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Abstract: Forest fires pose severe challenges to forest management because of their unpredictability,
extensive harm, broad impact, and rescue complexities. Early smoke detection is pivotal for prompt
intervention and damage mitigation. Combining deep learning techniques with UAV imagery holds
potential in advancing forest fire smoke recognition. However, issues arise when using UAV-derived
images, especially in detecting miniature smoke patches, complicating effective feature discernment.
Common deep learning approaches for forest fire detection also grapple with limitations due to
sparse datasets. To counter these challenges, we introduce a refined UAV-centric forest fire smoke
detection approach utilizing YOLOv5. We first enhance anchor box clustering through K-means++
to boost the classification precision and then augment the YOLOv5 architecture by integrating a
novel partial convolution (PConv) to trim down model parameters and elevate processing speed. A
unique detection head is also incorporated to the model to better detect diminutive smoke traces. A
coordinate attention module is embedded within YOLOv5, enabling precise smoke target location
and fine-grained feature extraction amidst complex settings. Given the scarcity of forest fire smoke
datasets, we employ transfer learning for model training. The experimental results demonstrate that
our proposed method achieves 96% AP50 and 57.3% AP50:95 on a customized dataset, outperforming
other state-of-the-art one-stage object detectors while maintaining real-time performance.

Keywords: forest fire detection; smoke detection; UAV aerial imagery; YOLOv5; transfer learning;
deep learning

1. Introduction

In recent years, forest fires have been listed among the most devastating and prevalent
natural disasters worldwide, characterized by their abruptness, immense destructiveness,
extensive scope of harm, and challenges in emergency rescue operations [1,2]. From a
macroscopic perspective, forest fires have the potential to cause substantial economic and
societal losses. In the event of a major forest fire comparable to the 2020 Australian forest
fires, the economic losses are projected to surpass billions of US dollars, not to mention the
loss of lives of firefighters and civilians and the detriment to the development prospects
and values of the affected areas [3]. From a microscopic standpoint, forest fires pose a
threat to the habitat of numerous wildlife species and plants, resulting in the endangerment
of additional species. Furthermore, the primary components of smoke emitted by forest
fires include water and carbon dioxide. The substantial release of carbon dioxide not
only threatens the crucial forest carbon sink [4], but also elevates global warming [5].
Consequently, the prevention of forest fires holds tremendous significance.

Given the rapid spread of forest fires in areas with abundant oxygen and swift airflow,
early detection plays a critical role. Traditional manual inspection techniques for forest
fire detection have proven to be inefficient and costly, prompting a shift towards sensor-
based methods and satellite remote sensing. Smoke, gas, temperature, humidity, and
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integrated sensors are commonly employed to detect fires by measuring environmental
parameters [6–8]. However, in order to analyze these parameters, sensors must directly
sample combustion byproducts, necessitating their close proximity to potential fire sources.
While sensor-based detection systems are well-suited for identifying fires within confined
indoor spaces, they may not be suitable for vast areas or open spaces like forests due to
installation costs, maintenance requirements, and power limitations. On the other hand,
satellite remote sensing is effective in detecting large-scale forest fires but is constrained in
identifying initial small fires due to weather conditions and cloud cover [9].

Cameras are ubiquitous and widely utilized for object detection and target track-
ing [10]. Numerous approaches have been proposed for detecting fire or smoke using
conventional video surveillance cameras. When mounted on UAVs, such cameras can
also detect forest fires in remote areas [11–13]. Extensive research has been conducted on
vision-based fire detection.

The identification of forest fires primarily encompasses smoke identification and flame
identification. Smoke generally propagates more rapidly than the flames [14]. Smoke-
based method relies on examining specific characteristics associated with forest fires smoke.
Smoke serves as both a precursor and a byproduct of forest fire. This phenomenon is
particularly evident and pronounced during the initial stages of a forest fire. During the
early stages of forest fires, smoke often rises above the forest and disperses over a wide
area. This phenomenon makes it more feasible to detect such forest fires using UAVs [15].
Moreover, the smoke plume generated by a forest fire propagates over long distances and
lingers in the atmosphere for extended periods, exhibiting limited dispersion. Smoke is an
important sign for early fire detection because it spreads faster than flames and moves over
a wide area [16].

Monitoring smoke enables the early detection of forest fires and provides information
for predicting their developmental trends. Mounting cameras on drones for forest fire
detection has emerged as the most promising technology, integrating remote sensing
and various deep learning-based computer vision technologies [17,18]. Traditional video-
based forest fire identification does not predict early fires with ease due to the challenging
forest environment and constrained circuit ranges and difficulties in camera deployment.
Moreover, the coverage of a single camera is limited. Fire detection in large-scale forest
environments would necessitate substantial investments in financial, material, and human
resources. At present, technology falls short of providing comprehensive camera coverage
across entire forests. Fortunately, the development of UAVs has attained a more mature
stage, while video, image, and image processing technologies continue to advance [19,20].
UAV-based image analysis for forest fire smoke detection systems can effectively conduct
inspections of mountains and forests [21–23]. The UAV’s camera captures images or videos
of the mountains and forests, eliminating the cumbersome process of camera deployment
and reducing the allocation of manpower, material resources, and financial resources. Real-
time monitoring in the early stages of forest fire smoke becomes feasible, enabling the
timely conveyance of valuable information to relevant authorities [24,25]. The framework
of a fully automated UAV-based forest fire smoke detection system is depicted in Figure 1.

A UAV takes off and lands via a UAV Mobile Airport or a UAV Automated Field
Airport. Initially, the UAV conducts inspections of the forest following predetermined
routes, collecting image and video data of the mountainous terrain. Subsequently, the
UAV transmits the data to the Forest fire Analysis Platform, maintaining a continuous
interaction with the Cloud Control System Ground Station throughout the entire process.
Ground station personnel can monitor real-time images of the mountains and forests via
the onboard camera and issue control instructions to the UAV. The Forest fire Analysis
Platform then processes and analyzes the captured images. If smoke is detected, the Forest
fire Analysis Platform sends an alert to the Fire Department. Additionally, ground station
personnel can promptly provide fire-related information to the Fire Department as needed.
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In recent years, deep learning-based smoke detection algorithms have been proposed,
each showcasing promising outcomes. The prevailing smoke detection algorithms for
forest fires heavily rely on convolutional neural networks (CNNs). Examples include Faster-
RCNN [26], SSD [27], R-CNN [28], and the YOLO (You Only Look Once) series [29–32].
However, there are still some notable challenges that remain: (1) The variable flying
altitudes of UAVs pose significant alterations in the scale of the captured objects. (2) The
movement of the UAV across mountainous and forested areas causes a complex background
of images, in which the presence of trees, fluctuations in weather conditions, illumination
disparities, and the interference of clouds, fog, and other smoke particles make it worse.
(3) Ensuring detection accuracy often necessitates augmenting the number of network
layers, parameters, and calculations in extant models, but such augmentation inevitably
affects the detection system’s real-time performance. (4) Collecting authentic forest fire
smoke samples is also a challenge. The majority of the current samples are synthetically
generated, and issues pertaining to inadequate sample size and imbalanced datasets persist.

To meet these challenges, we propose a novel system for forest fire smoke detection and
notification that leverages an enhanced YOLOv5s model [33] and UAV imagery. Initially,
the network structure is optimized, and pre-trained weights are obtained through the
employment of transfer learning. Subsequently, after employing our enhanced model to
the actual datasets, accurate identification of smoke emanating from forest fires can be
achieved. The performance of the conventional YOLOv5s network is bolstered to facilitate
swift and accurate detection of forest fire smoke, and the findings are substantiated through
laboratory testing. The contributions of this study are summarized as follows:

1. We formulate the framework of a fully automated system for forest fire smoke detec-
tion, which is based on UAV images and deep learning network;

2. We use the K-mean++ method to improve the clustering of anchor boxes, substantially
diminishing the categorization error;

3. We enhance the YOLOv5s model by introducing an extra prediction head tailored
for small-scale smoke target detection, swapping out the original backbone with
a novel partial convolution (PConv) to improve computational efficiency, and by
incorporating Coordinate Attention, which enables the model to pinpoint regions of
interest in wide-ranging images, effectively filtering out clouds and similar distractors;

4. We employ data augmentation and transfer learning strategy to refine the model
construction and speed up the convergence of model training.

2. Related Works

Forest fires are a significant environmental threat, causing loss of biodiversity, alter-
ation of ecosystems, and impacting human lives and properties. Early detection is critical
for effective firefighting and minimizing damages. Smoke detection plays an indispensable
role in the early monitoring of forest fires. Its rapid dispersion, visibility, and integration
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with contemporary sensor technologies render it not only an effective complement but also
a potential substitute for flame monitoring. In this context, various forest fire smoke detec-
tion methods and systems have been developed. These methods include satellite-based
smoke detection, ground-based sensors for smoke detection, and UAV-based detection,
each with its unique approach, advantages, and limitations. Moreover, image processing
technology occupies a crucial position in the detection of forest fire smoke.

2.1. Comprehensive Approaches for Forest Fire Smoke Detection

Satellite-based smoke detection refers to the use of satellites to detect and monitor
smoke plumes resulting from forest fires. These systems typically employ remote sensing
technologies, utilizing sensors that can capture data in various spectrums, including opti-
cal [34] and thermal [35]. By leveraging space-based technologies, these systems provide
a unique vantage point for detecting and monitoring smoke from forest fires on a global
scale. These satellite-based smoke detection systems offer invaluable benefits in forest fire
management, especially in terms of wide-area coverage and the potential for early detection.
However, they are not without limitations, such as susceptibility to atmospheric conditions
and resolution constraints. The ongoing advancements in technology, particularly in AI and
machine learning, are set to mitigate these limitations and further enhance the effectiveness
of these systems.

Ground-based sensors designed for smoke detection consist of various sensor types
strategically deployed in forest areas. These networks primarily focus on detecting smoke
particles, a critical early indicator of forest fires. Optical smoke detectors, which operate
on light-scattering principles, and ionization detectors for detecting ion concentration
changes due to smoke, are commonly used [36,37]. Additionally, sensors for particulate
matter, carbon monoxide, and carbon dioxide are incorporated for enhanced detection
accuracy [38]. Kadir et al. [39] integrated commonly used sensors for fire detection, such as
temperature, smoke, haze, and carbon dioxide, to determine the location and intensity of
fire hotspots. This multi-sensor approach yields more accurate results than using a single
sensor. Ground-based sensor networks are typically wired systems with fixed sites, making
their deployment and connection relatively complex. Building upon this, some scholars
have researched wireless sensor networks (WSNs), which operate through interconnected
wireless communication nodes, thereby offering greater flexibility in terms of deployment
and coverage area. Wireless sensor networks (WSNs) consisting of interconnected sensors
capable of detecting temperature, smoke, and changes in humidity have been increasingly
used for early forest fire smoke detection. Benzekri et al. [40] proposed an early forest fire
detection system based on wireless sensor networks (WSNs), which collects environmental
data from sensors distributed within the forest and employs artificial intelligence models to
predict the occurrence of a forest fire. These sensors and networks offer continuous moni-
toring and can provide valuable data for fire prediction models. Nonetheless, maintenance
and energy consumption are challenging aspects of ground-based sensors.

Over the past decade, UAVs have seen an increase in their utilization due to their
advantages, such as flexibility, high resolution, and the quality of data acquired. UAVs
equipped with sensors and cameras offer a promising approach for forest fire detection.
These UAVs, outfitted with cameras, are adept at obtaining visual evidence of smoke
and flames in treacherous terrains. Yuan et al. [41] proposed a method for automatically
detecting forest fires in infrared images using UAVs. This algorithm employs brightness
and motion cues, combining image processing techniques based on histogram segmentation
and the optical flow method for flame pixel detection. Complementing this, the integration
of specialized gas sensors [42,43], such as those for detecting carbon dioxide or carbon
monoxide, enhances UAVs’ capability to discern and scrutinize the constituents of smoke.
These systems offer real-time data and high-resolution imagery and can access remote
areas. However, UAVs, characterized by their high-speed mobility and varying distances
of capture, often pose challenges for existing algorithms, such as difficulties in recognizing
small target smoke and distinguishing between target and background.
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To achieve faster and more accurate forest fire smoke detection, some scholars have
proposed the integration of multiple technologies to form comprehensive systems. Inte-
grated systems combining various technologies, such as satellite imagery, UAVs, sensor
networks, and image processing algorithms, are being explored to create comprehensive
fire detection systems. Peruzzi et al. [44] proposed an integrated fire detection system based
on audio and visual sensors, utilizing two embedded machine learning (ML) algorithms
running on low-power devices to identify and transmit the presence of forest fires. Muid
et al. [45] employed ground-based sensors and UAVs for forest fire detection and mon-
itoring, successfully collecting images and weather-related parameters from forests and
plains through an integrated system, thus playing a role in monitoring. These methods are
effective but can face delays in data processing and transmission. Also, outdoor sensors
may need regular maintenance and could have durability issues.

The amalgamation of UAV technology with cutting-edge image processing methods
has emerged as a current trend of significant interest. This integration capitalizes on the
UAVs’ capability to swiftly reach remote or otherwise inaccessible areas, while simulta-
neously employing advanced and superior image processing techniques to achieve the
real-time and precise detection of forest fire smoke. However, the challenges of detecting
small targets amidst complex backgrounds in smoke detection tasks impose stringent
demands on the performance of image processing algorithms employed in UAV-based
smoke detection. Additionally, distinguishing actual smoke from objects that resemble
smoke presents a significant hurdle. Therefore, image processing algorithms applied in
UAV-based smoke detection are of paramount importance.

2.2. Image Processing Approaches for Smoke Detection

The development of image processing algorithms has enabled the detection of forest
fires through cameras and other visual data sources. Techniques such as color analysis,
motion detection, and smoke pattern recognition are employed. However, these methods
can be prone to false alarms due to environmental factors, like fog or dust. In response
to this, numerous experts have conducted various studies. Smoke detection methods
based on image processing primarily fall into two categories: traditional image processing
techniques and deep learning-based image processing approaches.

2.2.1. Conventional Image Processing Approaches

Conventional image processing for smoke detection methods primarily rely on the
spectral characteristics of smoke. These methods include visual interpretation, multi-
threshold techniques, pattern recognition algorithms, and other similar methods. Visual
interpretation employs three spectral bands of a satellite sensor, representing red, green,
and blue channels, to generate true-color or false-color composite images, enabling manual
visual discrimination of smoke. For instance, the true-color RGB imagery synthesized from
MODIS bands 1, 4, and 3 has been used in conjunction with the false-color imagery com-
posed of bands 7, 5, and 6 [46]. For seasoned individuals, visual interpretation serves as an
effective technique for identifying smoke. However, this method has a significant drawback
in that it cannot automatically process vast amounts of data. The multi-threshold method
retrieves the localized optimal thresholds of reflectance or brightness temperature (BT)
from established spectral bands based on historical data. These thresholds are subsequently
amalgamated to eliminate cloud classes and certain ground objects, ultimately enabling
the identification of smoke. For example, Li et al. [47] proposed a targeted identification
approach using Himawari-8 satellite data, incorporating a connectivity domain distance
weight based on multi-threshold discrimination to detect fog beneath clouds. This method
exhibits high accuracy in the detection of sea and land fogs and, with limited error intro-
duction, can effectively discern some instances of fog beneath clouds. While this approach
can be effective in local areas, it poses challenges in determining the optimal threshold due
to the variability of spatio-temporal information. As a result, small smoke ranges are prone
to being overlooked, leading to a decrease in the promptness of fire alarms. In addition,
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Jang et al. [48] analyzed the variations in light scattering distributions of different colored
smokes, assessing the color classification methods of smoke particles entering the smoke
detectors to extract color information from the smoke, enabling the detection of fire smoke.
Nevertheless, this approach overlooks the fact that certain smoke colors (such as black or
gray) resemble the background environment (e.g., clouds and dust). The smoke detection
method that uses a pattern recognition algorithm is an image processing technique that
leverages the spectral features of smoke and typical ground objects to categorize smoke im-
ages and identify smoke pixels. Asiri et al. [49] developed a new feature space to represent
visual descriptors extracted from video frames in an unsupervised manner. This mapping
aims to provide better differentiation between smoke-free images and those depicting
smoke patterns. This method employed training samples from a few classes, such as cloud
and water, in addition to smoke. Despite its utility, the effectiveness and applicability of
these smoke detection methods may be diminished when applied to diverse and intricate
categories found in UAV imagery. This limitation becomes particularly evident in areas
such as mountains and forests, where only a limited number of standard ground object
categories are taken into account.

Most conventional image-based smoke detection algorithms utilize a pattern identifi-
cation process that involves manual feature extraction and classification, where features
are manually extracted and recognizers are designed. Following the extraction of candi-
date regions, static and dynamic smoke features are employed for smoke identification.
Extracting the most crucial smoke features is challenging, and the detection process is
relatively sluggish.

2.2.2. Deep Learning-Based Image Processing Approaches

In recent years, the domain of deep learning has witnessed notable advancements
owing to progress in hardware capabilities, the capacity to handle extensive datasets, and
substantial enhancements in network architectures and training methodologies. Deep
learning-based smoke detection algorithms can be classified into two-stage methods and
one-stage methods. Two-stage methods include well-known representatives, such as R-
CNN [28] and Faster R-CNN [26]. On the other hand, one-stage methods are exemplified
by algorithms like SSD [27] and the YOLO series [29–32]. The development of these deep
learning technologies has provided a solid foundation and technical support for UAV-based
forest fire smoke detection.

2.2.3. Deep Learning-Based Approaches for UAV-Based Smoke Detection

Numerous deep learning-based techniques have been utilized to discern smoke in
UAV-based scenarios. Alexandrov et al. [50] employed two one-stage detectors (SSD and
YOLOv2) as well as a two-stage detector (Faster R-CNN) for smoke detection purposes.
YOLOv2 outperformed Faster R-CNN, SSD, and traditional hand-crafted methods when
evaluated against a large dataset of genuine and simulated images. Ghali et al. [51] intro-
duced a novel approach based on model ensemble, combining EfficientNet and DenseNet
for accurately identifying and classifying forest fire smoke with UAV-based imagery.
Mukhiddinov et al. [52] proposed an early detection system for forest fire smoke using UAV
imagery, employing an enhanced variant of YOLOv5. Additionally, several methods for
small target detection in UAV-based settings have been proposed. Zhou et al. [53] devised
a small-object detector tailored specifically for UAV-based imagery, where the YOLOv4
backbone was modified to accommodate the characteristics of small-object detection. This
adaptation, combined with adjustments made to the positioning loss function, yielded
improved performance in small-object localization. Jiao et al. [54] proposed a UAV aerial
image forest fire detection algorithm based on YOLOv3. Initially, a UAV platform for
forest fire detection was developed; subsequently, leveraging the available computational
power of the onboard hardware, a scaled-down Convolutional Neural Network (CNN) was
implemented utilizing YOLOv3. While these approaches demonstrate promising outcomes
in object detection, they have yet to integrate real-time capabilities with high accuracy in the
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realm of forest fire smoke detection. Xiao et al. [55] introduced FL-YOLOv7, a lightweight
model for small-target forest fire detection. By designing lightweight modules and incor-
porating Adaptive Spatial Feature Fusion (ASFF), they enhanced the model’s capability
to detect targets of various scales and its real-time performance. However, this method
did not specifically target improvements for small-scale objects but rather improved the
overall accuracy of evaluation results through feature fusion. Additionally, the evaluation
metrics presented in their study were limited, lacking differentiated assessment indicators
for targets of varying scales.

3. Proposed Forest Fire Smoke Detection Model and Algorithm
3.1. Proposed Forest Fire Smoke Detection Model

This section discusses the proposed deep learning-based forest fire smoke detection
model. Through our model, small target smoke in mountains and forests can be identified
more accurately and quickly, so as to detect and prevent forest fires as early as possible.

The improved YOLOv5s architecture we propose is illustrated in Figure 2, and the
changes are framed by the solid green line. It comprises three primary components: the
backbone, the neck, and the prediction heads. The backbone network consists of FasterBlock
modules, designed based on partial convolution (PConv) that offers rapid memory access
capabilities. Additionally, we integrated a CA module at the end of the backbone, effectively
focusing the model’s attention on the foreground smoke targets and distinguishing them
from the background to further enhance feature extraction. Lastly, the model utilizes
four prediction heads, incorporating an additional small object detection head and a large
feature map to reinforce feature extraction for small-scale targets. This integration enables
the model to establish long-range dependencies and capture global contextual information
within the input image, allowing for an improved understanding of the semantic and spatial
relationships of objects, thus providing powerful foreground-background distinction and
small-scale smoke recognition capabilities.
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To more clearly demonstrate the distinctions between the method proposed in this
paper and the original YOLOv5s, we also included a comparative table of modules from
different methods, as shown in Table 1.

Table 1. Modules added in our proposed method compared to the original YOLOv5s.

Model SPPF PAN FPN Lightweight Backbone Design Coordinate Attention Small-Scale Detection Head

YOLOv5s
√ √ √

Ours
√ √ √ √ √ √

Note that the presence of the “
√

” indicates that the model includes the respective modules listed.

3.1.1. Original YOLOv5

Our proposed methodology builds upon the YOLOv5s model, a widely-utilized frame-
work for object detection. Figure 3 provides an overview of the YOLOv5 architecture, which
can be delineated into three primary components: the backbone network for extracting
features, the neck network for fusing features, and the head network for detecting the class
and location of the target through regression. The YOLOv5 architecture is characterized by
its straightforwardness and efficiency.

Remote Sens. 2023, 15, 5527 8 of 31 
 

 

To more clearly demonstrate the distinctions between the method proposed in this 
paper and the original YOLOv5s, we also included a comparative table of modules from 
different methods, as shown in Table 1. 

Table 1. Modules added in our proposed method compared to the original YOLOv5s. 

Model SPPF PAN FPN Lightweight Backbone Design Coordinate Attention Small-scale Detection Head 
YOLOv5s √ √ √    

Ours √ √ √ √ √ √ 
Note that the presence of the “√” indicates that the model includes the respective modules listed. 

3.1.1. Original YOLOv5 
Our proposed methodology builds upon the YOLOv5s model, a widely-utilized 

framework for object detection. Figure 3 provides an overview of the YOLOv5 architec-
ture, which can be delineated into three primary components: the backbone network for 
extracting features, the neck network for fusing features, and the head network for detect-
ing the class and location of the target through regression. The YOLOv5 architecture is 
characterized by its straightforwardness and efficiency. 

 
Figure 3. Structure diagram of the original YOLOv5 model. In the diagram, the notation “*x” sig-
nifies that the network comprises x Rex (X) modules. 

The YOLOv5 model incorporates adaptive image scaling and batch normalization of 
input image size to enhance its performance. The initial size of the anchor frame is auto-
matically determined by the model, and the preprocessing of the image data is conducted. 
During training, K-means clustering is employed to ascertain the optimal size of the an-
chor frame based on annotated samples. 

The backbone network of YOLOv5 comprises Conv and CBS modules, along with an 
SPP structure. The CBS module facilitates the extraction of feature information from the 

Figure 3. Structure diagram of the original YOLOv5 model. In the diagram, the notation “*x” signifies
that the network comprises x Rex (X) modules.

The YOLOv5 model incorporates adaptive image scaling and batch normalization
of input image size to enhance its performance. The initial size of the anchor frame
is automatically determined by the model, and the preprocessing of the image data is
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conducted. During training, K-means clustering is employed to ascertain the optimal size
of the anchor frame based on annotated samples.

The backbone network of YOLOv5 comprises Conv and CBS modules, along with an
SPP structure. The CBS module facilitates the extraction of feature information from the
images through convolutional operations. To tackle the issue of non-uniform image sizes,
an SPP layer is introduced to the backbone network.

The neck of YOLOv5 consists of a bottom-up Feature Pyramid Network (FPN) and a
top-down Path Aggregation Network (PAN) structure. The fusion of multi-scale features
from FPN and PAN empowers the feature map to encompass semantic and feature-based
information, thereby ensuring the precise identification of targets of varying sizes.

3.1.2. K-Means++ Methodology

YOLOv5s incorporates the utilization of anchor boxes into the procedure of detecting
objects. Anchor boxes are predefined bounding boxes with fixed sizes and aspect ratios. In
the training stage, initial anchor boxes are adjusted to align with those actual boundary
boxes, which enables models to undergo effective training and generate more precise
predictions. Consequently, the anchor parameters within the original YOLOv5s model
necessitate adaptation in accordance with the specific training requirements of diverse
datasets. Based on the distinctive attributes of the YOLOv5s model, it becomes imperative to
establish the width and height of nine clustering centers, which are subsequently employed
as the values for the anchor parameters within the network configuration file. K-means
clustering, renowned for its simplicity and efficiency, has been extensively employed in
the realm of clustering. Within the framework of YOLOv5s, the K-means methodology is
employed for obtaining a primary set of k anchor boxes. However, the K-means method
suffers from requiring predetermined initial clustering centers, making it arduous to
determine these values. To overcome this limitation, the K-means++ method, characterized
by its enhanced selection of initial points, is employed to acquire the initial primary anchor
boxes, which substantially mitigates the classification error rate, thereby facilitating the
attainment of an anchor box that is appropriate for the detection of small-scale smoke.

The procedure for selecting an anchor box utilizing K-means++ method is as follows:
(1) Randomly select a central coordinate to be the primary center from the given

dataset X.
(2) Calculate the Euclidean distance and closest center between each sample. The

probability of samples being chosen as the subsequent center P(x) is determined using
Equation (1):

P(x) =
E
(
x)2

∑x∈X E(x)2 (1)

where E(x) represents the Euclidean distance and x ∈ X with probability P(x).
(3) Determine the subsequent clustering center by employing random turntable selec-

tion according to the probability.
(4) Repeat steps (1)–(3) until k clustering centers are confirmed. The value of k can

be defined.

3.1.3. The Design of Backbone

In the original YOLOv5’s backbone network, the utilization of conventional convolu-
tional CBS modules leads to a considerable redundancy in the intermediate feature map
computation, resulting in increased computational costs. To address this, we introduced the
FasterBlock module, drawing inspiration from the concept of FasterNet [56], to serve as the
backbone network for extracting features from UAV images. We employed the innovative
technique of partial convolution (PConv), which enables a more efficient extraction of
spatial features by reducing redundant computations and memory access simultaneously.

The PConv technique offers a computationally efficient solution by applying filters
exclusively to a limited set of input channels, while leaving the remaining channels un-
touched. Compared to standard convolution, PConv achieves lower floating-point opera-
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tions (FLOPs), yet surpasses depthwise/group convolution in terms of FLOPS. The design
of PConv is depicted in Figure 4, which leverages redundancy within the feature maps and
selectively applies regular convolution (Conv) solely on a subset of input channels. It ex-
clusively applies regular Convolution to a segment of the input channels for spatial feature
extraction, leaving the remaining channels unaffected. For contiguous or regular memory
access, PConv treats the first or last continuous “cp” channels as representatives of the entire
feature maps for computation. Without loss of generality, we assumed that the input and
output feature maps possess an equal number of channels. PConv exhibits superior com-
putational efficiency compared to regular convolution, albeit being more computationally
intensive than Depthwise convolution/Group convolution (DWConv/GConv). Essentially,
PConv maximizes the computational capacity of the device it operates on. Therefore, the
FLOPs of a PConv are only:

FLOPsPConv = h× w× k2 × c2
p (2)

where h and w are the width and height of the feature map, respectively; k is the size of the
convolution kernel; and cp is the number of channels operated by conventional convolution.
So, the FLOPs of PConv is only 1

16 of a regular convolution with a typical partial ratio
r = cp

c = 1
4 .
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Additionally, PConv has a smaller amount of memory access:

MemoryAccessPConv = h× w× 2cp + k2 × c2
p ≈ h× w× 2cp (3)

which is only 1
4 of a regular convolution for a typical partial ratio r =

cp
c = 1

4 . And the
remaining (c-cp) channels are not involved in the calculation; thus, there is no need to
access the memory.

Furthermore, we employed a 3 × 3 convolution kernel. Two 3 × 3 kernels and
one 5 × 5 kernel possess an equivalent receptive field, while three 3 × 3 kernels and
one 7 × 7 kernel share the same receptive field. In situations where the receptive field
remains constant, utilizing three 3 × 3 convolution kernels necessitates fewer parameters
compared to employing a single 7 × 7 convolution kernel. This reduction in parameters
undoubtedly diminishes model complexity and accelerates training. Despite having an
identical receptive field, the 3 × 3 convolution exhibits greater nonlinearity and enables the
representation of more intricate functions.
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Consequently, we devised the FasterBlock module by leveraging PConv. Figure 5
illustrates the structure of FasterBlock, where PConv is employed to reduce computational
redundancy and memory access. The functioning of FasterBlock is demonstrated in Figure 5
as well. We used a BN layer and a ReLU layer between the Convolutions. The benefit of
BN is that it can be incorporated into adjacent Conv layers by means of structural reparam-
eterization for faster inference. By incorporating FasterBlock into the YOLOv5 backbone,
we replaced certain CSP modules while preserving the original YOLOv5 architecture.
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3.1.4. Detection Head for Small Smoke Objects

Owing to the abundant quantity of diminutive entities present within the dataset of
forest fire smoke, the efficacy of the YOLOv5 detection layer in discerning these minute
targets is deemed inadequate. Consequently, several optimizations were implemented. The
K-means++ clustering algorithm was employed to form clusters of anchor boxes, yielding
six object boxes for each anchor box type. Additionally, a reduced anchor preselector and
a novel detection layer were incorporated into the head module, aimed at identifying
shallow feature maps that encompass relatively comprehensive feature information. The
parameters for the reduced anchor preselector are [5,6,8,11,14,15], which indicate the sizes
of the anchor boxes used: 5 × 6, 8 × 14, and 15 × 11. These modifications guarantee a
diminished receptive field and an enhanced aptitude for recognizing small targets. These
alterations fortify the model’s capability to detect diminutive objects, while simultaneously
upholding the accuracy in identifying general objects.

3.1.5. Coordinate Attention Mechanism

It has been demonstrated that the incorporation of the channel attention mechanism
yields significant performance enhancements to YOLOv5 [33]. However, the utilization of
such a mechanism can lead to the issue of neglecting spatial location information within
high-level feature maps. Prominent attention mechanisms in this context include SE
(Squeeze and Excitation) [57] and CBAM (Convolutional Block Attention Module) [58].
Among these, SE solely focuses on reassessing the significance of each channel by modeling
channel relationships, thus overlooking the significance of location message and spatial
structure, which are essential for generating spatially selective attention maps. On the
other hand, CBAM encodes global spatial information through channel-wise global pool-
ing, thereby compressing the global spatial information into a single channel descriptor.
Consequently, this approach has difficulties in preserving the spatial location message of
smoke within those channels. Consequently, preserving the spatial location information of
objects within the channel becomes challenging.

The CA (Coordinate Attention) [59] module considers both channel relationships
and location information within the feature space. Its essence lies in encoding channel
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relationships and long-term dependencies through precise location information. The
CA module decomposes attention into the X-direction and Y-direction, employing one-
dimensional feature encoding to establish long-range point-space location relationships,
thus acquiring more accurate location information. Consequently, direction-sensitive and
location-sensitive feature maps are formed via feature encoding, which enhances the
representation of the target of interest by incorporating features with precise location
information. Figure 6 illustrates the process, which can be divided into two steps.
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(1) Coordinate information embedding
The typical method of encoding the spatial location of smoke images through channel

attention involves global pooling. This involves pooling low-level features with abundant
spatial location information to acquire high-level semantic features. However, this approach
is often unable to retain global spatial location information. To address this limitation, we
used two one-dimensional feature encodings to decompose the global pooling. This enables
greater interaction between distant points and better preserves spatial location information.

The pooling operation is conducted separately in the horizontal and vertical directions,
namely, average pooling along the x-axis and average pooling along the y-axis.

Denote H as the height of the input feature map X and W as its width. Coordinate
attention encoding is applied to each channel (denoted by c) of X in both the x-axis and
y-axis directions:

Zc =
1

H ×W ∑H
i=1 ∑W

j=1 xc(i, j) (4)

where xc is the feature map of the c-th channel.
Then, the output of the c-th channel with height h in the horizontal direction (x-axis

direction) after pooling is characterized by:

zh
c (h) =

1
W ∑0<i<W xc(h, i) (5)

Similarly, the output of the c-th channel with the weight ω in the vertical direction
(y-axis direction) can be written as:

zω
c (ω) =

1
H ∑0<j<H xc(j, ω) (6)

The two pooling methods mentioned above operate along different directions of the
same dimensional features, and the resulting aggregated features have some sensitivity
to all values in both the x-axis and y-axis directions of the feature map. The two trans-
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formations were employed to ensure that the attention module captures the long-range
dependencies of the features along one spatial dimension while retaining the exact location
message of the features in the other spatial dimension. This approach helps the network to
more accurately identify the relevant information.

(2) Coordinate attention generation
The method described in Section 1 is used to decompose and pool the feature map

from two dimensions, resulting in pooled features with a larger perceptual field that fully
utilizes the information near the foreground target of the smoke image. This pooling
method allows distant points on the same dimensional features to maintain their mutual
relationships. To integrate these transformed features into the neural network, final features
with weights need to be generated.

After embedding the information, the information generation process consists of
information fusion and convolutional transformation. Information fusion involves com-
bining all the information from different regional features, followed by convolution, batch
normalization, nonlinear activation, and other operations, as shown in Equation (7):

f = δ
(

F1([zh, zω ])
)

(7)

where
[
zh, zω

]
is the stitching and fusion of two feature maps of different orientations along

the spatial dimension; F1 denotes the convolution; δ is the nonlinear activation function;
and f ∈ R

C
r ×(H+W) is the intermediate feature map where spatial information is encoded

in the horizontal and vertical directions, where r is the reduction rate of the regulatory
dimension, and to reduce the dimensionality of the feature vector and improve the efficiency
of network training, an appropriate ratio r is chosen to reduce the number of channels. The
intermediate feature maps f along the x-axis and y-axis directions are decomposed into f h

and f w, which correspond to the two dimensions of the horizontal and vertical directions
of the feature map, respectively. The convolutional transform and nonlinear activation are
performed on the two tensors, as shown in Equations (8) and (9), respectively:

gh = σ
(

Fh( f h)
)

(8)

gw = σ(Fw( f w)) (9)

where Fh and Fw are the 1*1 convolutional change operations, σ is the Sigmoid activation
function, and the outputs gh and gw are the attention weights of the horizontal and vertical
directions (x-axis and y-axis directions) of the input X, respectively.

Ultimately, the output of the feature xc(i, j), which represents the height and width
of input X on the c-th channel is i and j, after the coordinate attention module, can be
expressed as Equation (10).

yc(i, j) = xc(i, j)× gh
c (i)× gw

c (j) (10)

By multiplying the input feature map X with the attention weights gh and gw along
the x-axis and y-axis directions, respectively, we can generate the output feature map with
attention weights across the width and height dimensions.

We added a CA module to the YOLOv5 model to increase its capability to cap-
ture smoke features from complex backgrounds and improve the attention to the small-
scale smoke.

3.2. Transfer Learning and Overview of the Algorithm Flow

The utilization of a deep neural network model necessitates a substantial volume of
data to achieve commendable performance. Nevertheless, the limited sample size of the
initial fire dataset may render direct model training from scratch ineffective in producing
satisfactory detection outcomes.
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To address this concern, we employed transfer learning as a means to capitalize on
acquired knowledge from a known domain and apply it to the target domain. Fine-tuning,
a technique within the realm of transfer learning, entails retraining a pre-trained network
on a recognized dataset using the target dataset, with the pre-trained model serving as the
initialized model. The resultant model is subsequently fine-tuned on the target dataset to
enhance its performance.

In the context of this investigation, we employed transfer learning to train a model
tailored to detect small-scale forest fire smoke, with the objective of refining detection
accuracy. Specifically, we trained a model for forest fire smoke detection using the origi-
nal dataset and subsequently employed it to fine-tune a reduced-scale forest fire smoke
training set. This process yielded a small-scale forest fire smoke detection model exhibiting
improved performance.

To commence, we employed a pre-trained deep learning model based on the publicly
accessible Fire_Detection dataset [60] to construct an innovative transfer learning model.
Subsequently, we established suitable hyperparameters for the model and defined the
training cost function as a weighted summation of the training loss, validation loss, and
deep feature distance between the training and validation sets. Lastly, the optimal transfer
learning model was ascertained through layer-by-layer training and validation.

We amalgamated the backbone design, the detection head specialized for small-scale
smoke, and the CA module into the YOLOv5s model, thus creating an enhanced version
known as the improved YOLOv5s. The whole process of forest fire smoke detection,
namely, the improved YOLOv5 model, through the utilization of transfer learning, is
visually depicted in Figure 7.
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4. Dataset and Model Evaluation
4.1. Dataset
4.1.1. Data Acquisition

In comparison to well-established image identification tasks, such as face recognition,
the availability of datasets for smoke detection is currently limited. The existing public
datasets for smoke primarily consist of the fire dataset established by the University of
Salerno in 2012 and the dataset published on the official website of Keimyung University
in South Korea. As there is a scarcity of datasets specifically designed for forest fire
smoke detection, we undertook the collection and creation of a genuine forest fire smoke
dataset. However, acquiring authentic forest fire smoke images proves challenging, even
in densely forested regions. Therefore, we primarily utilized the existing camera-based
forest fire smoke dataset [61], supplemented by forest fire smoke images captured from
aerial perspectives using web crawlers. Our dataset comprises 1474 instances of forest fire
smoke photos and 1080 instances of non-forest fire smoke photos. In non-forest fire smoke
images, a significant number of smoke-like objects, such as clouds and snow, are present.
Following comprehensive training, the model possesses an exceptional screening capability
to exclude interference from clouds and snow, thereby enhancing its ability to detect smoke
accurately. We resized these photos to a resolution of 640 × 640 to serve as input into the
network. Figure 8 showcases a selection of sample images from our dataset. The blue box
represents the ground truth for the target smoke, which is the annotation bounding box.
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4.1.2. Data Augmentation

The primary aim of data augmentation is to expand the dataset and bolster the
model’s robustness to images stemming from various settings. Researchers have utilized
both photometric distortions and geometric transformations for this purpose. To address
photometric distortion, we manipulated the hue, saturation, and value of the images.
Geometric distortion was handled through the introduction of random scaling, cropping,
translation, shearing, and rotation. Additionally, there exist several distinctive techniques
for data augmentation. For example, MixUp [62], CutMix [63], and Mosaic [32] have been
proposed, employing multiple images for data augmentation. MixUp selects two training
samples at random and performs a weighted summation on them, while ensuring that the
labels are correspondingly adjusted. CutMix utilizes a segment of another image to cover
the occluded region, instead of employing a zero-pixel “black cloth” for occlusion. Mosaic
combines four images, thereby introducing significant diversity in the object’s background.
Batch normalization estimates the activation statistics of four different images at each layer.

In our method, we employed a combination of MixUp, Mosaic, HSV, and traditional tech-
niques, such as rotation, displacement, scaling, cropping, and flipping for data augmentation.

To demonstrate the data augmentation effect, selected examples are provided as shown
in Figure 9.
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techniques, including rotation, displacement, scaling, cropping, and flipping. The green boxes rep-
resent the ground truth for the target smoke, which are the annotation bounding boxes. 

Figure 9. Augmented data. (a–d) Original images; (e) Mosaic; (f) MixUp; (g) HSV; and (h) traditional
techniques, including rotation, displacement, scaling, cropping, and flipping. The green boxes
represent the ground truth for the target smoke, which are the annotation bounding boxes.
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4.2. Model Evaluation Metrics

Based on previous studies [10,13,52], the performance of the model was assessed
utilizing the evaluation criterion of PASCAL VOC in this study, which is extensively
employed in target detection tasks. The evaluation metric employed by PASCAL VOC is the
mean average precision (mAP). To compute mAP, precision and recall are computed. The
precision of a classifier can be determined based on the frequency at which it successfully
detects a smoke target. On the other hand, recall represents the proportion of correct
predictions in relation to the total number of ground truths, thereby quantifying the
model’s capability to recognize significant instances. The following formula is utilized for
calculation [10,13,52]:

Precision = TP/(TP + FP)

Recall = TP/(TP + FN)

AP =
∫ 1

0 P(r)dr

mAP =
C
∑

i=1
APi/C

In the aforementioned equations, TP denotes the quantity of accurately identified
smoke regions, while FP denotes the count of false positives that arose while non-smoke
areas were erroneously identified as smoke. FN, on the other hand, signifies the count
of false negatives that happens while genuine smoke regions were erroneously classified
as non-smoke regions. AP denotes the area enclosed by the precision and recall curve.
The mean average precision (mAP) denotes the average value of the AP scores across all
categories. The C in the aforementioned mAP formula represents the number of categories
in the object detection task. Given that this study focuses exclusively on a single category,
namely, forest fire smoke, C = 1, making mAP equivalent to AP.

Furthermore, we employed the widely utilized Microsoft COCO metrics in object
detection tasks to evaluate the detection performance of forest fire smoke across various
scales. A comprehensive analysis of the results was conducted.

Finally, the evaluation metrics of this paper are presented in Table 2.

Table 2. Microsoft COCO criteria—commonly used in object detection task for evaluating the model
precision and recall across multiple scales. Area is represented by the number of pixels.

Metrics Details

Precision TP/(TP+FP)
TP/(TP+FN)Recall

AP50 AP at IoU = 0.5
AP75 AP at IoU = 0.75

AP50:95 AP mean values for different IoU thresholds between 0.5 and 0.95
APS AP50 for small objects: area < 322

APM AP50 for medium objects: 322 < area < 962

APL AP50 for large objects: area > 962

5. Experimental Results and Discussion
5.1. Model Training Environment

All experiments were run in our lab using an Intel(R) Core(TM) i7-10750H CPU
(2.60 GHz CPU, 16 GB RAM) and an NVIDIA GeForce RTX 2070 (8 G video memory).
Model training and testing were conducted in the PyTorch framework. Both model training
and testing were performed using GPUs to accelerate the computation.

The experimental settings in this study are shown in Table 3. Table 4 shows the training
parameters for the forest fire smoke detection model. The forest fire smoke dataset was
divided into three sets with a ratio of 8:1:1. This means that 80% of the data was used for
training the model, 10% was used for validating and fine-tuning the model during training,
and the remaining 10% was reserved for evaluating the final performance of the trained
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model. In addition, the dataset was enhanced with data for the training set, validation set,
and test set, after the allocation was completed. Details of the forest fire smoke dataset are
shown in Table 5.

Table 3. Experimental conditions.

Experimental Environment Details

Operating system Windows 10
Pycharm 2022.1.3Compiler

Programming language Python 3.6
Deep Learning Framework Pytorch 1.5.1

GPU model NVIDIA GeForce RTX2070 8 GB
CUDA version 12.0

Central Processing Unit Intel(R) Core(TM) i7-10750H CPU

Table 4. Training parameters of the forest fire smoke detection model.

Training Parameters Details

Epochs 300
8Batch size

Image size 640 × 640
Optimizer SGD

Number of workers 0

Table 5. Details of the dataset.

Dataset
Number of Images

Train Val Test

Forest fire Smoke 1180 147 147
Non-Smoke 864 108 108

5.2. Qualitative Visualization of the Detection Results

To begin with, we qualitatively visualized the application of the proposed method in
the detection of fire smoke. Within the test set of the forest smoke dataset, we randomly
selected four images for medium- and large-sized smoke detection, and four images for
small-sized smoke detection. These eight images included forest fire smoke blown from
different directions in various scenes and also contained a significant amount of smoke-like
distractors, such as clouds and snow. The improved YOLOv5s model yielded similarly
high-quality results for both medium- and large-sized (a) and small-sized (b) smoke images,
as shown in Figure 10.

Figure 10 demonstrates the effectiveness of the proposed forest fire smoke detection
method, capable of performing smoke detection in wide-ranging forest scenes. In these
qualitative experiments, we used smoke of various scales for comprehensive detection and
achieved commendable results, showing our algorithm’s proficiency in detecting smoke of
different sizes. Moreover, the test images included numerous distractors, such as clouds
and snow, and the detection outcomes indicate that our method can effectively filter out
interference from such smoke-like objects. Overall, our proposed method for forest fire
smoke detection proves that it is capable of accurately identifying relatively smaller regions
of fire smoke in complex environments with the presence of interfering elements.
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5.3. Comparative Experiments
5.3.1. Comparative Experiments on Attention Mechanisms

In this manuscript, we undertook a comparative analysis of the three prevalent atten-
tion mechanisms, namely, SE, CBAM, and ECA (Efficient Channel Attention) [64], with
the CA module we proposed, in the context of identification missions. The outcomes of
this investigation were tabulated in Table 6 and Figure 11. It is worth noting that the
aforementioned three attention mechanisms align with the CA module in terms of their
strategic integration within the YOLOv5s. Compared with the original YOLOv5s model,
the AP50 of SE, CBAM, ECA, and CA modules were increased by 0.9, 0.9, 2.1, and 2.1 points,
respectively. ECA and CA modules achieved the same AP50 value of 94%, but ECA was
much weaker than CA in detecting small target smoke. The AP50, APS, and APM indicators
of CA module were the highest in this attention mechanism experiment, and APL was also
improved by 1.3 points compared to the original model. From the results shown in Table 6
and Figure 11, we see that the effect of CA is the most significant and comprehensive.

Table 6. Effects of different attention mechanisms on network performance.

Model SE CBAM ECA CA Precision Recall AP50 APS APM APL

YOLOv5s

88.2 90.5 91.9 29.6 54.2 62.9√
89.3 90.5 92.8 32.6 54.5 65.3

64.9
√

89.6 93 92.8 33.9 54.8√
93.7 93.2 94 27.3 52.1 65√
94.5 92.6 94 34 55 64.2

Note that Precision, Recall, AP50, APS, APM, and APL are all shown as percentages. The best figure of each metric
is highlighted in bold. The presence of the “

√
” indicates that the model includes the respective modules listed.

We used heat maps to visualize the output feature maps for adding different attention
mechanisms, as shown in Figure 12. For images with complex environment and interference
of smoke-like objects, SE and CBAM sometimes fail to focus on small target smoke from
the cluttered background. Although ECA module can pay attention to small target smoke,
its ability to exclude external interference is not as good as that of the CA module, and the
focus is too messy. Based on the presented heat map results, the network module employing
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the Channel Attention (CA) mechanism demonstrates superior accuracy in detecting the
crucial components of forest fire smoke in comparison to the other three mechanisms.
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Figure 12. Heat maps for the different attention modules: (a,b) original image; (c,d) SE; (e,f) CBAM;
(g,h) ECA; and (i,j) CA. The red area in the image represents the region of attention focus when the
network model predicts the image type. The intensity of the color indicates the degree of attention
gathered, with darker shades indicating a higher level of attention.

5.3.2. Comparative Experiments on Backbone Design

In order to verify the improvement of model training speed and performance by our
proposed backbone design, we conducted an experimental comparison of the YOLOv5
models using different backbones, and the results are shown in Table 7. When using the
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backbone we designed, the parameters of the model dropped from 6.11 to 6.02, the GFLOPS
dropped from 15.8 to 12.8, the image detection time dropped from 12.7 ms to 12.3 ms, and
the FPS increased from 78.7 to 81.3. By effectively reducing the network’s dimensions and
parameter count, the model successfully improves the speed of detection and FPS. This
ensures that the model meets the real-time requirements of the actual detection process.
Compared to the original YOLOv5s, the AP50, APS, APM, and APL of the model are
increased by 0.9, 3.6, 1.5, and 1.2 points, respectively. The result shows that using our
backbone can not only improve AP metrics, but also reduce model size and improve
model speed.

Table 7. Effects of different backbones on the YOLOv5 network performance.

Baseline Backbone Param/M GFLOPs Speed GPU (ms) FPS AP50 APS APM APL

YOLOv5s
CSPDarknet-53 6.11 15.8 12.7 78.7 91.9 29.6 54.2 62.9

Ours 6.02 12.8 12.3 81.3 92.8 33.2 55.7 64.1

Note that AP50, APS, APM, and APL are all shown as percentages. The best figure of each metric is highlighted
in bold.

5.3.3. Comparative Experiments of Different Models

In order to comprehensively investigate the performance of the improved YOLOv5s
method we proposed in Section 3.2, we conducted a comparative analysis with sev-
eral prominent single-stage object detection methods, namely, SSD, YOLOv3, YOLOv4,
YOLOv5, YOLOv7, and YOLOv8s. We employed an identical set of training and testing
images from our customized dataset. The detection outcomes are presented in Table 8
and Figure 13. Among all models evaluated, our proposed model achieved the highest
scores of 96% in AP50 and 57.3% in AP50:95, with a small size of 11.1 M parameters, the
fewest floating-point operations at 13.3 GFLOPs, and a reduced average detection time
(Speed GPU) of 13 ms. In terms of detection accuracy, our model demonstrated superior
performance, even surpassing the currently popular YOLOv7 and YOLOv8. The speed of
our model is much better than that of SSD, YOLOv3, YOLOv4, YOLOv7, and YOLOv8s,
and it is basically the same as the original YOLOv5s. FPS is also on par with YOLOv5s,
substantially improving average precision for forest fire smoke with little loss in speed.
The YOLOv5s model boasts the smallest size and the shortest detection time, yet its overall
accuracy lags behind. Our method outperformed the other methods.

Table 8. Detection results for some mainstream object detection networks.

Model AP50 AP50:95 Param/M GFLOPs Speed GPU (ms) FPS

SSD 86.2 52.4 26.15 294.8 24 41.7
YOLOv3 90.2 54.4 61.5 154.5 41.8 23.9
YOLOv4 91.1 56.6 64.36 148.2 44.5 22.5
YOLOv5s 91.9 56.2 6.11 15.8 12.7 78.7
YOLOv7 95.1 57.1 37.2 105.1 28.4 35.2
YOLOv8s 94.2 57 11.2 28.3 13.8 72.4

Ours 96 57.3 11.1 13.3 13 76.9
Note that AP50, AP75, AP50:95, APS, APM, and APL are all shown as percentages. The figures of our model are
highlighted in bold.

This is due to the small size of many forest fire smoke targets, some of which are easily
confused with clouds and other smoke-like objects due to color and morphology, making it
difficult for general object detection methods to detect them. Consequently, conventional
object detection methods encounter challenges in detecting such targets. In contrast, our
proposed approach adeptly handles detection tasks encompassing considerable disparities
in object sizes. Upon the incorporation of the CA mechanism and the novel small target
detection head, the identification accuracy for smoke of varying sizes is significantly
augmented, thereby underscoring the effectiveness of these modules in enhancing the



Remote Sens. 2023, 15, 5527 23 of 31

network’s detection precision. Simultaneously, the design of the backbone enhances the
model’s speed performance. In comparison to the YOLO series algorithms, SSD manifests
limitations in detecting small-sized smoke. Conversely, our proposed algorithm accurately
discerns smoke of all sizes, particularly the diminutive instances. Moreover, in comparison
to other algorithms, it demonstrates a noteworthy enhancement in target identification
confidence.
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We choose three small-scale smoke images for experimental detection using the im-
proved YOLOv5s algorithm we proposed and other mainstream algorithms. Figure 14
illustrates a visual representation of the test results for each method employed in the
evaluation. From the third column images, it can be seen that the SSD, YOLOv3, YOLOv4,
and original YOLOv5 models are not accurate enough for the location of small target
smoke with low confidence, and their detection ability for small target smoke is weak.
Our model achieves a good localization and detection for smoke of different sizes and
directions in UAV images and has the highest confidence among all models. Based on
empirical investigations, the proposed approach demonstrated its efficacy in mitigating
erroneous detections, facilitating timely suppression, and enabling prompt response du-
rations, irrespective of the dimensions, orientation, or configuration of forest fire smoke.

Remote Sens. 2023, 15, 5527 23 of 31 
 

 

YOLOv8s 94.2 57 11.2 28.3 13.8 72.4 
Ours 96 57.3 11.1 13.3 13 76.9 

Note that AP , AP , AP : , AP , AP , and AP  are all shown as percentages. The figures of our 
model are highlighted in bold. 

 
Figure 13. Line graph of FPS metrics and AP metrics for various algorithms. The blue line represents AP , while the orange line indicates FPS. 

We choose three small-scale smoke images for experimental detection using the im-
proved YOLOv5s algorithm we proposed and other mainstream algorithms. Figure 14 
illustrates a visual representation of the test results for each method employed in the eval-
uation. From the third column images, it can be seen that the SSD, YOLOv3, YOLOv4, and 
original YOLOv5 models are not accurate enough for the location of small target smoke 
with low confidence, and their detection ability for small target smoke is weak. Our model 
achieves a good localization and detection for smoke of different sizes and directions in 
UAV images and has the highest confidence among all models. Based on empirical inves-
tigations, the proposed approach demonstrated its efficacy in mitigating erroneous detec-
tions, facilitating timely suppression, and enabling prompt response durations, irrespec-
tive of the dimensions, orientation, or configuration of forest fire smoke. 

   
 (a)  

   

 (b)  

Figure 14. Cont.



Remote Sens. 2023, 15, 5527 24 of 31Remote Sens. 2023, 15, 5527 24 of 31 
 

 

   
 (c)  

   
 (d)  

   
 (e)  

   

 (f)  

Figure 14. Prediction results on the test dataset. (a) Original images; (b) SSD; (c) YOLOv3; (d) 
YOLOv4; (e) YOLOv5s; and (f) our proposed method (Improved YOLOv5s). The red labeled boxes 
in all figures indicate the smoke targets identified by various smoke detection algorithms. The blue 
boxes represent the ground truth annotations for each smoke instance. The data provided within 
these labeled boxes represents the confidence levels assigned to each smoke target by the respective 
detection algorithms. 

5.4. Ablation Experiments 
To assess the impact of the design of the backbone proposed in Section 3.1.3 the small-

scale smoke detection head proposed in Section 3.1.4, and the CA module proposed in 
Section 3.1.5 on the precision and velocity of the YOLOv5s, ablation experiments were 
conducted to validate their efficacy. To enhance readability, we introduced abbreviations 
for the method presented in Section 3.2. Specifically, “BD” represents “Backbone Design” 
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Figure 14. Prediction results on the test dataset. (a) Original images; (b) SSD; (c) YOLOv3;
(d) YOLOv4; (e) YOLOv5s; and (f) our proposed method (Improved YOLOv5s). The red labeled
boxes in all figures indicate the smoke targets identified by various smoke detection algorithms. The
blue boxes represent the ground truth annotations for each smoke instance. The data provided within
these labeled boxes represents the confidence levels assigned to each smoke target by the respective
detection algorithms.

5.4. Ablation Experiments

To assess the impact of the design of the backbone proposed in Section 3.1.3 the small-
scale smoke detection head proposed in Section 3.1.4, and the CA module proposed in
Section 3.1.5 on the precision and velocity of the YOLOv5s, ablation experiments were
conducted to validate their efficacy. To enhance readability, we introduced abbreviations
for the method presented in Section 3.2. Specifically, “BD” represents “Backbone Design”,
“SDH” stands for “Small-scale Detection Head”, and “CA” signifies “Coordinate Attention”.

Eight ablation experiments were performed, namely, YOLOv5s, YOLOv5s + back-
bone design (YOLOv5s + BD), YOLOv5s + small-scale detection head (YOLOv5s + SDH),
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YOLOv5s + CA, YOLOv5s + backbone design + small-scale detection head (YOLOv5s + BD +
SDH), YOLOv5s + backbone design + CA (YOLOv5s + BD + CA), YOLOv5s + small-scale
detection head + CA (YOLOv5s + SDH + CA), and YOLOv5s + backbone design + small-
scale detection head + CA (YOLOv5s + BD + SDH + CA), referred to as Experiments 1–8,
respectively. Experiment 1 exclusively trained the original YOLOv5s model. Experiments
2–4 involved training the model with a single improvement added to the original YOLOv5s.
Experiments 5–7 entailed training the YOLOv5s model with a combination of two im-
provements. In the final experiment, all improvements, including the backbone design,
small-scale smoke detection head, and CA module, were incorporated into the model.
Table 9 and Figure 15 presents the comparative results of the ablation experiments.

Table 9. Comparison results of the ablation experiments.

Experiment Number Model AP50 AP75 AP50:95 APS APM APL

1 YOLOv5s 91.9 53.8 56.2 29.6 54.2 62.9
2 YOLOv5s + BD 92.8 59.7 56.3 33.2 55.7 64.1
3 YOLOv5s + SDH 93 61 56.4 36.2 57.1 63.9
4 YOLOv5s + CA 94 61.7 56.7 34 55 64.2
5 YOLOv5s + BD + SDH 92.8 54.9 56.1 41.3 51.2 65.9
6 YOLOv5s + BD + CA 95.2 57.3 56.6 40.8 55.9 65.2
7 YOLOv5s + SDH + CA 92.1 55.3 55.4 37 52.7 62.9
8 YOLOv5s + BD + SDH + CA 96 64.5 57.3 42 57.8 65.3

Note that AP50, AP75, AP50:95, APS, APM, and APL are all shown as percentages. The best figure of each metric is
highlighted in bold.
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The experimental results show that replacing the backbone of YOLOv5s, adding the
detection head for small-scale smoke and adding CA module to the model improve the
performance of the model. Experiments 4, 6, 7, and 8 (all experiments containing the
addition of the CA module) show that the CA module can improve the AP50, AP75, and
AP50:95 of the model. Experiments 3, 5, 7, and 8 (all experiments including adding the
detection head for small-scale smoke) show that the new small target smoke detection head
can improve the APS of the model, that is, improve the ability of the model to identify
small-size smoke.

5.5. Extended Experiments

In order to demonstrate the superiority of the model proposed in this paper for small
object detection tasks, extended experiments were conducted on the DOTA dataset [65].
The DOTA dataset consists of 2806 aerial images from various sensors and platforms,
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containing small objects of various scales, orientations, and shapes. The training set contains
1411 images, the validation set contains 458 images, and the test set includes 937 images,
with a total of 15 categories, namely, planes, ships, storage tanks, baseball diamonds, tennis
courts, basketball courts, sports fields, harbors, bridges, large vehicles, small vehicles,
helicopters, roundabouts, soccer fields, and swimming pools. Given the abundance of
small-scale objects within the DOTA dataset, the CA module and the enhanced small object
detection head we proposed in this article significantly improve the model’s detection
capabilities. The CA module, by concentrating on salient feature channels, aids the model
in focusing on the most informative attributes for classification. Concurrently, the specially
designed small object detection head, with its optimized feature extraction capabilities for
small-scale objects, further amplifies the model’s accuracy in identifying these targets.

The official annotation format of the original DOTA dataset is in the form of rotated
bounding boxes. These were converted into horizontal bounding boxes, and the annotations
were transformed into the YOLO format. To address the issue of the overly large aspect
ratio of remote sensing images, a preprocessing step was performed, cropping the remote
sensing images to a size of 800 × 800 pixels.

The comparative analysis of our improved YOLOv5s approach on the horizontally an-
notated DOTA dataset against a set baseline group substantiates the efficacy of the improved
model. Table 10 delineates the performance juxtaposition of the refined YOLOv5 with
several archetypal object detection frameworks, such as RetinaNet, the original YOLOv5s,
YOLOv5m, and the YOLOX. The results, as exhibited in Table 10, attest to the superior
detection outcomes of the improved YOLOv5 model on the horizontally annotated remote
sensing images of the DOTA dataset. Although the algorithm presented in this paper is
primarily tailored for forest fire smoke detection tasks, its applicability and effectiveness
extend to other small object detection endeavors, evidencing its versatility.

Table 10. Detection results on DOTA for some mainstream object detection models.

Model mAP Param/M

RetinaNet 65.6 37.8
YOLOv5s 65.8 7.4
YOLOv5m 66.3 22.3

YOLOX 69.6 25.8
Ours 71.4 11.5

Note that mAP is shown as a percentage. The figures of our model are highlighted in bold.

The partial detection outcomes of our methodology on the DOTA dataset are illustrated
in Figure 16.
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5.6. Discussion

The primary objective of this study was to enable the timely detection of wildfires.
Therefore, our focus was to effectively identify and recognize the crucial wildfire signal,
which is smoke [14]. The detection results and evaluated visualizations of the smoke
dataset demonstrate that our improved YOLOv5s model achieves a higher accuracy in
recognizing forest fire smoke compared to the state-of-the-art models. To enable forest
fire smoke detection using UAV cameras and deep learning, we gathered a substantial
number of images containing forest fire smoke and smog-like objects. This addressed the
challenge of the limited availability of forest fire smoke-related datasets. Additionally, the
proposed improved YOLOv5s model incorporated a novel design of backbone, integrated
the Coordinate Attention module [59], and introduced a small target detection head to
effectively extract features from smoke of varying sizes.

To comprehensively evaluate the effectiveness of our proposed method, we conducted
a series of control experiments and ablation experiments in Section 4. Firstly, by integrating
the CA attention mechanism, our model demonstrated an enhanced ability to distinguish
between background and foreground. The CA attention focuses the model’s attention on
the smoke target in the foreground while disregarding interference from the background.
This improvement is evident in Table 6 and Figure 11. Additionally, compared to other
mainstream attention modules [57,58,64], our CA module exhibited superior capability
in focusing on relevant smoke features. This is supported by the attention heat map
presented in Figure 12. Moreover, our proposed model adopted a novel backbone design.
In contrast to previous studies [26,29–32], the improved YOLOv5s model introduced in our
study addressed issues such as redundant calculations and excessive memory access during
network training. Furthermore, the utilization of the new convolution PConv [56] enhanced
the operational speed of the network. The outcomes presented in Table 7 demonstrate
that the new backbone design reduces the number of parameters while improving the
model’s speed. Following a series of enhancements, our proposed improved YOLOv5s
model outperformed all existing mainstream models [27,31–33] in terms of forest fire smoke
detection, as evidenced by the results in Table 8.

By utilizing the dataset and model presented in this study, it becomes feasible to
achieve accurate identification of wildfire smoke using UAVs. Moreover, the findings
and methodologies outlined in this paper hold valuable implications for researchers and
practitioners involved in the field of wildfire detection and firefighting.

6. Conclusions and Future Work

Most forest fires originate from small fires. Detecting and identifying smoke in the
early stages of forest fires is crucial for early detection and prevention. The utilization of un-
manned aerial vehicles (UAVs) equipped with visual cameras, coupled with advancements
in UAV technology and computer vision techniques such as deep learning, has yielded
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promising results in the detection of forest fire smoke. However, the detection of forest fire
smoke still faces significant challenges, including the scarcity and uneven distribution of
forest fire smoke datasets, the complex mountain and forest environments, and variations
in the size of smoke plumes captured by UAV aerial photos due to differences in altitude.

To tackle these issues, this paper proposed a method for forest fire smoke detection
based on an improved YOLOv5s and UAV-based imagery. Firstly, we employed K-means++
to optimize anchor box clustering and minimize classification errors. Next, we incorporated
a novel partial convolution (PConv) technique to enhance the YOLOv5s backbone network,
reducing the number of model parameters and increasing the training speed. Additionally,
we introduced a smaller anchor preselector and a new detection layer into the YOLOv5s
to enhance the detection of small-scale targets. Furthermore, we integrated a coordinate
attention module into YOLOv5s to achieve precise localization and feature extraction of
smoke targets within complex backgrounds. Lastly, to address the limited sample size of
the forest fire smoke dataset, we employed transfer learning to train the model.

In this study, we evaluated the impact of the improved modules within the improved
YOLOv5s model and its performance in the task of forest fire smoke detection through var-
ious experiments. These experiments included ablation experiments and three controlled
experiments on different attention mechanisms modules, different backbone architectures,
and different state-of-the-art models. The conclusions are as follows:

(1) The results of the controlled experiments on different attention mechanisms modules
show that the model with CA performed the best in almost all the evaluation metrics,
with a AP50, APS, and APM reaching 0.94, 0.34, and 0.55, respectively. APL was also
improved by 1.3 points compared to the original model. Additionally, heatmap exper-
iments with various attention mechanisms indicated that the CA module possesses
superior foreground-background differentiation capabilities and heightened accuracy
in the detection of forest fire smoke.

(2) The results of the controlled experiments on different backbone architectures show
that, by employing our custom-designed backbone, the model’s parameters were
reduced from 6.11 M to 6.02 M, GFLOPS decreased from 15.8 to 12.8, and the image
detection time was diminished from 12.7 ms to 12.3 ms, with the FPS increasing from
78.7 to 81.3. Moreover, relative to the CSPDarknet53 of the original YOLOv5s, our
backbone network model achieved enhancements of 0.9, 3.6, 1.5, and 1.2 percentage
points in the evaluation metrics AP50, APS, APM, and APL, respectively. Our designed
backbone not only elevated the AP metrics, but also compacted the model size and
expedited processing speed.

(3) The results of the controlled experiments on different state-of-the-art models show
that our model, with a total of 11.1 M parameters, is marginally larger than the fastest
YOLOv5s, which has 6.11 M parameters. However, thanks to the backbone designed
for more efficient memory access, our model secured a notable advantage in terms of
laudable inference speed (13 ms) and the minimal quantity of floating-point operations
(13.3 GFLOPS), marking an improvement over SSD, YOLOv3, YOLOv4, YOLOv5,
YOLOv7, and YOLOv8s. Moreover, our model achieved exhilarating accuracy results,
leading the pack with the highest recorded 96% in AP50 and 57.3% in AP50:95. While
the proposed approach may not surpass YOLOv5s in terms of model parameters
and inference speed, it successfully achieved a favorable balance between speed of
inference and accuracy of detection. From the detection experiments conducted on
three actual instances of forest fire smoke, it is evident that our model possesses the
highest accuracy for small target smoke detection, along with the greatest confidence.
Our model stands superior to the current leading detection frameworks, including
YOLOv7 and YOLOv8.

(4) The ablation study results indicate that the inclusion of a backbone design, CA mod-
ule, and small target detection head module enhanced the accuracy of the original
YOLOv5s model. Among these, the YOLOv5s + BD + SDH + CA (the model we
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proposed in this paper) exhibited the most significant improvements, increasing AP50
by 4.1%, AP50:95 by 1.1%, APS by 12.4%, APM by 3.6%, and APL by 2.4%.

(5) In conclusion, the experimental results demonstrate a significant improvement in
the performance of our model compared to YOLOv5s and other commonly used
models, highlighting the potential of our approach for forest fire smoke detection.
Additionally, the results of extended experiments indicate that our approach also
possesses certain universality and superiority in other small object detection tasks.

While our proposed method has made commendable contributions and shows promise
in the detection of forest fire smoke, it still has its shortcomings. The performance of our
detection algorithm falters under low-light conditions or at night. Furthermore, the complex
background of forest landscapes, replete with numerous disturbances, necessitates the
further enhancement in our algorithm’s robustness and its ability to resist interference.

Our future work will focus on distinguishing between forest fire smoke and similar
smoke-like objects, such as clouds and haze. We propose the integration of both infrared
and visible cameras on the UAV to capture diverse types of smoke imagery. By extracting
features from infrared photos, we aim to achieve more accurate discrimination between
different types of smoke and other smoke-like objects. Additionally, we plan to test the
practical application of the forest fire smoke detection module proposed in this paper.
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