. The decoder employed
contrastive learning to encourage the model to learn detailed features. Lu et al. [63]
introduced a unified deep learning architecture that can generate both estimated relative
height maps and semantically segmented maps from RGB images, allowing for end-to-
end training while accomplishing relative height estimation and semantic segmentation
simultaneously. However, they failed to consider the independent relationship between
building texture details and building semantic information. According to the correlation
between semantic segmentation and height estimation, Zhao et al. [64] investigate and
propose a semantic-aware unsupervised domain adaptation method for height estimation.
They found that incorporating semantic supervision improves the accuracy of height
estimation for single-view orthophotos under unsupervised domain adaptation.

Collectively, these studies have demonstrated that the integration of multi-task learn-
ing can effectively enhance the model’s capability to perform height estimation and seman-
tic segmentation tasks, resulting in improved accuracy.

3. Method

The proposed MFTSC encoder is built upon the Swin Transformer, and the overall
architecture of the model is depicted in Figure 1. To enhance feature extraction, we devised
the texture feature-extraction module (TEM) for capturing local neighborhood information
from the shallow layer of the image, which is then used to construct the feature map E0.
Subsequently, we harnessed the Swin Transformer’s robust feature extraction capabilities
to form feature maps E1, E2, E3, and E4. These feature maps operate at various resolution
scales, corresponding to 1/2, 1/4, 1/8, 1/16, and 1/32.

The height estimation decoder in MFTSC follows a design inspired by [51,65,66],
comprising four layers. However, within each layer of the height decoder, we integrate a
multi-dimensional feature-aggregation Transformer (MFT) to consolidate diverse dimen-
sional information from both the encoder and the height decoder. Subsequently, we employ
an advanced upsampling algorithm (details provided below) to obtain pointwise features.
Toward the end of the height decoder, we introduce the height head, which combines
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shallow local neighborhood features from the encoder with semantic features from the
height decoder, thereby fine-tuning the height information prediction for each point.
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Figure 1. Detailed architecture of MFTSC: Given an input image, a visual Transformer-based en-
coder (Swin Transformer) and a TEM module extract multi-scale feature maps. The input of the
feature pyramid pooling module (PPM) with the coarsest resolution (E4), and then the multi-scale
feature E1 · · · E4 are, respectively, passed into the height estimation decoder and semantic segmen-
tation decoder. Finally, the height head is used for height estimation and Seg Head is used for
semantic segmentation.

For the semantic segmentation decoder, we employ UPerNet [67], which capitalizes
on multi-scale information fusion to enhance its segmentation performance. Finally, at the
conclusion of the semantic segmentation decoder, we utilize convolution and upsampling
techniques to refine the prediction of semantic labels for individual points.

3.1. TEM

We adopt a convolution module with a kernel size of 3 × 3 and max pooling to
create TEM. Concretely, TEM comprises two 3 × 3 convolutional layers, each of which
is accompanied by a batch normalization operation and a ReLU activation function. To
retain rich spatial details, the shallow spatial detail features are extracted alongside the
high-resolution feature representation, with a downsampling factor set to 2.

The TEM in our approach operates in a manner akin to ‘Prompt’ technology, which
relies on language models to extract text-relevant features. In a similar vein, our TEM is
responsible for extracting shallow information from the image, effectively constraining
the area for ground object regression. This process significantly improves the accuracy
of height estimation. As shown in Figure 2, the feature map generated by TEM clearly
highlights the building area, effectively confining the regression area of ground objects
within its scope.
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Figure 2. Features from the TEM of MFTSC, expanded by channel dimensions.

3.2. Swin Transformer

Figure 3 illustrates the Swin Transformer block, which is a notable variant of the
Transformer architecture. Transformer encoders are a fundamental component of the
Transformer architecture, a widely-used deep learning model in various natural language
processing tasks. The encoder typically contains multi-head self-attention (MSA) and
multi-layer perceptron (MLP) modules, along with layer normalization (LN) and residual
connections positioned before and after each module. The MLP in the standard Trans-
former is a two-layer fully connected neural network with a Gaussian error linear unit
(GELU) nonlinearity.

C

MLP

LN

W-MSA

LN

Input

MLP

LN

SW-MSA

LN

Input

𝑧 𝑧

�̂�

�̂�

𝑧

�̂�

𝑧

Figure 3. Swin Transformer block.

In the Swin Transformer block, the MSA block is replaced by two windows-based self-
attention mechanisms: window multi-head self-attention (W-MSA) and shifted window
multi-head self-attention (SW-MSA). Two layers of Swin Transformer Blocks are connected
together as a basic unit, with the first layer comprising MLP and W-MSA, and the following
Swin Transformer Block consisting of MLP and SW-MSA. LN is applied before the W-MSA,
SW-MSA, and MLP modules, while residual connections are applied after these modules.
LN normalizes the input of each module, while residual connections facilitate the flow of
gradients through the network, mitigating the problem of vanishing gradients.

The above process can be expressed by the following formulas:

ẑl = W-MSA(LNs(zl−1)) + zl−1, (1)
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zl = MLP(LN(ẑl)) + ẑl , (2)

ẑl+1 = SW-MSA(LN(zl)) + zl , (3)

zl+1 = MLP(LN(ẑl+1)) + ẑl+1, (4)

where ẑl and zl represent the output features of the (S)W-MSA module and the MLP module
in the Swin Transformer block l, respectively. W-MSA and SW-MSA denote windowed
multi-head self-attention and shifted-window multi-head self-attention, respectively.

3.3. PPM

For tasks that demand high regression accuracy, it is vital to capture spatial features at
multiple scales to enhance the model’s robustness. One approach is to use pooling modules
of varying sizes to extract spatial information at different scales. Additionally, to address the
challenge of losing context information across different sub-regions, models like PSPNET
propose a hierarchical global prior structure. This involves integrating information from
different scales and subregions to create a global scene on the final feature map of a deep
neural network. This significantly improves the accuracy of height regression.

The pyramid spatial pooling (PSP) module employs a pyramid pooling strategy to
capture context at multiple scales. This enables the model to better understand the spatial
relationships between objects and their surroundings and to more accurately differentiate
objects that may appear similar but have different contexts.

The PPM (see Figure 4) transforms the input feature map D4 ∈ R H
32×

W
32×512 into four

feature maps of varying spatial dimensions through pooling operations. These four differ-
ent feature maps are then dimensionally reduced using 1×1 convolutions and subsequently
resized to match the size of the input feature map through linear interpolation. After this,
the input feature map is concatenated with the four interpolated feature maps. Finally,
feature fusion is accomplished through the use of a ConvModule as:

D4 = ConvModule(Concat(Pooli(E4), E4)), i ∈ [1, 2, 3, 6], (5)

In the above formula, ConvModule is composed of 3 × 3 convolution, regularization, and
ReLU activation function, Concat is the splicing operation, Pooli represents the mean
pooling layer of different sizes i, and E4 is the input feature map.

Pool
1×1

Pool
2×2

Pool
3×3

Pool
6×6

C Conv
Module

𝐸

𝐷

Figure 4. PPM. The PPM performs pyramid pooling to extract multi-scale global context from an
input image.

3.4. MFT

In height estimation tasks, the utilization of both shallow spatial detail features and
deep semantic features is essential in the decoder section. While many previous conven-
tional methods have made use of both shallow and deep features, they often emphasize
local information. To overcome this limitation and promote a more effective fusion of
shallow and deep features, we introduce the MFT, as depicted in Figure 5.
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Figure 5. MFT. The MFT model employs a two-step approach to align and fuse features. Firstly,
convolutional layers are used for feature alignment, followed by the use of Transformers for feature
fusion. This approach allows the model to extract informative representations by capturing spatial
relationships between features and integrating information from different levels of the network.

The MFT aims to capitalize on the advantages of MSA in computer vision, as it has
been shown to enhance model accuracy, reduce loss, and improve generalization. However,
the main challenge associated with MSA is its high computational complexity. To address
this issue, we employ Window-based W-MSA, which reduces computational complexity.
Specifically, we process the deep and shallow features through a series of steps:

(1) Convolution: The features undergo convolution to extract and enhance their
representations.

(2) LN: We apply LN to normalize the feature maps, improving their stability.
(3) Window partition: The features are divided into windows to enable parallelized

computations.
(4) Linear layer: The feature map passes through a linear layer to calculate window

self-attention scores.
(5) Window merge: The window self-attention scores are employed to merge informa-

tion from different windows.
(6) Residual connection: A residual connection is used to ensure smooth information

flow, and the feature map proceeds through the MLP.
This process allows for effective feature aggregation and interaction between deep

and shallow features, contributing to improved height estimation.
Simultaneously, we project the feature Ei from the encoder as Q in the W-MSA, while

the feature Di from the deep layer of the decoder is projected as K and V. This design
facilitates effective interaction between the encoder and decoder features, enhancing the
model’s efficiency in handling multiple tasks. Furthermore, this design establishes direct
communication between the height estimation branch and the encoder, leading to improved
coordination between the semantic segmentation branch and the height estimation branch
during gradient propagation.

Given the input feature vectors Ei and Di, this approach employs a convolution
module to project the features into the same dimension and perform feature superposition
and fusion to obtain the fused feature fl of size RH×W×C. This fused feature is then
reshaped to RN×C, where N is the sequence length and C is the feature dimension. After
applying LN, the window partition technique is used to convert fl and E

′
i into w = H

M ×
W
M

feature vectors fp ∈ Rw×M×M×C and Ep ∈ Rw×M×M×C, respectively. Within each window,
the window k features are linearly projected to obtain Qk = WQ

k Ep
k , Kk = WQ

k fp, and
Vk = WQ

k fp. The multi-head attention mechanism is then applied to these projections,
following which, the window reverse technique is used to retrieve the fatt feature from
the resultant vector. The D

′
i feature of the decoder is then connected to the resultant

feature using residual connections. Finally, the MLP module is used to perform residual
connections with previous features.

The specific forward process of MFT is as follows:
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fl = LN
(

MEi Ei + MDi Di

)
, (6)

fatt = W-MSA(fl , E
′
i), (7)

f̂l+1 = fatt + D
′
i, (8)

fl+1 = MLP
(

f̂l+1
)
+ fl + f̂l+1, (9)

where MEi and MDi represent learnable matrices, and MLP represents multilayer percep-
tron. Ei and Di represent features from the encoder and decoder, respectively.

The W-MSA algorithm computes MSA within a window of size M × M, and a total
of
[

H
M ×

W
M

]
windows are used for this purpose. Specifically, the features fl and E

′
i are

passed through the W-MSA module for MSA computation, and fl and E
′
i are divided into

windows to obtain fp and Ep for each window. The self-attention calculation is performed
as follows:

Qk = WQ
k Ep

k , Kk = WK
k fp, Vk = WV

k fp, (10)

Attention(Qk, Kk, Vk)k = SoftMax(
QkKk

T
√

d
)Vk, (11)

where Qk, Kk, Vk ∈ RM2×C denote the query, key, and value matrices, respectively, where M
represents the size of the window and C is the dimensionality of the query and key matrices.

The attention calculation involves a multi-head attention mechanism, which partitions
the input into multiple heads. Each head independently performs an attention calculation,
and the results from all the heads are concatenated to obtain the final output. The multi-
head self-attention calculation for the k-th window is expressed as follows:

MSAk(Qk, Kk, Vk) = Concat(head1, . . . , headi)Wk
O, (12)

where Wk
O represents the learned parameter for the k-th head. Additionally, each head is

defined as:

headi = Attention(QkWQk
i , KkWKk

i , VkWVk
i ), (13)

where WQk
i ∈ RM2×C′ , WKk

i ∈ RM2×C′ , and WVk
i ∈ RM2×C′ , C′ represents the dimension of

each head. If there are N heads, then C′ = C/N.
For MSA, the computational complexity of each window in W-MSA and the overall

computational complexity of W-MSA are given by Equations (14)–(16).

Ω(MSA) = 4HWC2 + 2(HW)2C, (14)

Ω(Window) = 4M2C2 + 2M4C, (15)

Ω(W-MSA) = 4HWC2 + 2M2HWC, (16)

where H ×W is the total number of patches; C represents the feature dimension; M
represents the size of each window.

3.5. Decoder

To ensure accurate height estimation, it is crucial to combine deep semantic and shal-
low spatial features. Our approach follows a bottom-up strategy similar to classic methods
like Unet and LinkNet. We start with the lowest-resolution feature map and employ skip
connections to capture detailed features by upsampling the encoder’s feature map. These
encoder–decoder features are then connected and processed through convolutional layers.
However, during the fusion of encoder–decoder features via convolution, there is an issue of
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information loss. This loss is primarily due to the local nature of the convolution operation,
which compresses and mixes information and is further exacerbated by the upsampling
operation in the decoder. Consequently, the model has a limited receptive field, making it
challenging to acquire global features effectively. To overcome this limitation, we utilize
the MFT module, which facilitates the fusion of global and local features. The MFT module
employs window self-attention and significantly reduces the model’s memory usage.

The height estimation decoder is depicted on the right side of Figure 1. Starting from
the output D4 of the PPM module, we input the encoder features Ei(i ∈ 0 · · · 4) and decoder
features Di(i ∈ 0 · · · 4) into the MFT module for feature fusion. Following the MFT module,
we perform upsampling to obtain the feature map Di−1. For a given encoder feature Ei and
decoder feature Di, the process can be expressed as:

Di−1 = Upsample(MFT(Ei, Di)), (17)

To generate the final feature map D0, we use the height head for processing. The
height head combines the shallow features E0 extracted from the shallow feature extraction
module with the deep features. This combination is achieved by concatenating the two sets
of features and passing them through convolutional and upsampling modules. Finally, we
apply the Sigmoid activation function to ensure that the output values fall within the [0,1]
interval. The height head process can be expressed as:

HHeight = Sigmoid
(

Upsample
(

MH(Concat(E0, D0))
))

, (18)

where Sigmoid represents the activation function, Upsample denotes upsampling, Concat
means tensor splicing, MH represents the learnable matrix, E0 and D0 are shallow features
from the encoder and decoder, respectively.

Given the relative simplicity of the task of semantic segmentation for building masks,
we have opted for a streamlined semantic segmentation module. In our approach, we
leverage the UPerNet model [67] as the central component for our segmentation tasks,
specifically aimed at distinguishing the foreground from the background within building
areas. UPerNet is a well-established decoder model renowned for semantic segmentation,
and it effectively enhances segmentation performance through the amalgamation of multi-
scale information. This is achieved by configuring sub-networks for segmentation at
varying scales, allowing UPerNet to process images across multiple scales and amalgamate
data from different scales to substantially bolster segmentation accuracy.

In our height estimation task, the challenge lies in simultaneously regressing the
height of the building area while distinguishing the building from the background. This
simultaneous operation complicates the separation of foreground and background, often
necessitating the introduction of post-processing thresholds. Nevertheless, this challenge
of foreground–background separation can be effectively addressed through semantic seg-
mentation tasks. Recognizing the rich interplay between height estimation and semantic
segmentation, we have adopted a multi-task learning approach to enhance the precision of
our height estimation process. This approach enables UPerNet to be represented by the
following formula:

S1 = ConvModule(Concat(Pi)), i ∈ [2, 5], (19)

Pi = MPi (Ei) + Upsample(Pi+1), i ∈ [2, 4], (20)

HSeg = Sigmoid
(

Upsample
(

MS(S1)
))

, (21)

In the above formula, ConvModule consists of 3 × 3 convolution, batch regularization, and
ReLU activation function. The fusion block combines the four feature maps P2, P3, P4, and
P5, then performs dimensionality reduction and scales the result to the size of the input
image. MPi and MS represent the learnable matrix, and Upsample means an upsampling
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operation using bilinear interpolation. The final module produces the fusion feature S1,
from which the result is obtained through the segmentation head.

3.6. Loss Function

In the height estimation task, we utilize a hybrid loss function comprising the MSE
loss and L1 loss functions, with the associated loss weights being fine-tuned to enhance
the model’s performance. As for the loss function in the semantic segmentation task, we
opt for the standard binary cross-entropy loss function. The exact formulation of the loss
function is given by:

Lheight(xh, yh) =
1
N

N

∑
i

[
λ1 × (xh i − yh i)

2 + (1− λ1)× |xh i − yh i|
]
, (22)

Lseg(xs, ys) = −[(ys ∗ log(xs)) + (1− ys) log(1− xs)], (23)

where Lheight represents the loss function for height estimation in the model. xh and yh
denote the predicted value and the ground truth value of the building height, respectively.
Lseg represents the binary cross-entropy loss for building segmentation, and xs and ys
represent the predicted value and the ground truth segmentation mask for the building,
respectively. According to the literature [63,68], we set λ1 to 0.85.

In the pursuit of multi-task learning and concurrent optimization of two distinct tasks,
we deliberately allocate distinct weights to the respective heads. The primary objective is
to attain exceptional accuracy in height estimation, a notably intricate task, while semantic
segmentation is comparatively more straightforward. Consequently, we assign a greater
weight to the height estimation head and a relatively smaller weight to the semantic
segmentation head. This strategic weight assignment ensures that the model prioritizes the
height estimation task, demanding elevated precision and accuracy without compromising
the overall performance of the semantic segmentation task. Therefore we set λ2 to 0.8.

Ltotol = λ2 ×Lheight + (1− λ2)×Lseg, (24)

4. Experiments
4.1. Experimental Platform Parameter Settings

All experiments were conducted using the PyTorch framework on a Windows 11
system, which is equipped with an Intel(R) Core(TM) i5 10400 CPU @ 2.90 GHz processor
and an Nvidia GeForce RTX 3060 graphics card. For optimization, we employed the
AdamW optimizer with a consistent learning rate of 0.0001 across all experiments. Given
the simple nature of the semantic segmentation task and our objective to improve the
accuracy of the height estimation task, we propose to balance the weight assigned to
each task. Specifically, we assign smaller weights to the semantic segmentation task. To
achieve this, we begin with a warm-up training of 10 epochs solely focused on the height
estimation task. This strategy helps the model to learn the optimal parameters for the height
estimation task without being distracted by the semantic segmentation task. Subsequently,
we introduce a semantic segmentation head for multi-task learning. Building upon the
approaches presented in [63,68], we set the weight for the semantic segmentation task to
0.2. We empirically found that this value leads to the best performance of our method
compared to other values.

To assess the performance of each method, we employed a range of standard evalua-
tion metrics, including mean Intersection over Union (mIoU), mean absolute error (MAE),
mean square error (MSE), root mean square error (RMSE), and the coefficient of determina-
tion (R2).

mIoU =
1
N

N

∑
k=1

TPk
TPk + FPk + FNk

, (25)
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where TPk, FPk, TNk, and FNk indicate the true positive, false positive, true negative, and
false negative, respectively, for the specific object indexed as class k.

MAE =
1
n

n

∑
i=1
|ŷi − yi|, (26)

MSE =
1
n

n

∑
i=1

(ŷi − yi)
2, (27)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2, (28)

R2 = 1−

n
∑

i=1
(yi − ŷi)

2

n
∑

i=1
(yi − ȳ)2

, (29)

where yi represents the ith true values of the variable being predicted, and ŷi is the i-th
predicted values of the variable. ȳ represents the mean of the true values.

4.2. Datasets

The evaluation of our proposed method was conducted using the Data Fusion Compe-
tition 2023 (DFC2023) dataset [69]. This dataset comprises optical images (RGB) acquired
from Gaofen-2 and SuperView satellites, with spatial resolutions of 0.8 m and 0.5 m, re-
spectively. The SAR image, which is co-registered with the optical imagery, is obtained
from the Gaofen-3 satellite, with a spatial resolution of 1 m. A nDSM for reference was
generated from stereoscopic images captured by Gaofen-7 and WorldView, featuring a
ground sampling distance of approximately 2 m. To ensure uniformity, all images were
resampled to a common 0.5 m resolution.

The dataset is diverse and spans seventeen cities across six continents, excluding
Antarctica. It provides a broad representation of various landforms, architectural styles,
and building types. To facilitate consistent evaluation, all images were cropped into
image patches of size 512 × 512 pixels. The dataset was divided into 1330 image patches
for training and 443 for testing, totaling 1773 image patches. For each image block, we
conducted data augmentation operations, which encompassed random horizontal and
vertical flipping. Additionally, we applied a 2% linear stretch to the SAR image to reduce
its inherent noise.

4.3. Compare Experiment

To verify the effectiveness of the proposed method in this paper, we conducted a
comprehensive comparative experiment with several state-of-the-art methods, includ-
ing DeepLabv3+ [70], Res-Unet [71], PSPNET [52], Res-LinkNet [50], VGG-Unet [72],
Unet++ [73], VGG-LinkNet [51], and PAN [74], with all using ResNet50 or VGG13 as their
backbone networks. We also compared our method with Swin-Unet [65], which uses
the Swin Transformer (Swin-T) as the backbone network, and Swin-UPerNet [29], which
combines the encoder and decoder in one network using the Swin Transformer. Addi-
tionally compared with the generative adversarial learning method Pix2Pix [39], which
uses Res-Unet as the generator. Finally, we compare with recent excellent deep learning
methods for MDE tasks, including NeWCRFs [44], GLPDepth [45], and PixelFormer [26].

The experimental results presented in Table 1 highlight the significant advantages of
our proposed method over other state-of-the-art techniques. In contrast, other methods
exhibit certain limitations. For instance, DeepLabv3+ is effective in capturing long-distance
contextual information, which is beneficial for understanding the global context of an
image. However, it tends to struggle to preserve fine-grained details, which are crucial for
capturing local intricacies and small-scale features. Similarly, methods such as PSPNET and
PAN excel at capturing multi-scale information by employing pooling operations that help
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incorporate context at different levels. While this multi-scale approach is advantageous for
capturing a wide range of object scales, it often comes at the cost of sacrificing fine-grained
details, as pooling operations can lead to a loss of spatial resolution. Models like Res-Unet,
Res-LinkNet, VGG-Unet, and VGG-LinkNet employ U-shaped architectures with ResNet50
and VGG13 backbones. While they use skip connections to combine low-level encoder
features with high-level decoder features to enhance regression accuracy, their perfor-
mance is constrained by the limitations of their backbones. Unet++, which outperforms
Unet by incorporating additional skip connections and dense connection mechanisms,
achieves superior performance. Nevertheless, it faces challenges during training due to
high computational requirements, measured in terms of floating point operations (FLOPs).
Swin-Unet can capture multi-scale features and reduce computational costs, but it may
sacrifice fine-grained details due to downsampling operations. Swin-UPerNet, which
adopts the Swin-T backbone and combines the encoder and decoder in one network using
the UPerNet architecture, struggles to capture fine-grained details effectively.

Table 1. Comparative experimental results of the DFC23 dataset.

Method Backbone mIoU ↑ MAE (m) ↓ MSE (m2) ↓ RMSE (m) ↓ R2 ↑ Params ↓ FLOPs ↓
DeepLabv3+ ResNet50 0.628 0.7488 2.4398 1.4834 0.9064 106.72 M 1.369 G

Res-Unet ResNet50 0.718 0.7289 2.4882 1.4895 0.9129 130.10 M 1.325 G
PSPNET ResNet50 0.648 0.7785 2.5575 1.5089 0.9127 8.96 M 0.743 G

Res-LinkNet ResNet50 0.745 0.7763 2.7441 1.5660 0.9047 124.72 M 1.620 G
VGG-Unet VGG13 0.713 0.7193 2.4169 1.4644 0.9187 73.76 M 0.856 G

VGG-LinkNet VGG13 0.631 0.8039 2.6927 1.5545 0.8952 42.68 M 1.245 G
Unet++ ResNet50 0.782 0.6809 2.4893 1.4652 0.9218 195.96 M 2.130 G

PAN ResNet50 0.666 0.8102 2.7240 1.5700 0.8778 97.05 M 1.174 G
Swin-Unet Swin-T 0.671 0.8608 3.5535 1.7884 0.9177 168.89 M 1.087 G

Swin-UPerNet Swin-T 0.521 1.2082 6.4657 2.3984 0.8616 80.79 M 0.565 G
Pix2Pix ResNet50 0.749 0.7676 2.9890 1.6394 0.9398 141.17 M 1.434 G

NeWCRFs Swin-T 0.678 0.9701 3.8080 1.8679 0.8896 353.65 M 1.897 G
GLPDepth MiT-b4 0.723 0.7679 2.8529 1.5950 0.9058 244.90 M 2.282 G

PixelFormer Swin-T 0.682 0.8396 3.0784 1.6694 0.9044 305.35 M 1.620 G
MFTSC Swin-T 0.785 0.5390 1.5167 1.1733 0.9671 302.38 M 1.686 G

Pix2Pix relies on GAN for building height generation, but it often generates overly
smooth images and exhibits sensitivity and instability, which pose challenges during
training and result in suboptimal RMSE indicators. The adversarial training process, which
involves a generator and a discriminator network, aims to achieve a balance between
generating realistic images and fooling the discriminator. However, this balance can be
difficult to achieve, resulting in overly smooth outputs that lack fine details. Similarly,
the MDE models, namely NeWCRFs, GLPDepth, and PixelFormer, deliver unsatisfactory
performance across multiple evaluation metrics. This can be attributed to their original
design for MDE tasks, primarily dealing with RGB street view images, which exhibit lower
complexity compared to remote sensing images. The disparity between the specific task
of building height estimation in remote sensing images and the broader scope of MDE
tasks contributes to the subpar performance of these models. Remote sensing images
often encompass unique challenges such as variations in resolution, sensor characteristics,
and environmental conditions. Thus, it becomes imperative to develop a distinct model
exclusively tailored for accurate height estimation in remote sensing applications.

Our proposed MFTSC architecture achieves the highest mIoU of 0.7855, indicating
superior performance in semantic segmentation. Additionally, our method demonstrates
significantly better results in terms of MAE (0.5390 m) compared to other methods, while
the results of PSPNET and Swin-UPerNet are relatively poorer. This suggests that MFTSC is
more sensitive to differences between true and predicted values and is able to predict target
values more accurately. Furthermore, MFTSC achieves the best results in terms of MSE
and RMSE (1.5167 square m and 1.1733 m, respectively), while the results of Swin-UPerNet
are relatively poorer. This indicates that MFTSC predicts target values more accurately
and with greater concentration. Finally, MFTSC achieves the highest R² of 0.9671, while
the result of Swin-UPerNet is relatively poorer. This shows that the correlation between
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predicted results of MFTSC and ground-truth values is stronger, allowing it to better capture
the change trend of the target value.

In summary, our proposed method effectively captures the correlation between pre-
dicted and ground-truth height values, demonstrating the ability to capture multi-scale
features and fine-grained details while reducing computational costs and mitigating the
vanishing gradient problem. However, it is important to note that the method’s disadvan-
tage is its complex network architecture, necessitating training for both height estimation
and semantic segmentation tasks simultaneously.

Figures 6 and 7 present the experimental results. It is evident from the figures that
the model utilizing the Swin Transformer as the backbone network emphasizes global
features, resulting in smoother results compared to models using VGG and ResNet as
the backbone network. In models with ResNet as the backbone network, such as Unet-
Res50, PSPNET-Res50, DeepLabv3+, PAN, and LinkNet-Res50, there are many missing
holes in the generated results, and the estimated ground object height values display
discontinuities. This could be attributed to the inadequate receptive field of the backbone
network, hindering the full extraction of large-scale spatial information. Models employing
VGG as the backbone network, such as Unet-VGG13 and LinkNet-VGG13, also exhibit
the problem of insufficient receptive field, leading to discontinuous height information
generation and the loss of height information in certain critical areas. Although Unet++
effectively alleviates the issue of information loss by employing multi-level feature fusion
and dense skip connections within its decoder module, there still exists a discrepancy
between the predicted height and the ground truth height in localized regions.66,10               312,113

RGB Label Deeplabv3+ Res-Unet PsPnet Res-LinknetSAR Vgg-Unet

Swin-Unet Swin-UperNet Pix2Pix

RGB Label Deeplabv3+ Res-Unet PsPnet Res-LinknetSAR Vgg-Unet Vgg-Linknet

Swin-Unet Swin-UperNet Pix2Pix MFTSC

Unet++

Unet++

PAN MFTSCNeWCRFs GLPDepth PixelFormer

PAN

Vgg-Linknet

NeWCRFs GLPDepth PixelFormer

Figure 6. Comparative experimental results on the DFC23 dataset (part 1).

In contrast to models using VGG or ResNet as the backbone network, Swin Transformer-
based models, such as Swin-Unet and MFTSC, excel at extracting spatial information and
modeling global features. Consequently, the generated results exhibit relatively continuous
regional height information. However, Swin-UPerNet underperforms due to its sole use of
quadruple upsampling and the UPerNet module. This limitation hampers the preservation
of texture information from the original remote sensing image, leading to issues such as
large gaps and a lack of sufficient texture.

On the other hand, Swin-Unet harnesses the Swin Transformer as its backbone net-
work, allowing the model to adeptly extract spatial information and possess long-distance
dependence capabilities. Additionally, it employs a skip connection in the decoder segment,
facilitating the acquisition of detailed features from the encoder feature map. However,
Swin-Unet still necessitates a four-fold upsampling process in the decoder, which may
cause the model to lose its capacity to extract and model the texture information present in
the original remote sensing image.
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134,337                  78,248
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GLPDepth PixelFormer
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Figure 7. Comparative experimental results on the DFC23 dataset (part 2).

Regarding models designed for MDE tasks, while they leverage the Transformer as
a robust backbone for feature extraction, their decoder architecture is not ideally suited
for remote sensing images. As a result, issues like blurring artifacts and incomplete area
coverage emerge in models like NeWCRFs, GLPDepth, and PixelFormer.

In contrast, MFTSC capitalizes on the texture cues within the original remote sensing
image and preserves the Swin Transformer’s robust spatial modeling ability. Moreover,
MFTSC only requires double the upsampling in the decoder, thus effectively preserving
the texture information and spatial continuity produced by the model. Furthermore,
MFTSC adeptly fuses shallow and deep features, leading to more precise regression. The
incorporation of semantic information also enhances MFTSC’s ability to approximate the
actual building outlines, especially in the edge areas of the buildings.

4.4. Discussion

In our ablation experiments, we aimed to assess the impact of various components on
the performance of MFTSC. Here are the specific experimental settings:

(1) The effect of different backbone models
In this experiment, we evaluated the performance impact of utilizing different back-

bone models in the MFTSC architecture. The results are presented in Table 2. When we
employ Swin-T as the backbone model, it allows the MFTSC to capture a broader global
receptive field in the encoder segment. This, in combination with the MFT module in the
height decoder part and the local detail features from the TM module at the end, results
in a comprehensive ability to model both global and local features effectively. In contrast,
ResNet and VGG exhibit limitations in terms of their receptive fields and feature extraction
capabilities. Consequently, models using these backbones cannot fully leverage both global
and local features, leading to relatively lower overall performance.

Table 2. Impact of different backbone replacements on MFTSC.

Backbone mIoU ↑ MAE (m) ↓ MSE (m2) ↓ RMSE (m) ↓ R2 ↑ Params ↓ FLOPs ↓
ResNet 0.7462 0.8119 3.0569 1.6610 0.9646 257.28 M 1.172 G
VGG 0.7633 0.7633 2.8127 1.5867 0.9610 202.93 M 2.541 G

Swin-T 0.7855 0.5390 1.5167 1.1733 0.9671 302.38 M 1.686 G

(2) The impact of different modules
We discussed the ablation experiments of different modules, and the specific results

are shown in Table 3.
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A: TEM module effectiveness.
In this experiment, we removed the TEM module from MFTSC. The results indicate

that the TEM module plays a crucial role in enhancing both object height estimation and
building segmentation. It effectively extracts shallow spatial detail features, which are
essential for prompting the decoder.

B: Remove building semantic constraints.
Here, we excluded the Seg decoder and Seg head in MFTSC. This experiment demon-

strates that semantic segmentation constraints significantly improve the performance of
object height estimation. It underscores the rationale behind our method, which leverages
semantic information to enhance object height estimation performance.

C: Using a simple decoder.
For this test, we replaced the MFT module in the decoder with convolution for contex-

tual feature aggregation. The results clearly highlight the limitations of the convolution
module, especially for tasks with high complexity, where the Transformer has a distinct
advantage in feature aggregation.

D: Remove the PPM module.
In this experiment, the PPM module was excluded from the MFTSC model, resulting

in a decrease of 0.0436 in mIoU and a decrease of 0.0046 in R2. These findings emphasize
the critical role of the PPM module in achieving optimal performance in MFTSC.

E: Remove the PPM module and TEM module.
Here, we removed both the PPM module and the TEM module from MFTSC. This

simultaneous removal led to a significant decrease in R2, highlighting the effectiveness of
both the PPM and TEM modules.

Table 3. Ablation experiment: Impact of different modules on MFTSC. A: Remove the TEM module,
B: remove semantic constraints, C: use the simple decoder, D: remove the PPM module, E: remove
the PPM module and TEM module.

Method mIoU ↑ MAE (m) ↓ MSE (m2) ↓ RMSE (m) ↓ R2 ↑ Params ↓ FLOPs ↓
A 0.7789 0.6085 1.6432 1.2449 0.9627 302.24 M 1.619 G
B 0.7387 0.7633 2.8127 1.5867 0.9481 298.03 M 1.651 G
C 0.6919 0.8608 3.5535 1.7884 0.9425 169.00 M 1.357 G
D 0.7419 0.7207 2.4858 1.5005 0.9625 258.32 M 1.640 G
E 0.7752 0.5689 1.6732 1.2304 0.9595 258.19 M 1.573 G

(3) The impact of soft and hard parameter sharing on the model
Multi-task learning can be divided into hard parameter sharing and soft parameter

sharing in remote sensing tasks. For hard parameter sharing, the model shares some param-
eters across all tasks and only uses individual parameters at the final classification head or
segmentation head. Shared layers across the network tend to learn feature representations
that are better for all tasks, so models with hard parameter sharing are hard to fit. For
soft parameter sharing, each task has its parameters, and parameters are shared among
different tasks. Finally, combining the differences between the parameters of different
tasks allows for holistic multi-task learning. We designed MFTSC in two modes: soft
parameter sharing mode (Soft) and hard parameter sharing mode (Hard). The specific
results are shown in Table 4. Notably, we observed that only encoder parameter sharing
(Soft) outperforms encoder–decoder parameter sharing (hard). One can refer to Figure 8
for a visual representation of the hard parameter sharing mode.

Table 4. The impacts of parameter sharing strategies in different ways on the accuracy of the model.

Method mIoU ↑ MAE (m) ↓ MSE (m2) ↓ RMSE (m) ↓ R2 ↑ Params ↓ FLOPs ↓
Soft 0.7855 0.5390 1.5167 1.1733 0.9671 302.38 M 1.686 G

Hard 0.7339 0.7386 2.4585 1.4963 0.9544 254.12 M 1.611 G
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Figure 8. Hard. MFTSC architecture using hard parameter sharing.

(4) Model parameters and FLOPs
Table 1 provides comprehensive data on model parameters, calculations, and FLOPs

for various models. Here is an analysis of the key findings:
CNN-based models: CNN-based models generally have a lower parameter count,

with PSPNET having the lowest at 8.96 M parameters and a relatively low 0.743 G FLOPs.
These models are computationally efficient but may not perform as well in intensive tasks.

Unet and LinkNet models: Unet and LinkNet models have larger parameter counts
and FLOPs compared to PSPNET but tend to outperform PSPNET, PAN, and DeepLabv3+
in more demanding tasks. Unet++ demonstrates remarkable results but comes with a
challenge during training due to its substantial number of parameters and FLOPs.

Pix2Pix: The application of the Pix2Pix training method to train Res-Unet yields
favorable results, but optimizing GANs for model training remains a challenge.

Swin-T backbone models: Models that use Swin-T as a backbone typically have a high
parameter count. However, when the number of parameters is small, the resulting effect
is significantly diminished. Swin-UPerNet demonstrates the least effectiveness, primarily
due to the unsuitability of the decoder for height estimation tasks.

MDE models: Models designed specifically for height estimation tasks have extraordi-
narily large numbers of parameters and FLOPs. For example, NeWCRFs have 353.65 M
parameters and GLPDepth has 2.282 G FLOPs. In contrast, MFTSC uses a multi-task
learning architecture to harness the global modeling capabilities of Swin-T while con-
trolling parameters and FLOPs at a moderate level compared to NeWCRFs, GLPDepth,
and PixelFormer.

These findings highlight the trade-offs between model complexity, computational
requirements, and task performance. MFTSC stands out by intelligently introducing multi-
task learning while maintaining moderate parameter and FLOP levels.

5. Conclusions

This study introduces a novel encoder–decoder architecture, referred to as MFTSC,
aimed at jointly addressing the challenges of semantic segmentation and height estimation
tasks. The proposed architecture leverages semantic constraints to enhance the accuracy of
height estimation, avoiding the limitations associated with CNNs in dense prediction tasks
for remote sensing images. Key aspects of the approach include the adoption of the Swin
Transformer as a backbone network, the development of a multi-task learning architecture
for height estimation and semantic segmentation, and the integration of modules like
TEM and PPM to improve the model’s ability to capture gradient texture and context at
multiple scales. The MFT module effectively fuses features from the encoder and decoder,
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facilitating the combination of global and local information. Experimental results indicate
that our method outperforms traditional CNN-based methods across various model types.

In future research, we intend to investigate the potential benefits of integrating our
approach with the rapidly evolving diffusion model. This integration has the potential to
enhance the accuracy of height estimation tasks. These efforts are expected to contribute to
the ongoing advancement of remote sensing applications.
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Abbreviations

R2 coefficient of determination
RMSE root mean square error
mIoU mean intersection over union
MSE mean square error
MAE mean absolute error
SAR synthetic aperture radar
MDE monocular depth estimation
CNNs convolutional neural networks
nDSM normalized digital surface model
MFTSC multi-level feature fusion Transformer with semantic constraint(s)
TEM texture feature-extraction module
ViT Vision Transformer
MFT multi-dimensional feature-aggregation Transformer
PPM pyramid pooling module
MSA multi-head self-attention
LN layer normalization
GELU Gaussian error linear unit
W-MSA window multi-head self-attention
SW-MSA shifted window multi-head self-attention
PSP pyramid spatial pooling
DFC2023 Data Fusion Competition 2023
FLOPs floating point operations
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