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Abstract: Complex and fragile geological conditions combined with periodic fluctuations in reservoir
water levels have led to frequent landslide disasters in the Three Gorges Reservoir area. With the
development of remote sensing technology, many scholars have applied it to landslide susceptibility
assessment to improve model accuracy; however, how to couple these two to obtain the optimal
susceptibility assessment model remains to be studied. Based on Sentinel-1 data, relevant data, and
existing research results, the information value method (IV), random forest (RF), support vector
machine (SVM), and convolutional neural network (CNN) models were selected to analyze landslide
susceptibility in the urban area of Wanzhou. Models with superior performance will be coupled with
PS-InSAR deformation data using two methods: joint training and weighted overlay. The accuracy
of different models was assessed and compared with the aim of determining the optimal coupling
model and the role of InSAR in the model. The results indicate that the accuracy of different landslide
susceptibility prediction models is ranked as RF > SVM > CNN > IV. Among the coupled dynamic
models, the performance ranking was as follows: InSAR jointly trained RF (IJRF) > InSAR weighted
overlay RF (IWRF) > InSAR jointly trained SVM (IJSVM) > InSAR weighted overlay SVM (IWSVM).
Notably, the IJRF model, which combines InSAR deformation data through joint training, exhibited
the highest accuracy, with an AUC value of 0.995. In the factor importance analysis within the IJRF
model, InSAR deformation data ranked third after hydrological distance (0.210) and elevation (0.163),
with a value of 0.154. A comparison between landslide dynamic susceptibility mapping (LDSM)
and landslide susceptibility mapping (LSM) revealed that the inclusion of InSAR deformation data
effectively reduced false positives around the landslide areas. The results suggest that joint training
is the most suitable coupling method, allowing for the optimal expression of InSAR deformation
data and enhancing the predictive accuracy of the model. This study serves as a reference for future
research and provides a foundation for landslide risk management.

Keywords: landslide; dynamic susceptibility mapping; PS-InSAR; coupling model

1. Introduction

Landslides are a prevalent geologic disaster worldwide [1,2]. Reservoir water storage
can significantly change the hydrogeological conditions of bank slopes, leading to landslides
and bank slope deformation [3–5]. As one of the largest reservoirs, numerous landslides
have developed in the Three Gorges Reservoir area [6], posing a serious threat to the life
safety of local residents [7–9]. As an important means for landslide risk control, landslide
susceptibility assessment analyzes the nonlinear relationship between landslides and
related environmental factors [10], providing an accurate spatial probability distribution of
landslide susceptible areas [11,12]. This assessment holds great significance for landslide
disaster prevention and mitigation efforts.

The key to landslide susceptibility assessment lies in the construction of a suscep-
tibility assessment model, the calculation of the spatial probability distribution of the
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landslide susceptible area [10], and the conduction of landslide susceptibility mapping
(LSM). Three types of landslide susceptibility assessment models are commonly used in
existing studies, including heuristic models, mathematical statistical models, and machine
learning (ML) models. Heuristic models such as the analytic hierarchy process (AHP) [13]
require researchers to judge the weights and thresholds of the factors based on their exper-
tise [14]. However, this subjective experience leads to the uncertainty of the model [15].
Mathematical statistical models [16] including the information value method (IV) [17] and
deterministic coefficient method, among others, rely on the engineering analogy method
and superimpose factors in different ways to express the nonlinear relationship between
factors and landslides. Machine learning models such as logistic regression [18], SVM [19],
and RF [16] can efficiently capture the relationship between factors and landslides, which
are widely used in landslide susceptibility assessment on account of their excellent per-
formance and efficient modeling process [20], although partial models mat be challenging
to interpret due to the black-box analysis process. Deep learning models, represented by
CNN, being developed and derived from machine learning models [14], are able to mine
deep features and relationships in data through their neural network structure, enabling
them to address complex problems [21,22]. Although different models exhibit advantages
in different aspects, there is lack of consensus on the optimal model for predicting landslide
susceptibility [23]. To verify the applicability and performance of different models, four
models were employed for landslide susceptibility prediction research in this study: IV
from the mathematical statistical models, SVM and RF from the machine learning models,
and CNN from the deep learning models.

The evolution of a landslide often initiates with the creep stage [24]; monitoring ground
deformation can be used to determine the extent and stability of landslides. [3,25,26]. How-
ever, the current landslide susceptibility assessment typically constructs models through
static factors without considering dynamic features such as ground deformation, which
leads models to misjudge certain landslide areas [23]. With the development of remote
sensing technology, the accurate and long-time surface deformation monitoring data from
InSAR (interferometric synthetic aperture radar) [27–29] enables the construction of a land-
slide dynamic susceptibility model [30,31]. Utilizing the persistent scatterer interferometry
(PSI) technique, Mishra and Jain [32] retrieved the displacements of the Baglihar Dam Reser-
voir slope. Hussain et al. [33] updated the landslide inventory for susceptibility mapping.
Zhu et al. [34] constructed the landslide dynamic susceptibility assessment model by means
of an empirical matrix. Liu et al. [35] and Cao et al. [36] used the weighted overlay method
to construct a landslide dynamic susceptibility assessment model which achieved LDSM
(landslide dynamic susceptibility mapping) by weighting the InSAR deformation data and
LSM. Various landslide susceptibility assessment models and different InSAR coupling
methods were used in these studies to prove the significance of InSAR deformation data in
landslide susceptibility assessment. However, it remains uncertain which coupling method
can be used to obtain the best landslide dynamic susceptibility assessment model.

In summary, this study aimed to compare the performance of different coupled models,
find the optimal method for updating the LSM with InSAR deformation data, and obtain
the best landslide dynamic susceptibility assessment model. The study in this paper was
conducted in three stages: (1) Based on the landslide-related factor data in the study area,
we constructed IV, SVM, RF, and CNN models to obtain the LSM; validation assessment
and performance comparison of the selected models indicated that RF and SVM exhibit the
best performance. (2) Using weighted overlay and joint training methods, the SVM and RF
models are coupled with the InSAR deformation data to construct dynamic susceptibility
models and generate the LDSM. (3) We compared the accuracy of the applied dynamic sus-
ceptibility models based on various statistical indicators, appraised the applicable coupling
method, and analyzed the role of the InSAR deformation data in model through LDSM.
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2. Study Area and Dataset
2.1. Study Area

The study area is in the urban area of Wanzhou District, within the Three Gorges
Reservoir area. Its geographic coordinates range from 108◦19′50′′E to 108◦31′10′′E and
from 30◦43′20′′N to 30◦51′30′′N (Figure 1), covering an approximate area of 289 km2.
Wanzhou is situated in the Yangtze River valley of the eastern Sichuan Basin, characterized
by a subtropical monsoon climate with features of a warm and humid climate, abundant
rainfall, four distinct seasons, and notable vertical stratification [37]. It experiences an
average annual temperature of 18.2 ◦C and an annual precipitation of 1155.8 mm. The
region belongs to the Yangtze River system and features an intricate network of rivers with
significant elevation differences and a dendritic distribution.
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Figure 1. (a) Geographical location of the Three Gorges Reservoir area; (b) Geological map and
geological hazards (red dots) in the Three Gorges Reservoir area; (c) DEM of study area.

Within the study area, there is a distribution of erosional and depositional landforms
along the Yangtze River and its tributaries, characterized by floodplains and terraces [38],
in which the overall elevation is relatively low, with the lowest altitude at 149.2 m above
sea level. The surrounding area consists of low mountains and hills, with elevations mostly
in the range of 440~620 m and reaching a maximum of 825.2 m.

The outcropping strata in the study area belong to the monoclinic Middle Jurassic
period and Quaternary [39]. The J2s lithology comprises sandstone, siltstone, silty clay-
stone, and mudstone, accounting for approximately 73% of the total; the J3s lithology
consists of purple–red mudstone, muddy siltstone, and brownish-red siltstone with vary-
ing thicknesses, interbedded with purple–gray fine-grained feldspathic sandstone, making
up around 23% of the total area. Additionally, small quantities of J3p, J2xs, J2x are distributed
in the eastern and southeastern parts of the study area, as shown in Figure 2f.
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Figure 2. Landslide-related factors in the study area: (a) elevation, (b) slope, (c) aspect, (d) distance 
to roads, (e) distance to waters, (f) lithology, (g) plan curvature, (h) profile curvature, (i) land use 
type, (j) NDVI, and (k) TWI. 

Figure 2. Landslide-related factors in the study area: (a) elevation, (b) slope, (c) aspect, (d) distance
to roads, (e) distance to waters, (f) lithology, (g) plan curvature, (h) profile curvature, (i) land use
type, (j) NDVI, and (k) TWI.
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2.2. SAR Dataset

The Sentinel-1A SAR C-band data were obtained from the European Space Agency
(ESA). The SAR dataset comprises 24 ascending scenes and each image covers an area of
approximately 40 km × 85 km along the Wanzhou–Yunyang section of the Yangtze River
(as shown in Figure 3), with a total coverage area of 3380.8 km2. The image acquisition time
spans from 17 July 2019 to 12 June 2021. Detailed data acquisition dates are included in
Table 1.
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Table 1. Detailed data acquisition dates of Sentinel-1A.

No. Date (yyyy-mm-dd) No. Date (yyyy-mm-dd)

1 2019-07-17 13 2020-07-11
2 2019-08-10 14 2020-08-16
3 2019-09-15 15 2020-09-21
4 2019-10-09 16 2020-10-15
5 2019-11-14 17 2020-11-08
6 2019-12-08 18 2020-12-02
7 2020-01-13 19 2021-01-07
8 2020-02-18 20 2021-02-12
9 2020-03-13 21 2021-03-08
10 2020-04-18 22 2021-04-13
11 2020-05-12 23 2021-05-07
12 2020-06-17 24 2021-06-12

The SAR images are single-look complex data generated using dual HH+HV polariza-
tion and the interferometric wide (IW) swath mode, with an incidence angle of 34◦ and a
spatial resolution of 5 × 20 m. Additionally, the 12.5 m DEM covering the study area was
prepared for the PS processing.

2.3. Landslide-Related Factors and Dataset

This paper considers various conditional factors related to landslide occurrence com-
bined with existing studies on landslide susceptibility and available data in the study
area [6,38,39]. A basic dataset for landslide susceptibility assessment in the study area was
constructed from aspects of stratum lithology, topography, and geological structure [40].
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This dataset comprises eleven factors: elevation, slope, aspect, distance to roads, distance
to river, lithology, plan curvature, profile curvature, NDVI, TWI, and land use type.

The digital elevation model (DEM) serves as the primary tool for representing topo-
graphic features. Topographic and geomorphic factors including elevation, slope, aspect,
plan curvature, profile curvature, and TWI are derived from the DEM data. These factors
provide valuable insights into the topographic relief, convexity, and other characteristics
which are significant causative factors for landslide occurrence [14].

Water flow can accelerate soil erosion and weaken soil strength [41], while vehicular
traffic on roads and surrounding structures can exert additional loads [42]. Collectively,
these factors contribute to the risk of slope instability. Therefore, the distance to the river
and the distance to roads were calculated by Euclidean distance tools in ArcGIS based
on vector data of rivers and roads in the study area and subsequently incorporated into
the dataset.

Geological lithology factors are extracted from geological maps of the study area.
Using Landsat 5/8 remote sensing imagery from the Google Earth Engine (GEE) platform,
spatial data with a resolution of 30 m for NDVI and land use types can be obtained. Vegeta-
tion loss due to human activities is one of the major factors causing shallow landslides [14].
NDVI and land use types provide insights into vegetation density and human activity in
the study area [43].

Standardizing all factors to a consistent spatial scale, cropping them to the study
area’s extent, and dividing them into grid of 30 × 30 m with a total of 434,005 uniform
raster cells, we obtained a raster dataset for the study area which can be used for further
landslide susceptibility analysis. During the training process for machine learning and deep
learning, the dataset was divided: 70% was used for the training set and 30% was used for
the validation set. A total of 10,000 positive and 20,000 negative samples were randomly
selected from the training set and used for training landslide susceptibility assessment
models so that the susceptibility prediction could be conducted for the whole study area.

3. Methodology
3.1. Multicollinearity Analysis

In landslide susceptibility assessment, multicollinearity of influencing factors will lead
to redundancy and the mutual interference of inputs, which has a negative influence on
the predictive ability of the model [36]. To assess the independence of factors, researchers
often employ methods such as principal component analysis, the variance inflation factor
(VIF), regression analysis, and the Pearson correlation coefficient [14,44–46]. In this study,
VIF and TOL (tolerance) are used to measure the linear correlation of factors and can be
calculated using Equation (1).

VIF =
1

1− R2 =
1

TOL
(1)

Here, R2 represents the variance between influencing factors. When VIF > 5 or
TOL < 0.2, the multicollinearity in the dataset will be considered.

3.2. Landslide Susceptibility Assessment Models
3.2.1. Information Value (IV) Model

The information value (IV) method is a mathematical statistical analysis method based
on information theory and the engineering analogy method [16]. It was proposed by
Claude Shannon in the 1940s during his study of information theory and has since been
widely applied in the assessment of geohazard susceptibility. The occurrence of geohazards
is influenced a multitude of factors, with each factor contributing to varying degrees [47].
The IV model constructs the landslide susceptibility assessment model by analyzing the
distribution relationship between the known hazard points and factors, quantitatively
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calculating the weight of the factor on the occurrence of the hazard, and standardizes the
scales of each factor [13,48–50]. The formula is as follows:

I =
n

∑
i=1

Ii =
n

∑
i=1

ln
Ni/N
Si/S

(2)

where: I represents the information value of the assessment raster cells; Ii is the informa-
tion value provided by factor i for geohazards; Ni is the number of raster cells in which
geohazards have occurred for influence factor i; N is the total number of geohazard raster
cells in study area; Si is the total number of raster cells for influence factor i; and S is the
total number of raster cells in the study area.

3.2.2. Random Forest (RF)

The random forest (RF) model is an integrated learning model based on decision
trees [50]. It constructs multiple decision trees to make individual predictions and com-
bines the results by a majority vote to arrive at the final prediction [49,51]. Leveraging
bootstrap aggregating and the random subspace method, the RF method randomly sam-
ples training data for each decision tree and selects a subset of features for node split-
ting [14]. This random selection process can control both the bias and variance, reduce inter-
feature correlations, and enhance the model’s robustness against outliers and noise [52].
Additionally, RF offers advantages such as not requiring dimensionality reduction for
high-dimensional problems and the ability to evaluate the importance of each feature in
classification tasks [53].

3.2.3. Support Vector Machine (SVM)

The support vector machine (SVM) model, introduced by Vapnik et al. [54], is a
machine learning model that maps data into high-dimensional feature space using kernel
functions and identifies the optimal hyperplane for data classification with the aim of
maximizing the distance between data samples [14,19,24]. Based on support vector theory
and structural risk minimization, it can be applied to address issues such as classification,
regression, and pattern recognition [55]. The most generalized kernel function is the
Gaussian kernel (also known as the radial basis function, RBF) [51]; based on the RBF, the
final decision function can be composed as follows:

g(x) = sign

(
n

∑
i=1

γiαiK
(
xi, xj

)
+ b

)
(3)

where K(xi, xj) is the RBF kernel function. Since its inception, SVM has rapidly emerged
as an indispensable tool in the field of machine learning; its exceptional classification
capabilities, adaptability, and interpretability have led to its widespread application across
various domains.

3.2.4. Convolutional Neural Network (CNN)

The convolutional neural network (CNN) model is a deep learning model initially
proposed by LeCun for addressing image recognition tasks [56]. It is a NN (neural network)
architecture model consisting of convolution layers, pooling layers, and fully connected
layers [57]. By performing convolution operations with appropriately shaped kernels,
transmitting and mapping data through the neurons, CNN can extract features from data
progressively. The convolution algorithm is as follows:

Cj = ∑N
i=0

(
wjxb + bj

)
(j = 1, 2, · · · , k) (4)

Here, k represents the number of convolution kernels; Cj represents the output of
the j-th convolution kernel; i signifies the spatial position; xi signifies the input within
the convolution window; wj refers the weights; bj refers the bias. CNNs gradually im-
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prove their model performance to fit training data and accomplish classification tasks
through multiple iterations by calculating the loss function, backpropagating gradients,
and updating weights.

In this study, a CNN model was constructed for landslide susceptibility assessment,
comprising six convolution layers, six pooling layers, and two fully connected layers.
Max-pooling layers were added to reduce the feature dimensions of the convolution layer
outputs, aiding the model in learning different features and deep relationships from the
input data [58]. Subsequently, the learned features were combined, transformed, and
mapped to various categories through the fully connected layers. Adding the ReLU and
tanh functions as activation functions for the convolutional and fully connected layers
enables nonlinear transformations of the output results, thereby enhancing the model’s
ability to express intricate relationships [59]. The ReLU and tanh functions are as follows:

f (x) =
{

x i f x > 0
0 i f x ≤ 0

max(0, x) (5)

f (x) = tanh(x) =
ex − e−x

ex + e−x (6)

Finally, the model combines the extracted features and maps them to the (0, 1) interval
through the sigmoid activation function, generating probability values as the predictions
results for landslide classification.

3.3. Model Accuracy Verification Methods

We employed ROC (receiver operating characteristic) curves, a confusion matrix, and
the FR (frequency ratio) to quantitatively evaluate the accuracy and performance of models.
The ROC curve is one of the most used accuracy evaluation methods in probabilistic
models. The curve is constructed using specificity and sensitivity based on the model’s
prediction results and evaluates the model accuracy through the AUC (area under the
ROC curve) [60]. AUC values fall within the interval of [0.5, 1], and a higher AUC value
approaching 1 indicates a better model accuracy, while a value near 0.5 suggests the model
lacks predictive capability [61].

The confusion matrix categorizes binary classification results into four classes [36]:
true positive (TP), true negative (TN), false positive (FP), and false negative (FN). Based on
the parameters derived from the confusion matrix, the following four model performance
evaluation metrics can be calculated [14]:

Accuracy measures the proportion of correctly classified samples in the total sample,
with the formula:

Accuracy =
TP + TN

TP + FP + TN + FN
(7)

Recall assesses the model’s ability to identify positive samples, represented by the
proportion of correctly predicted positive samples out of all true positive samples, and can
be calculated using:

Recall =
TP

TP + FN
(8)

Precision is the proportion of correctly predicted positive samples out of all predicted
positive samples, measuring the accuracy of the model’s predictions for positive samples.
Its formula is as follows:

Precision =
TP

TP + FP
(9)

F1 score is a composite metric that considers both recall and precision, computed as
the harmonic mean of both. It is used to comprehensively evaluated the performance of
the classification model and its formula is defined as:

F1 Score = 2× Precision · Recall
Precision + Recall

(10)
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The frequency ratio (FR) represents the ratio of the landslide area in a specific at-
tribute interval of a factor to the total area of that attribute interval within the entire study
area [10,62]. In different susceptibility partitions generated by various models, calculating
their corresponding FR values can indict the partition’s ability to express positive and
negative landslide samples [13,49]. The formula is as follows:

FR =
Ni/N
Si/S

(11)

FR values greater than 1 indicate that the corresponding attribute interval is more
conducive for landslide occurrence and vice versa.

3.4. PS-InSAR

PS-InSAR employs interferometry synthetic aperture radar technology in conjunction
with persistent scatterers (PS) to monitor subtle surface deformations [63,64]. Based on
time-series InSAR data and the single master interferogram method, we conduct operations
of registration, clipping, and noise reduction on multiple PS points within the image area
of study, resulting in the generation of time-series deformation data for these PS points [65].
Subsequently, an interpolation method was applied to generate a ground deformation
map (GDM) by integrating the PS points within the study area. This map provides precise
measurements of surface subsidence, uplift, and displacement, thus serving as a valuable
basis for the timely identification of potential geological hazards [66].

3.5. Dynamic Evaluation of Landslide Susceptibility

The application of InSAR technology in landslide susceptibility assessment enhances
the consideration of dynamic factors such as ground uplift and subsidence, enabling the
identification of potential landslide areas during the creep phase, leading to more accurate
assessment results [67]. Common methods for integrating InSAR deformation data with
landslide susceptibility models include joint training [23], weighted overlays [36], and
constructing evaluation matrices [35,64]. In this study, we employed the first two coupling
methods, selecting the top-performing two models to couple with InSAR deformation data
in IV, SVM, RF, and CNN, resulting in dynamic landslide susceptibility assessment models.
Subsequently, we calculated the probability distribution of landslide occurrence based
on these coupled models, generated the LDSM, and conducted a comparative analysis of
model performance.

The joint training method integrates InSAR deformation data as influencing factors
into the base dataset. After undergoing the same preprocessing as other factors, InSAR
deformation data is jointly trained in the model. This process extracted features from InSAR
deformation data by leveraging the nonlinear function of models, revealing its relationship
with landslide disasters and constructing a susceptibility assessment model that considers
dynamic features.

The weighted overlay method considers both geological conditions and landslide
evolution. It assigns weights to the GDM derived from InSAR data and the LSM obtained
from landslide susceptibility assessment models after normalizing the absolute values
of InSAR deformation data [36]. These two weighted components are overlaid to create
a landslide dynamic susceptibility assessment model. The weighted overlay formula is
as follows:

LDSM = 0.61 ∗ LSM + 0.39 ∗ GDM (12)

The flow chart of the research process is shown in Figure 4.
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4. Results
4.1. The Multicollinearity Analysis of Related Factors

Table 2 presents the results of multicollinearity testing among the 11 factors related
to landslides. Among all the factors, elevation has the highest VIF value (3.011) and the
lowest TOL value (0.332), while the distance to roads displays the lowest VIF value (1.080)
and the highest TOL value (0.926). The results of the multicollinearity test show that the
VIF and TOL values of selected factors are better than the critical value of insignificant mul-
ticollinearity (VIF > 5 and TOL < 0.2), indicating the absence of significant multicollinearity.
This suggests that the selected factors have good independence and can be used for training
models to achieve highly accurate predictive results.

Table 2. Results of multicollinearity assessment (VIF and tolerance value).

Impact Factors VIF TOL

Elevation 3.011 0.332
Slope 1.755 0.570

Slope aspect 1.084 0.923
Plan curvature 1.210 0.827

Profile curvature 1.113 0.898
Lithologic 1.186 0.843

Distance to rivers 2.064 0.484
Distance to roads 1.080 0.926

TWI 2.126 0.470
NDVI 2.443 0.409

Land use type 1.829 0.547

4.2. Landslide Susceptibility Mapping

Based on the prepared dataset, the IV, SVM, RF, and CNN methods were applied to
assess landslide susceptibility in the study area. Segmented into high (H), moderate (M),
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low (L), and very low (VL) landslide susceptibility using the natural breakpoint method,
the probability predictions of selected models were visualized as LSM in ArcGIS (Figure 5).
As depicted in Figure 5, the H susceptibility areas are primarily concentrated along the
Yangtze River and its tributaries, especially in the sloped areas along the banks of the
Yangtze River in Tangjiao Village and Tiancheng District, the regions along the bank of the
Zhuxi River, and the valley areas at the origins of the Wuqiao River and Longbao River
in the southern part of the study area. These areas are distributed along riverbanks and
transitional zones between low hills and riverbanks. The erosion caused by fluctuations in
reservoir water levels has diminished the stability of slopes in these areas. Furthermore,
as these regions are interconnected with densely populated areas, frequent engineering
activities and the depletion of vegetation exacerbate the susceptibility to landslides.
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Figure 5. Landslide susceptibility maps: (a) LSM by IV, (b) LSM by RF, (c) LSM by SVM, and (d) LSM
by CNN.

Among these models, the LSM of the IV model demonstrates a strong correlation with
the factor of distance to rivers. All areas along the Yangtze River and its tributaries are
identified as H susceptibility landslide areas. Overall, the susceptibility tends to decrease as
the distance to rivers increases. While the IV model effectively partitions susceptibility areas
to some extent, it struggles to distinguish varying landslide susceptibility when regions
have similar distances to rivers, primarily due to the high weighting of the distance to rivers
factor, which results from the predominant distribution of landslides along watercourses.
Therefore, the IV model is considered to have the issue of insufficient differentiation. Table 3
illustrates the landslide grid ratios and information value in each class of IV model.
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Table 3. Detailed parameters of each class in the IV model.

Assessment
Factors Value

Landslide Grids Total Study Area Information
ValueCount Percentage (%) Count Percentage (%)

Elevation
(m)

149~250 5413 54.54 80,747 36.87 0.708
250~450 3710 37.38 129,436 43.06 −0.142
450~650 802 8.08 83,535 27.79 −1.235
650~825 0 0.00 6846 2.28 −5.421

Slope (◦)

0~10 4077 41.08 129,857 43.20 −0.505
10~20 3508 35.35 92,705 30.84 0.136
20~30 1988 20.03 58,592 19.49 0.027
30~40 324 3.26 16,742 5.57 −0.534

>40 28 0.28 2668 0.89 −1.146

Slope aspect

Flat 2 0.02 20,105 6.69 −5.805
North 2040 20.55 52,729 17.54 1.588

Northeast 1664 16.77 34,763 11.75 0.371
East 1017 10.25 29,637 9.86 0.039

Southeast 997 10.05 28,477 9.47 0.059
South 1304 13.14 32,859 10.93 0.184

Southwest 670 6.75 33,016 10.98 −0.487
West 995 10.03 32,163 10.70 −0.065

Northwest 1236 12.45 36,815 12.25 0.017

Plan curvature
−1< 4581 46.16 129,102 42.95 0.072
−1~1 539 5.43 35,895 11.94 −0.788

>1 4805 48.41 135,567 45.10 0.071

Profile
curvature

−1< 4506 45.40 129,112 42.96 0.055
−1~1 355 3.58 30,525 10.16 −1.044

>1 5064 51.02 140,927 46.89 0.085

Lithologic

J3s 514 5.18 66,640 22.17 −1.45
J2s 9411 94.82 227,522 75.7 0.225
J2xs 0 0.00 1174 0.39 −3.658
J3p 0 0.00 5083 1.69 −5.123
J2x 0 0.00 145 0.05 −1.566

Distance to
river (m)

0 10 0.10 30,762 10.23 −4.62
0~100 4527 45.61 37,441 12.46 1.298

100~200 2870 28.92 42,636 14.19 0.712
200~300 1316 13.26 71,582 23.82 −0.586
300~400 915 9.22 57,638 19.18 −0.732

>400 287 2.89 60,505 20.13 −1.940

Distance to
road (m)

0~20 1036 10.44 19,987 6.65 0.451
20~50 1515 15.26 27,384 9.11 0.516
50~100 1740 17.53 35,841 11.92 0.385

100~200 2146 21.62 46,378 15.43 0.337
>200 3488 35.14 170,974 56.88 −0.482

TWI

0~5 891 8.98 37,106 12.35 −0.319
5~7 3458 34.84 118,051 39.28 −0.112
7~10 4595 46.3 96,035 31.95 0.371
>10 981 9.88 49,372 16.43 −0.508

NDVI

0~0.4 810 8.16 46,904 15.61 −0.648
0.4~0.6 1408 14.19 32,155 10.70 0.282

0.6~0.75 1690 17.03 35,953 11.96 0.353
0.75~0.9 3769 37.97 100,451 33.42 0.128

>0.9 2248 22.65 85,101 28.31 −0.223

Land use type

Agricultural land 6377 64.25 171,660 57.11 0.118
Forest 198 1.99 16,952 5.64 −1.039

Shrubland 77 0.78 4783 1.59 −0.718
River 171 1.72 25,521 8.49 −1.59

Artificial surface 3102 31.25 81,648 27.16 0.140
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The susceptibility results of the other three prediction models showed that the areas
with H susceptibility were consistent with the landslide distribution area, but there were
still some differences in the details. The RF model achieved its best performance with
parameters set at max_depth = 20, min_samples_leaf = 1, min_samples_split = 6, and
n_estimators = 46. Among the factors, the distance to rivers carried the highest weight
of 0.225, while lithology had the lowest weight of 0.028. The LSM generated based on
RF-predicted probabilities shows adequate continuity and a reasonable distribution at
different susceptibility levels. The SVM model performed best with parameters set at C = 1,
kernel = ‘rbf’, and gamma = 0.8. The susceptibility partitions in the LSM produced by the
SVM have a similar distribution to the RF model overall. However, the results of the SVM
exhibit fragmentation and lower continuity. The CNN model achieved optimal results with
parameters set at learning_rate = 0.01 and batch_size = 64. The LSM demonstrates moderate
continuity, and areas closer to watercourses were accurately identified as high susceptibility
areas. However, some landslide areas far from watercourses were not correctly labeled as
high susceptibility areas.

4.3. Model Accuracy Verification

Various statistical model evaluation metrics enable a comprehensive assessment of
model accuracy from different perspectives, facilitating a quantitative performance com-
parison. The ROC curve is a valuable tool for assessing model performance, and the AUC
value can provide an intuitive representation of predictive accuracy. According to Figure 6,
the AUC values for the IV, SVM, RF, and CNN models are 0.865, 0.953, 0.980, and 0.888,
respectively. All models have AUC values above 0.8, indicating their competence in land-
slide prediction. Notably, the RF and SVM models outperform the others in terms of the
AUC value, with the RF model achieving the highest AUC value of 0.980.
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The confusion matrix is used to compare the classification results with the actual
circumstances and measure the classification performance of models by deriving the pa-
rameters of accuracy, recall, precision and F1 score. Models with higher accuracy, F1 score,
and a balance in recall and precision are typically regarded as performing better. Figure 7
portrays the accuracy, recall, precision, F1 score, and training speed of the selected models,
respectively. For the sake of convenient comparison, the training speed is represented by
the natural logarithm of the training time (except for the IV model). As shown in Figure 7,
most models perform well in accuracy but show subpar performance in precision. The
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RF model exhibited the best performance metrics, with an accuracy of 0.976, a recall of
0.647, a precision of 0.625, an F1 score of 0.636, and the shortest training time compared to
the other ML models. These indicators suggest that the model performance is ranked as:
RF > SVM > CNN > IV.
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FR is a reliable technique for quantifying the ability to express landslides within
different susceptibility zones. To mitigate the differences in magnitudes and facilitate a
more convenient comparison, natural logarithm processing was applied to FR, and the
results are presented in Figure 8. Models with a higher FR in the H susceptibility zone and
a lower FR in the M, L, and VL susceptibility zones are regarded as possessing enhanced
classification capabilities. As shown in Figure 8, the prediction results of the SVM and RF
exhibit higher landslide raster ratios in the H susceptibility zone and lower values in other
susceptibility zones. In contrast, the IV and CNN models show lower landslide raster ratios
in the H susceptibility zone but higher values in other susceptibility zones. The results
indicate the superior ability of SVM and RF to distinguish landslide-prone areas.
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Based on the comparative analysis conducted, it is evident that the SVM model and
RF model exhibit the best performance in analyzing the relationship between landslide
disasters and landslide-related factors, providing the most accurate landslide susceptibility
predictions in the study area. Consequently, we have selected the SVM and RF models as
the foundation for coupling with InSAR deformation data and conducting further analysis.

4.4. Result of PS-InSAR

Based on the SAR dataset, persistent scatterer interferometry (PSI) was conducted
in ENVI 5.6. The scenes were paired to create 23 connection graphs, and the baseline
is illustrated in Figure 9. Subsequently, interferometric processing, two inversions, and
geocoding were performed, resulting in a deformation dataset containing 260,039 PS points.
The parameters used in the PS process are detailed in Table 4.
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Table 4. Main set parameters for PS processing.

Parameter Value

Orbit configuration Ascending
Size of scenes 40 × 85 km

Number of scenes 24
Look azimuth-angle 80.45◦

Max. temporal baseline 396 days
Max. normal baseline 119.23 m
Coherence thresholds 0.35

Subarea for single reference point 25 km2

Overlap for subarea 30%

After removing noisy PS points, we converted the PS points into a raster image in
ArcGIS using their deformation rates as a field, producing the deformation rates in PS
points for the study area (as shown in Figure 10a). Then, the “Kriging” tool was employed
to interpolate the PS points, generating the deformation rates for the entire study area, as
depicted in Figure 10b.
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Figure 10. (a) Mean vertical deformation rate PS-points map; (b) Ground deformation map of the
study area after Kriging.

As shown in Figure 10, the areas adjacent to rivers in the study area exhibit an uplift
trend, while the low hills and ridges regions further from rivers display subsidence trends.
The maximum annual average uplift rate within the study area, measured at 40.18 mm/year,
was observed in the urban area on the south bank of the Zhuxi River. Conversely, the
highest subsidence rate, reaching 40.25 mm/year, was identified around Wanzhou Wuqiao
Airport and the hilly region north of the Yangtze River.

4.5. Landslide Dynamic Susceptibility Mapping

The SVM and RF models were coupled with InSAR in two different methods, resulting
in four landslide dynamic susceptibility assessment models: InSAR weighted overlay SVM
(IWSVM), InSAR jointly trained SVM (IJSVM), InSAR weighted overlay RF (IWRF), and
InSAR jointly trained RF (IJRF). The landslide probability predictions for each model were
segmented through the natural breakpoint method in ArcGIS and visualized as LDSM (as
shown in Figure 11). Overall, the LDSMs of the coupled models show a similar suscep-
tibility distribution to the uncoupled models. With the introduction of the deformation
characteristic factor, the jointly trained models demonstrate a decrease in M and L suscepti-
bility areas, while VL susceptibility areas increase; in the weighted overlay models, the M
and L susceptibility areas increase and VL susceptibility areas decrease.

The LDSM of the IJSVM model has partially alleviated the issue of fragmentation in
susceptibility partitions. However, there is still some intermingling in certain H and M
susceptibility areas, resulting in insufficient continuity. The IWSVM model predicts more
areas as H susceptibility areas, with more dispersion-prone areas. The IJRF model achieved
a more reasonable distribution of susceptibility partitions, accurately identifying landslide
areas as H susceptibility areas. The susceptibility of non-landslide areas decreased after
considering the deformation information feature, leading to a reduction in H, M, and
L susceptibility areas and an increase in VL susceptibility areas. The prediction results
of the IWRF model exhibit more M and L susceptibility areas and a concentration of H
susceptibility areas around the watercourses.
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5. Discussion

Landslide susceptibility mapping is a crucial method in the risk assessment and con-
trol of landslide disasters. However, due to the lack of dynamic landslide characteristics,
which results in the absence of landslide movement state features, traditional models fail to
provide reliable susceptibility assessment results. In our previous research, four models
were applied for landslide susceptibility mapping in the study area, and a comparative
analysis of these models was conducted using various evaluation parameters. Then, we
used PS-InSAR technology to obtain the GDM of the study area and coupled the GDM
with the SVM and RF models using two methods, resulting in four dynamic models and
the generation of LDSMs for the study area. The difference between the LDSM and LSM in-
dicates the effect of InSAR deformation data, demonstrating the feasibility of susceptibility
assessment models that consider dynamic features. However, different coupling methods
expressed the InSAR deformation data in separate ways. Therefore, we employed the same
evaluation methods as before, validating the performance of these dynamic susceptibility
models. Through further comparative analysis, we aimed to evaluate the performance of
different dynamic models and assess the effect of InSAR deformation data in these models.
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5.1. Performance Comparison of Landslide Dynamic Susceptibility Models

The original models and the four dynamic models before and after considering dy-
namic features were evaluated based on ROC curves and AUC values. The comparative
results are illustrated in Figure 12. The AUC values for IJRF, IWRF, IJSVM, and IWSVM
were 0.995, 0.973, 0.972, and 0.947. IJRF and IJSVM exhibited improvements of 1.53% and
1.99% compared with RF and SVM. Conversely, the AUC values of IWRF and IWSVM
showed reductions of 0.71% and 0.63%. Among these models, the IJRF model achieved the
best performance, with an AUC value of 0.995. The results of the ROC indicated that the
coupling method of joint training enhances model accuracy, whereas the weighted overlay
method diminishes model accuracy.
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Similarly, the computed confusion matrix derived further parameters of dynamic
susceptibility assessment models, as shown in Figure 13. It is evident from the figure that
all models exhibit an accuracy exceeding 0.95, indicating their high precision. However,
except for IJRF, the precision values of the models are significantly lower than their recall
values, indicating that these models fail to strike a balance between recall and precision.
This suggests these models could predict landslides but struggle in ensuring the accuracy
of samples identified as landslides. In contrast, the IJRF model displays an accuracy, recall,
precision, and F1 score of 0.991, 0.847, 0.885, and 0.865, respectively, and has the highest
performance of all examined models in these terms.

FR values represent the landslide proportions in the VL, L, M, and H susceptibility lev-
els for each model. These FR values are naturally logarithmically scaled and are presented
in Figure 14. From the figure, it can be observed that SVM and its coupled models have
higher landslide proportions in the VL and L susceptibility areas but lower proportions in
the H susceptibility areas. That indicates its poor discrimination ability in distinguishing
landslide susceptibility areas. On the other hand, the RF and its coupled models have both
lower landslide proportions in the VL and L susceptibility areas and higher proportions in
M and H partitions. Notably, the IJRF model, while having a lower proportion of landslide
areas in the VL susceptibility area, has the highest proportion of landslide areas in the H
susceptibility area, indicating the superiority of the IJRF model in discriminating landslide
susceptibility areas from non-landslide susceptibility areas.
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5.2. Effect Analysis of InSAR Deformation Data

The importance of landslide-related factors in the RF and IJRF models is depicted
in Figure 15. Factor importance indicates the extent to which each factor influences the
model’s classification performance, signifying how each factor helps the model explain the
relationships of landslides and related factors. According to Figure 15, these two models
share a similar distribution of factor importance, with the distance to rivers being the
most crucial factor in both cases, while lithology, distance to roads, land use type have
lower factor importance. After the inclusion of InSAR deformation data as a factor, the
importance of other factors in the IJRF model slightly decreased, with InSAR deformation
data having an importance score of 0.154, ranking third among the twelve factors. In
the IJRF model, InSAR deformation data as a factor provides discriminative information
between landslide and non-landslide samples, playing a significant role in the RF model’s
classification decisions, thereby enhancing the model’s performance.
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Furthermore, we discuss the impact of introducing InSAR deformation data by an-
alyzing the changes in LSM within typical landslide areas. The Sifangbei landslide and
Cizhuyuan landslide areas were chosen as representative cases; their LSMs generated by
RF and GDM and LDSMs obtained through IJRF are depicted in Figure 16.
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For the Sifangbei landslide area, situated on the northeast bank of the Yangtze River
(a), the RF model identified the riverbank portion as a high susceptibility area for landslide
disasters, but the LSM (b1) failed to accurately delineate the landslide boundaries. The
GDM (b2) revealed substantial subsidence deformation in the Sifangbei landslide area
compared to its surroundings. The inclusion of InSAR deformation data in the IJRF
model led to improved differentiation between landslide and non-landslide areas along the
riverbank area, as evidenced by the LDSM (b3). It effectively outlined the regions of the
Sifangbei landslide while reducing the susceptibility of other surrounding non-landslide
areas, enhancing the model’s performance.



Remote Sens. 2023, 15, 5427 22 of 25

The Cizhuyuan landslide area is located at the source of the Longbao River on the west
bank of the Yangtze River (a). In this area, the LSM generated by the RF model (c1) predicted
a significant number of false-positive areas within the H and M susceptibility zones. The
introduction of the InSAR deformation factor (c2) reduced the H and M susceptibility areas
for non-landslide areas in the LSM, resulting in a more accurate judgment of non-landslide
regions in the LDSM (c3).

Overall, these comparisons demonstrate the enhanced performance of the IJRF model
with the consideration of deformation features, which aids in more accurately identifying
landslide areas and reducing susceptibility ratings for non-landslide regions around the
landslide susceptible area.

6. Conclusions

Remote sensing images and the time-series InSAR technique provide critical data for
the early identification and stability assessment of landslides [31,68,69], but are often under-
utilized in existing landslide susceptibility evaluation studies. Focusing on the Wanzhou
urban area within the Three Gorges Reservoir area (TGRA), this paper presented landslide
susceptibility mapping (LSM) and time series deformation analysis based on geological
and Sentinel-1 data and explored the landslide dynamic susceptibility mapping (LDSM)
method coupled with machine learning and the PS-InSAR model in different approaches.

LSM shows that high landslide susceptibility areas in the Wanzhou urban area are
primarily concentrated along the riverside. The SVM and RF show superior performance
in various evaluation indicators than other models (IV, CNN). The subsidence of Wanzhou
urban area obtained using InSAR techniques ranges from −40.25 to 40.18 mm/year, with
some deformed regions correlated with potential landslides. After incorporating InSAR
deformation data as a training factor, the results of the IJRF model exhibited fewer false
positives and a more precise delineation of landslide areas. Additionally, the importance of
factors indicated the critical role of InSAR deformation data in the IJRF model.

Summarily, the integration of time series InSAR analysis with the RF machine learning
model effectively enhanced the LSM model’s precision, contributing to disaster preven-
tion and mitigation in the TGRA. However, the C-band (wavelength 5.6 cm) data used in
this study was prone to decorrelation with the presence of vegetation, leading to inaccu-
rate estimations of ground deformation [32]. Therefore, longer-band, multi-spatial view
SAR data and multi-temporal InSAR (MT-InSAR) methods will be considered to obtain
comprehensive ground deformation data and assist in landslide susceptibility mapping.
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