
Citation: Gao, S.; Chen, F.; Wang, Q.;

Shi, P.; Zhou, W.; Zhu, M.

Susceptibility Mapping of Unhealthy

Trees in Jiuzhaigou Valley Biosphere

Reserve. Remote Sens. 2023, 15, 5516.

https://doi.org/10.3390/rs15235516

Academic Editors: Ivan Pilaš, Mateo
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Abstract: Jiuzhaigou Valley is recognized as both a world natural heritage site and a biosphere reserve.
Conducting research on vegetation health within its scope can provide a demonstration role for
sustainable development research. In this study, we proposed a technology integration approach that
combined remote sensing intelligent identification and quantitative retrieval, and achieved vegetation
health monitoring and susceptibility mapping of unhealthy trees. Leveraging WorldView-2 high-
resolution satellite images, unhealthy trees were elaborately identified through the object-oriented
classification method employing spectral and texture features, with F1 Score exceeding 75%. By
applying fuzzy operations on indices related to leaf pigment and canopy architecture, we ultimately
generated susceptibility maps of unhealthy trees on Sentinel-2 satellite images, with Area Under the
Curve (AUC) exceeding 0.85. Our findings underscore that the vegetation health in Jiuzhaigou Valley
is predominantly influenced by human activities and geological hazards. The forests of Jiuzhaigou
Valley exhibit a certain degree of resilience to geological disasters, while human activities have
been continuously exerting adverse effects on forest health in recent years, necessitating heightened
attention. The methodology proposed in this study for mapping unhealthy trees susceptibility
presents a cost-effective solution that can be readily applied for vegetation health monitoring and
early warning in analogous biosphere reserves.

Keywords: Sentinel-2; WorldView-2; fuzzy operations; susceptibility; vegetation health; Jiuzhaigou
Valley

1. Introduction

As human influence on the environment continues to grow with economic and social
development, the world has witnessed an increase in extreme climate events in recent years,
posing significant challenges to sustainable development [1–3]. Emissions of greenhouse
gases, such as carbon dioxide, remain a leading factor contributing to climate deterioration,
such as global warming, extreme precipitation, and shortening of the winter season [4–6].
In response, several countries, including China, have set carbon peak and carbon neutrality
targets [7,8].

Launched by the United Nations in 1971, the Man and the Biosphere Programme
aimed to establish a scientific foundation for enhancing the relationship between humanity
and the environment [9]. It has been noted that these biosphere reserves play a pivotal
role in achieving sustainable development goals [10,11]. In biosphere reserves, vegetation
plays a crucial role. It serves as a vital component of the carbon cycle, providing energy
and habitat for animals. This role is of great significance for enhancing land carbon sinks
and maintaining ecosystem stability [12]. Therefore, it is essential to monitor vegetation
health in biosphere reserves.
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Monitoring vegetation health with traditional manual forest patrol methods becomes
challenging for covering extensive areas. Remote sensing technology, with its ability
to provide extensive and repeatable Earth observations, holds immense potential for
monitoring vegetation health on a broad scale [13,14]. Changes in photosynthetic pigment
levels and canopy architecture accompany vegetation stress [14,15], and recent studies have
demonstrated that remote sensing can identify spectral changes resulting from alterations
in pigment content and canopy architecture. For instance, Jump et al. [16] discovered
that tree dieback can lead to a decrease in water content and Leaf Area Index (LAI).
Dallahi et al. [17] assessed forest dieback using the Normalized Difference Vegetation Index
(NDVI); Eitel et al. [18] found that the Normalized Difference Red-edge Index (NDRE) can
be used to monitor early red-edge increase; Gitelson et al. [19] found a strong correlation
between the Green Normalized Difference Vegetation Index (GNDVI) and chlorophyll a,
and Wojtowicz et al. [20] used GNDVI to identify the vegetation infected with leaf rust;
Gupta and Pandey [21] analyzed and mapped forest health using Anthocyanin Reflectance
Index 1 (ARI1). Typically, researchers fit vegetation indices to field data to reflect forest
health conditions.

With advancements in remote sensing image resolution and the availability of com-
puting power, research focus has shifted towards the elaborate identification of unhealthy
trees using high-resolution (30 cm–2 m) and ultra-high-resolution (<30 cm) remote sensing
images. Researchers frequently employ intelligent classification algorithms such as random
forest (RF), Support Vector Machine (SVM), and Convolutional Neural Networks (CNN)
to automate image classification and target extraction [22]. For example, Wang et al. [23]
mapped robinia pseudoacacia forest health conditions using RF; Syifa et al. [24] achieved
a 94.13% accuracy in identifying pine trees suffering from pine wilt disease using SVM;
Han et al. [25] and Hu et al. [26] used deep learning algorithms to monitor pine forest
disease outbreaks.

Although machine learning algorithms can be effective for monitoring forest species [27–29],
there may be some limitations in terms of vegetation health. Vegetation indices for forest
health mapping actually correspond to the proportion of unhealthy trees within sample
plots using medium-resolution (2 m–30 m) remote sensing images [17,30–34]. In areas
where the probability of unhealthy tree occurrence is low, such sample data is difficult to
obtain, which is because a single pixel typically corresponds to approximately 100 square
meters in medium-resolution image (i.e., Sentinel-2 image). This is particularly true for
biosphere reserves, especially those at high elevations and steep regions, where field
sampling often involves danger. Due to conservation policies and safety factors, research
in such areas is relatively scarce [35]. High-resolution remote sensing images can be used
to identify unhealthy trees elaborately. Relative to medium-resolution images, it provides
more sample pixels for the same area in field surveys. However, the high cost of acquiring
high-resolution remote sensing images has limited their application. Due to the challenges
of field sampling and data acquisition costs, most research has focused on forest areas
already experiencing severe diseases [24,36]. Nevertheless, from the warning perspective,
monitoring vegetation health in areas with a low probability of unhealthy tree occurrence
is equally important [37].

Considering the limitations of previous research, this study aims to conduct vegetation
health monitoring in areas with a low probability of unhealthy tree occurrence. Jiuzhaigou
Valley Biosphere Reserve was selected as a case in this study. Jiuzhaigou Valley is not only a
world nature heritage site but also a biosphere reserve, where forest ecosystems have been
relatively well-preserved. However, recent disturbances, including human activities and
geological disasters, particularly landslides, have resulted in varying degrees of disruption
to the forest health status of Jiuzhaigou Valley.

We proposed a technology integration approach that combines remote sensing intel-
ligent identification and quantitative retrieval, and analyzed forest health in Jiuzhaigou
Valley Biosphere Reserve’s typical areas. We utilized WorldView-2 images to perform elabo-
rate identification of unhealthy trees within specific years. Based on elaborate identification
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results of unhealthy trees, we used Sentinel-2 images to extract typical indices related to
vegetation and map the susceptibility of unhealthy trees through fuzzy operations yearly.
By overcoming the sampling amount constraint, this method enabled cost-effective tree
health monitoring in large areas annually with low probability of unhealthy tree occurrence
through the applied solution of technology integration.

2. Study Area and Data
2.1. Study Area

Jiuzhaigou Valley, located in Zhangzha Town in Aba Autonomous Prefecture, Sichuan
Province, China (geographic coordinates: 32◦54′N–33◦19′N, 103◦46′E–104◦5′E), holds the
dual status of being a world heritage site and a biosphere reserve. The reserve boasts not
only stunning landscapes, including waterfalls, calcifications, and terraces, but also hosts
a diverse array of rare and protected species, making it a crucial animal and plant gene
bank [38,39]. The topography of Jiuzhaigou Valley is characterized by rolling peaks, with el-
evations ranging from 1996 m at the entrance to 4764 m at the highest point [40]. Jiuzhaigou
Valley boasts an impressive 80% vegetation cover, displaying a vertical distribution pat-
tern [41]. The forest types include mixed coniferous and broadleaf forests dominated by
Chinese pine and poplar at elevations of 2000 to 2800 m, subalpine coniferous forests pri-
marily featuring spruce and fir at elevations of 2800 to 3800 m, and alpine meadows above
3800 m. Results from field surveys indicate that that unhealthy trees in Jiuzhaigou Valley
are concentrated among coniferous trees, with Chinese pine being affected by Sonsaucoccus
sinensis, leading to a visible whitening of affected trees, and human activities will intensify
this process. Spruce and fir suffer from leaf fall disease, resulting in yellowing leaves that
gradually fall off. In addition to being disturbed by diseases, the vegetation in Jiuzhaigou
Valley is also affected by geological disasters. For example, landslides will cause damage
to the root system of vegetation, which will lead to the withering of vegetation. In this
study, trees infected by natural diseases, aggravated by human activities, and affected by
geological disasters are collectively referred to as unhealthy trees.

Jiuzhaigou Valley comprises two typical regions, namely Zaru Valley and Changhai
Valley (Figure 1). Zaru Valley, situated near the reserve entrance, is one of the main areas for
residents, covering an area of approximately 23 km2, with elevations ranging from 2000 to
2500 m. The dominant vegetation type in this region is Chinese pine. Changhai Valley, the
innermost scenic point within the reserve, has elevations around 3500 m, covering an area
of approximately 10 km2. Changhai Valley is primarily covered by spruce and fir forests.

2.2. Data Description

We conducted extensive data acquisitions from spaceborne, Unmanned Aerial Vehicle
(UAV), and ground-based platforms in Zaru Valley and Changhai Valley. To understand
and confirm the spectral characteristics exhibited by unhealthy trees, in Zaru Valley and
Changhai Valley, we conducted spectral measurements of Chinese pine, spruce, and fir
using a spectroradiometer (Product Model: ASD FieldSpec) in July 2022. Due to the high
risk of geological hazards such as landslides, we only measured the spectral curves of
healthy trees and unhealthy trees affected by diseases. We measured spectral data for
40 sets of healthy spruce and 20 sets of unhealthy spruce, 20 sets of healthy fir and 10 sets
of unhealthy fir, and 30 sets of healthy Chinese pine and 15 sets of unhealthy Chinese pine.
Then spectral curves of healthy and unhealthy trees were generated (Figure 2), revealing
that unhealthy spruce and fir share similar spectral trends, exhibiting high reflectance
anomalies from 450 nm to 700 nm and low reflectance anomalies in the near-infrared
(NIR) range. Spectral curves of Chinese pine show a slightly different trend, with high
reflectance anomalies occurring in the NIR range. Overall, the spectral curve trends of
these three types of unhealthy trees are consistent with previous research, thus supporting
the use of commonly employed spectral indices for elaborate identification of unhealthy
trees in this study [14,28,33].
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Figure 2. Spectral curves of healthy and unhealthy trees. (a) Spectral curves of healthy and unhealthy
Chinese pine. (b) Spectral curves of healthy and unhealthy fir. (c) Spectral curves of healthy and
unhealthy spruce.

To construct the sample dataset, we conducted low-altitude UAV flights above the
canopy and captured realistic images in July 2022. We also conducted nap-of-the-earth
flights in Zaru Valley and Changhai Valley using the DJI Phantom 4 RTK UAV. The DJI
Phantom 4 RTK offers a positioning accuracy of 2 cm, equipped with a lens with 20 million
effective pixels per photo. The flight altitude was set at 150 m, with a lateral overlap
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rate of 70% and a forward overlap rate of 50%. Through flight planning, we obtained a
series of overlapping aerial photos, which were registered and stitched together in DJITerra
3.3.4 software to produce ultra-high-resolution orthophotos. These images of unhealthy
trees and orthophotos were used to determine the locations of unhealthy trees (Figure 3).
Through UAV orthophotos and realistic images, we delineated 103 samples of unhealthy
trees in the WorldView-2 images. Among them, 49 were located in Zaru Valley, and 54 were
in Changhai Valley.
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Figure 3. (a) The location where we took realistic images. (b) A diseased Chinese pine in a realistic
image.

Jiuzhaigou Valley experiences unpredictable weather, with mountain peaks often
shrouded in clouds and frequent rain showers within a single day. This results in a limited
time window for UAV operations, making it difficult to collect data on a large scale. To over-
come this limitation, we utilized WorldView-2 images to perform elaborate identification of
unhealthy trees in the study area. WorldView-2 images offer eight bands, providing more
features than other multispectral images (e.g., Pleiades-1, ZY-3, SuperView Neo, KOMPSAT-
3) that typically offer only four bands (blue, green, red, and NIR). The additional bands
in WorldView-2 can be used to construct more features, enhancing the ability to reflect
vegetation health conditions. The WorldView-2 image underwent radiometric calibration,
FLAASH atmospheric correction, orthorectification, and Gram-Schmidt pan sharpening
using Envi 5.3 software, resulting in a 0.5 m multispectral surface reflectance image for the
study area (Figure 4). The Digital Elevation Model (DEM) employed for orthorectification
was sourced from Shuttle Radar Topography Mission (SRTM). In FLAASH atmospheric
correction, we applied the atmospheric model ‘sub-arctic summer’ during spring and
‘mid-latitude summer’ during summer. The aerosol model was ‘tropospheric’ for both
cases. For Zaru Valley, WorldView-2 images from 22 July 2022 (summer) and 29 April
2018 (spring) were selected. In the case of Changhai Valley, WorldView-2 images from 13
September 2021 (summer) were chosen.

We utilized Sentinel-2 images to achieve cost-effective annual vegetation health moni-
toring. The original Sentinel-2 images were L1C products, and we performed atmospheric
correction using the Sen2Cor processor to obtain surface reflectance products (L2A prod-
ucts). Subsequently, the Sen2Res plugin in Snap 9.0.0 software was used to resample L2A
products to a 10-m resolution. The Sen2Res plugin established a model to unmix the 20-m
and 60-m pixel bands while retaining their reflectance information. We examined the entire
archive of Sentinel-2 images from 2017 to 2022 and selected images with minimal cloud
cover. The final selection of image dates is as follows: 29 July 2017; 14 July 2018; 3 August
2019; 27 August 2020; 2 August 2021; and 8 July 2022.
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3. Methods

Vegetation under stress exhibits anomalous spectral responses, which can be utilized
to construct spectral features for identifying unhealthy trees, and unhealthy trees can be
distinctly observed in ultra-high-resolution images captured by UAV, providing reliable
sample data. Based on these features and samples, a classifier can be developed to identify
unhealthy trees in high-resolution satellite remote sensing images. Generally, a medium-
resolution remote sensing image is cost-effective and offers a greater number of spectral
bands than a high-resolution image, allowing for more accurate atmospheric correction
and quantitative retrieval [42]. Indices obtained through this quantitative retrieval can be
used to monitor trends in leaf pigment and canopy architecture of unhealthy trees, and
these trends can be fitted using fuzzy operations to complete susceptibility mapping of
unhealthy trees.

Building upon the mentioned principles, a flowchart for susceptibility mapping of
unhealthy trees was proposed (Figure 5). Firstly, data acquisition was conducted. After
data acquisition, we initially applied the ENVI forest health tool on the Sentinel-2 image
to find the hot-score area, which represented the study area with a low level of forest
health [21]. Then we computed indices related to leaf pigment and canopy architecture
in the study area. Subsequently, we conducted elaborate identification of unhealthy trees
within the study area using the WorldView-2 image, in conjunction with field data and
UAV images. Based on identification results of unhealthy trees, we calculated the relative
certainty factor (RCF) of indices from Sentinel-2 and fitted them using fuzzy membership
functions. Then we applied the fitted membership functions on the entire sentinel-2
image, producing membership images for each index in the study area. Finally, by fusing
individual membership images, we mapped the susceptibility of unhealthy trees.

Our innovative methods seamlessly integrate data from multiple sources, enabling
vegetation health monitoring. Through ultra-high-resolution images and field data, we have
successfully identified unhealthy trees in high-resolution remote sensing images. These
identification results can be further applied in medium-resolution images, especially in
regions where the occurrence rate of unhealthy trees is low. By employing fuzzy operations
and combining indices derived from Sentinel-2 images with the identified unhealthy trees
from subzones, we generated susceptibility maps for unhealthy trees. This method allowed
for cost-effective and large-scale vegetation health monitoring and early warning in similar
biosphere reserves.

3.1. Feature Extraction
3.1.1. Calculation of Forest Health Index

Forest Health Index is calculated by the ENVI forest health tool. The delineation of
forest health levels relies on predefined prior knowledge, with results influenced by indices
related to leaf pigment and canopy water content or light use efficiency. The forest health
tool categorizes an image into 10 levels, and the reliability of the result is contingent on
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the degree to which prior knowledge matches the actual situation. Formula (1) is listed
as follows:

FHI =
∫
(Greenness Index, Lea f Pigment Index, Light Use E f f iciency Index) (1)

where FHI is the forest health index, Greenness Index determines whether pixels par-
ticipate in calculation, Lea f Pigment Index reflects the concentration of carotenoids and
anthocyanin under vegetation stress, Light Use E f f iciency Index measures the efficiency
of vegetation in utilizing incident light during photosynthesis.
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3.1.2. Calculation of Index Related to Leaf Pigment and Canopy Architecture

Leaf pigments, including chlorophyll, carotenoids, and anthocyanin [43], exhibit
strong light absorption capabilities in specific spectral bands, which can be assessed through
surface reflectance. Based on the wavelengths of the bands in Sentinel-2 images, we selected
three spectral indices to reflect vegetation leaf pigment content: GNDVI for chlorophyll [44],
Red Green Ratio Index (RGRI) for carotenoids [43], and Anthocyanin Reflectance Index 2
(ARI2) for anthocyanin [45]. The three indices are formulated as follows:

GNDVI =
(NIR− Green)
(NIR + Green)

(2)

RGRI =
∑699

i=600 Ri

∑599
i=500 Rj

(3)

ARI2 = R800(
1

R550
− 1

R700
) (4)

where NIR and Green are reflectances at NIR and green bands on Sentinel-2 image, Ri is
the reflectance at inm on the Sentinel-2 image, Rj is the reflectance at jnm on the Sentinel-2
image, R800, R700, and R550 are reflectances at 800 nm, 700 nm, and 550 nm on the Sentinel-
2 image.
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Unhealthy trees can also suffer damage to their canopy architecture. Snap 9.0.0
software provides the biophysical processor tool for the retrieval of vegetation canopy
architecture [46]. This retrieval algorithm is based on a predefined PROSAIL radiative
transfer model, which links the spectral dimension of the reflectance to the directional
dimension related to canopy architecture [47,48]. The indices retrieved include Leaf Area
Index (LAI), Canopy Water Content (CWC), and Canopy Chlorophyll Content (CCC) [49].
LAI represents the multiple of the total leaf area of plants per unit land area. CWC and
CCC represent the content of water and chlorophyll per unit area.

3.2. Elaborate Identification of Unhealthy Trees

We used WorldView-2 images for elaborate identification of unhealthy trees in the
study area. Firstly, we performed multiresolution segmentation on the WorldView-2 image.
Multiresolution segmentation is developed by eCognition 9.0 software, with results deter-
mined by three parameters, including scale, shape, and compactness. Previous research
has shown that for vegetation, setting the shape parameter to 0.5 and the compactness
parameter to 0.8 is appropriate [36,50]. Scale parameters need to be adjusted according to
the application scenario.

After multiresolution segmentation, the object feature value was extracted by the mean
pixels feature values. Spectral features were calculated based on spectral curves (Table 1),
and texture features were computed using gray-level co-occurrence matrix (GLCM). There
are 8 texture measures calculated from GLCM, including Mean, Dissimilarity, Second
moment, Contrast, Correlation, Variance, Homogeneity, and Entropy [51,52].

Table 1. Spectral features calculated from WorldView-2 image.

Name Formula Description

NDVI(B5,B7) (B7− B5)/(B7 + B5) NDVI is traditional index for vegetation
NDVI(B5,B8) (B8− B5)/(B8 + B5)
RGI(B3,B4) B4/B3

RGI highlights the yellowing trend of
leaves

RGI(B3,B5) B5/B3
RGI(B4,B5) B5/B4

MSAVI(B5,B7) (2 ∗ B7 + 1−
√
(2 ∗ B7 + 1)2 − 8 ∗ (B7− B5))/2 MSAVI can weaken the impact of soil on

vegetation
MSAVI(B5,B8) (2 ∗ B8 + 1−

√
(2 ∗ B8 + 1)2 − 8 ∗ (B8− B5))/2

GNDVI(B3,B7) (B7− B3)/(B7 + B3) GNDVI is sensitive to chlorophyll a
GNDVI(B3,B8) (B8− B3)/(B8 + B3)
NDRE(B6,B7) (B7− B6)/(B7 + B6) NDRE reflects the early red edge anomaly

when vegetation is under stressNDRE(B6,B8) (B8− B6)/(B8 + B6)

B1 to B8 are reflectances for band1 to band8 in the WorldView-2 image.

Based on ultra-high-resolution UAV images, the sample dataset was created. To
simplify the classification model, only two categories were set up, which are unhealthy tree
and others. Subsequently, an RF classifier was constructed based on the feature set and
sample dataset. RF is the most commonly used machine learning algorithm in vegetation
health monitoring [22] which can distinguish between unhealthy tree and others.

To evaluate the accuracy in identification of unhealthy trees, Precision, Recall, and F1
Score served as metrics for identifying unhealthy trees. They are formulated as follows:

Precision =
TruePositive

TruePositive + FalsePositive
(5)

Recall =
TruePositive

TruePositive + FalseNegative
(6)

F1 Score =
2 ∗ Precision ∗ Recall

Precision + Recall
(7)
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where TruePositive represents the quantity of correctly identified positive samples, False
Positive represents the quantity of falsely identified negative samples, and FalseNegative
represents the quantity of missed positive samples.

3.3. Susceptibility Mapping of Unhealthy Trees
3.3.1. Calculation of RCF

After processing in Sections 3.1 and 3.2, we obtained indices related to leaf pigment
and canopy architecture on the Sentinel-2 image and elaborate identification results of
unhealthy trees on the WorldView-2 image. We employed the certainty factor (CF) method
for calculating index sensitivity. The CF method was initially proposed by Shortliffe and
Buchanan [53] and subsequently applied to assess landslide susceptibility in Jiuzhaigou
Valley [54]. In this study, we analyzed the sensitivity of each index affecting the occurrence
of unhealthy trees from Sentinel-2 images. To facilitate subsequent fuzzy fitting, we
normalized the CF to RCF. The RCF is formulated as follows:

RCF =


pa−p

p∗(1−pa)
+1

2 , pa < p
pa−p

pa∗(1−p)+1
2 , pa ≥ p

(8)

where pa is the probability of unhealthy tree occurrence in category “a” of a feature, and p
is the probability of unhealthy tree occurrence in the whole area. The range of RCF is 0 to 1,
and the closer it is to 1, the probability of unhealthy tree occurrence is higher.

3.3.2. Fuzzy Fitting and Fusion

Fuzzy set theory, first introduced by Zadeh [55], extends the classical set theory to
handle cases where binary (0 and 1) definitions are not suitable. It involves analyzing
fuzzy objects through the establishment of appropriate membership functions and related
operations on fuzzy sets. Common fuzzy membership function curves include Z-shaped,
S-shaped, and bell-shaped curves (Figure 6).
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In this study, we employed the sigmoid function (Formula (6)) to fit S-shaped and
Z-shaped curves and utilized the Gaussian function (Formula (7)) and the Fuzzy Near
function (Formula (8)) to fit bell-shaped curves.

Sigmoid(x) =
(

1 + e−a∗(x−b)
)−1

(9)

Gaussian(x) = e−a∗(x−b)2
(10)

FuzzyNear(x) =
1(

1 + a ∗ (x− b)2
) (11)

where x is the feature value, a is the spread, b is the midpoint of the function. The spread
determines the steepness of the function. The midpoint determines the feature value with
the membership equal to 0.5.
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After fitting RCF with fuzzy membership functions, we applied the fitted membership
functions to the whole Sentinel-2 image, resulting in membership images for each index.
These images were then fused using the Fuzzy Gamma (Formula (9)) method to map the
susceptibility of unhealthy trees.

FuzzyGamma =
(
1−∏ 1− argk

)Gamma ∗
(
∏ argk

)1−Gamma (12)

where argk is the membership value of each index, Gamma controls the increasing and
decreasing effect of the final result.

Based on the distribution and susceptibility of unhealthy trees, we used the Receiver
Operating Characteristic (ROC) curve to evaluate the quality of the Fuzzy Gamma method.
The ROC curve visualized the trade-off between true positive and false positive rates, which
can be effectively used to evaluate binary classification problems in machine learning [56].
The X-axis of the ROC curve is the False Positive Rate, and the Y-axis of the ROC curve is
the True Positive Rate. The Area Under the Curve (AUC) represents the area under the ROC
curve, which ranges from 0 to 1, with higher values indicating better model performance.

4. Results
4.1. FHI Distribution

In order to mitigate interference from alpine meadows and areas with low vegetation
cover on the calculation of FHI, the calculation area was limited to a 1 km buffer zone on
both sides of scenic roads in Jiuzhaigou Valley. Additionally, we computed FHI at different
altitudes with 500 m elevation intervals. The final FHI distribution is depicted in Figure 7.
The FHI distribution map reveals that every region within Jiuzhaigou exhibits areas with
low forest health levels. This is because Envi 5.3 forces the division of FHI into 10 levels.
Consequently, even in regions that are generally healthy, pixels with low FHI are observed.
Therefore, it was necessary to disregard scattered pixels with low forest health levels and
focus on the clustered areas of low forest health levels as hot-score areas of unhealthy
trees. We identified clusters of low forest health pixels in the northwest of Zaru Valley and
the west of Changhai Valley. Therefore, we designated Zaru and Changhai Valley as the
hot-score areas for research on unhealthy trees.

4.2. Identification of Unhealthy Trees

We conducted elaborate identification of unhealthy trees in Zaru and Changhai Valley.
Initially, we determined the optimal scale parameter in multiresolution segmentation. As
shown in Figure 8, when the scale parameter increased from 5 to 20, unhealthy trees were
effectively segmented. Therefore, we set the scale parameter to 20. Subsequently, we
constructed an RF classifier. The sample dataset was divided into train and test sets at
a 7:3 ratio. Gao et al. [57] have previously demonstrated that using the kernel size of 31
for GLCM at the pixel level results in optimal classification (Figure 9). Thus, in this study,
GLCM was calculated using the kernel size of 31. We computed the mean values of 8 bands,
spectral features, and GLCM texture measures for each object on the WorldView-2 image,
using them as features to construct a new RF classifier. Classification results on the test set
indicated that, at the object level, the F1 Score for identifying unhealthy trees reached 77.1%
in Zaru Valley and 81.2% in Changhai Valley.

We applied the constructed RF classifier to the entire Zaru and Changhai Valley,
ultimately obtaining elaborate distributions of unhealthy trees, as depicted in Figure 10.
It is evident that unhealthy trees in Changhai Valley are primarily concentrated in the
landslide-prone area flanking Changhai Lake, and unhealthy trees in Zaru Valley are
concentrated near the residential area, which implies that geological disasters and human
activities will cause a certain degree of disturbance to vegetation health in Jiuzhaigou Valley.
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Figure 10. Result of unhealthy tree identification (Base Map: WorldView-2; Coordinate System:
WGS 1984 UTM 48N). (a) Unhealthy trees in Changhai Valley. (b) Unhealthy trees in Zaru Valley.
(c) Unhealthy trees at the landslide-prone area in Changhai Valley. (d) Unhealthy trees around the
residential area in Zaru Valley.



Remote Sens. 2023, 15, 5516 13 of 21

4.3. Mapping Susceptibility of Unhealthy Trees

We combined altitude (calculated from SRTM DEM) and indices calculated from
Sentinel-2 images with identification results of unhealthy trees to calculate their RCFs, and
used fuzzy membership functions to fit RCFs. Figure 11 displays the curves of RCF and the
corresponding fitted fuzzy membership functions.
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Figure 11. Curves of RCF and fitted membership functions. (a) CCC in Changhai. (b) ARI2 in
Changhai. (c) LAI in Changhai. (d) Altitude in Changhai. (e) RGRI in Changhai. (f) CWC in
Changhai. (g) CCC in Zaru. (h) ARI2 in Zaru. (i) LAI in Zaru. (j) Altitude in Zaru. (k) RGRI in Zaru.
(l) CWC in Zaru.

In Changhai Valley, CCC and LAI exhibited S-shaped curves, indicating that areas
with low CCC and LAI were more susceptible to unhealthy trees, and the probability of
unhealthy trees decreased as CCC and LAI increased. ARI2 and RGRI displayed bell-
shaped curves, suggesting that in areas under vegetation stress, the increase in anthocyanin
and carotenoids content occurred, which led to a yellowing appearance of leaves. Beyond a
certain threshold in ARI2 and RGRI, the probability of unhealthy trees occurrence declined,
corresponding to areas not covered by spruce and fir. As for CWC, we found that unhealthy
trees in Changhai Valley were not sensitive to CWC, implying that leaf fall disease did not
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directly affect the canopy water content of vegetation in Changhai Valley. From the altitude
distribution of unhealthy trees, there were fewer unhealthy trees at 3000 m, and there were
significantly more unhealthy trees from 3000 m to 3400 m upwards. Later, as the altitude
increased, the number of unhealthy trees gradually decreased again. Since the decrease
was much smaller in magnitude than the increase, we chose to use a Z-shaped curve to fit
the altitude in Changhai Valley.

In Zaru Valley, the trends of RCFs curves for CCC, LAI, ARI2, and RGRI were similar to
those in Changhai Valley: LAI and CCC exhibited S-shaped curves, with a lower probability
of unhealthy trees as LAI and CCC increased; ARI2 and RGRI displayed bell-shaped curves,
indicating that unhealthy trees in Zaru Valley were more likely to occur in areas with
elevated carotenoids and anthocyanin content. In contrast to Changhai Valley, unhealthy
trees in Zaru Valley exhibited a bell-shaped sensitivity curve to CWC. The area with 0.01
to 0.02 g/m2 CWC represented herbaceous and mixed pixel, while unhealthy trees were
predominantly found in areas with 0.03 g/m2 CWC. This suggests that Sonsaucoccus
sinensis affects the canopy water content in Jiuzhaigou Valley. Examining the altitude
distribution of unhealthy trees in Zaru Valley, it exhibited the pattern of the Gaussian
function. Notably, the probability of unhealthy trees occurrence increased slightly at
an elevation of 3000 m in Zaru Valley, which was associated with minor landslides at
the mountaintop.

We applied the fitted membership functions to each feature and performed the Fuzzy
Gamma method. Figure 12 illustrates the trend of AUC with varying gamma values in 2022.
It can be seen that gamma has a minor impact on AUC, with the maximum AUC achieved
when gamma equals 0.9, yielding an AUC of 0.852. Figure 13 displays the ROC curves for
data in 2022 and 2018. The AUC was 0.852 in 2022 and 0.921 in 2018. The high AUC values
indicate the reliability of mapping the susceptibility of unhealthy trees through the Fuzzy
Gamma method. Figure 14 shows a partial enlarged view of the susceptibility of unhealthy
trees in Zaru Valley in 2022, demonstrating a high consistency between high susceptibility
areas and unhealthy trees identified through the WorldView-2 image.
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5. Discussion
5.1. Advantage and Limitation

Satellite images have traditionally been employed to identify widespread forest dis-
eases [28,36]. This is because only when tree diseases occur extensively can they be clearly
observed in satellite remote sensing images [36,58,59]. Dennison et al. [60] and Malinee
et al. [61] used machine learning to identify unhealthy trees in satellite remote sensing
images, but their results were all at the pixel level.

In areas with a low probability of unhealthy tree occurrence, it is necessary to identify
the objects of individual trees. This study utilized an object-oriented classification approach
that combines spectral and textural features and found that 0.5 m resolution WorldView-2
images can achieve elaborate identification of unhealthy trees in Jiuzhaigou Valley. The
object-oriented approach identifies unhealthy tree objects rather than individual pixels.

While the WorldView-2 image is suitable for identification of unhealthy trees, its high
acquisition cost and limited archive data make it unsuitable for continuous vegetation
health monitoring. The Sentinel-2 image, provided by European Space Agency (ESA)
free of charge, offers a wealth of images to choose from each year, making it a suitable
choice for long-term monitoring. The Sentinel-2 image can be resampled to a maximum of
10-m resolution, which is insufficient for distinguishing individual trees [29,58]. However,
Sentinel-2 images can provide more precise indices related to leaf pigment and canopy
architecture [62]. These indices can be used to infer the susceptibility of unhealthy trees.
This study, through the calculation of RCF and fuzzy fitting, discovered spatial relationships
between unhealthy tree distribution and indices such as altitude, CCC, LAI, RGRI, and
ARI2. These relationships indicate that unhealthy trees show significant trends in pigment
content and canopy architecture [21,43,45,63,64]. The CWC in Changhai Valley indicates
that the disease characteristics of vegetation in different regions may not necessarily be
entirely identical. Finally, leveraging these relationships, we conducted susceptibility
mapping of unhealthy trees, and the results exhibited high reliability across different years.

The final susceptibility maps of unhealthy trees can be used to analyze trends of
forest health in recent years within the study area. They can also pinpoint hot-score
areas where diseases are currently occurring. In the future, these areas can in turn be
targeted for elaborate identification of unhealthy trees using WorldView-2 images, with
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forest conservation officers dispatched to rescue unhealthy trees in key areas. In contrast to
previous studies [65,66], our methods markedly reduce the dependence on sample quantity.

Our research also has some limitations, primarily related to the time scale. The
spectral response of vegetation exhibits seasonal variations, and the spectral characteristics
of stressed vegetation also change over time [67]. Typically, these spectral differences are
most pronounced during the summer [31], which coincides with the Sentinel images used
in this study. In fact, we were unable to find suitable Sentinel-2 images for other seasons due
to high cloud cover in Jiuzhaigou Valley. Consequently, the inability to analyze the forest
health of Jiuzhaigou Valley in different seasons is a limitation of our study. Additionally, it
is worth noting that, for longer time spans, it may be necessary to correct the membership
functions using WorldView-2 images in a specific year.

5.2. Annual Maps of Unhealthy Tree Susceptibility

Figure 15 displays the annual maps of unhealthy tree susceptibility in Zaru Valley from
2017 to 2022. It is evident that in Zaru Valley, high susceptibility zones for unhealthy trees
are concentrated in residential areas of northwestern Zaru Valley, while the forests in the
southeastern part of Zaru Valley experience very few diseases. This suggests that human
activities are the primary driving factor for vegetation health in Zaru Valley. From 2017 to
2022, the high susceptibility areas near residential areas have shown an increasing trend,
indicating continuous disturbance by human activities in the forests near these residential
areas, with no effective control measures in place. Additionally, the sides of roads in Zaru
Valley have also been identified as high susceptibility zones for unhealthy trees. This is
because the pixels in Sentinel-2 images located on the sides of roads are mixed pixels of
both road and vegetation. Mixed pixels refer to pixels that represent a combination of
multiple different types. These mixed pixels exhibit spectral characteristics similar to those
of unhealthy trees, making them easily identifiable as high susceptibility pixels [68].
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Remote Sens. 2023, 15, 5516 17 of 21

Figure 16 illustrates the annual maps of unhealthy tree susceptibility in Changhai
Valley from 2017 to 2022. We observed that in 2017, the forests in Changhai Valley were in
good health. However, in 2018 and 2019, the high susceptibility areas for unhealthy trees
expanded significantly, primarily concentrated on the hillsides on both sides of Changhai
Lake. This expansion can be attributed to the 2017 Ms 7.0 Jiuzhaigou earthquake [54],
which triggered landslides that damaged the root systems of the vegetation. This directly
led to vegetation mortality. Starting from 2020, the high susceptibility areas for unhealthy
trees remained relatively stable. This indicates that the damage caused by landslides was
not fatal to the forests. Forests in Changhai Valley exhibit a certain level of resistance to
disturbances, and are currently in the process of recovery.
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Our mapping of annual unhealthy tree susceptibility in Zaru and Changhai Valley re-
veals that human activities and geological disasters influence the forest health in Jiuzhaigou
Valley. The forests in Jiuzhaigou Valley possess inherent resilience to disturbances, with
geological events such as landslides causing limited damage over the short-term. However,
continuous human disturbances, exacerbated by post-disaster reconstruction activities in
recent years, could contribute to a more substantial impact.

6. Conclusions

In this study, we have produced susceptibility maps of unhealthy trees in the Ji-
uzhaigou Valley Biosphere Reserve through a technology integration approach. Our
findings indicate the following:

(1) The object-oriented classification method employing spectral and texture features has
proven effective in identifying unhealthy trees within Jiuzhaigou Valley Biosphere
Reserve on high-resolution satellite images;
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(2) Fuzzy fitting has revealed the relationship of leaf pigment and canopy architecture to
unhealthy trees in the Jiuzhaigou Valley. And the Fuzzy Gamma method has enabled
the effective generation of susceptibility distribution maps for unhealthy trees within
the Jiuzhaigou Valley using medium-resolution satellite images;

(3) The vegetation health in Jiuzhaigou Valley is primarily influenced by natural disasters
and human activities. Natural processes endow forests with a certain degree of
resilience to natural disasters, while human activities have continued to disturb the
vegetation health over recent years. Therefore, it is imperative to focus on mitigating
the effects of human activities on the forest health in Jiuzhaigou Valley and implement
protective measures, especially in areas highly affected by disturbances.

Our study has demonstrated the applicability of object-oriented classification methods
and fuzzy operations on forest health indices in mapping the susceptibility of unhealthy
trees in the Jiuzhaigou Valley Biosphere Reserve. The ROC curves obtained from Sentinel-2
images for 2022 and 2018 suggest that the indices do not undergo significant changes over
the five years of observation. Well-fitted fuzzy membership functions can be utilized for
the scenario prediction in the short term. This study provides a solution for cost-effective
forest health monitoring, which also has potential for the conservation of other biosphere
reserves across the world.
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