
Citation: Hao, X.; Liu, X.; Liu, Y.;

Cui, Y.; Lei, T. Infrared Small-Target

Detection Based on

Background-Suppression Proximal

Gradient and GPU Acceleration.

Remote Sens. 2023, 15, 5424.

https://doi.org/10.3390/rs15225424

Academic Editor: Paolo Tripicchio

Received: 1 October 2023

Revised: 5 November 2023

Accepted: 15 November 2023

Published: 20 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing

Article

Infrared Small-Target Detection Based on Background-Suppression
Proximal Gradient and GPU Acceleration
Xuying Hao 1,2,3 , Xianyuan Liu 1,2,3 , Yujia Liu 1,2,3 , Yi Cui 1,2,3 and Tao Lei 1,2,3,*

1 National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of
Sciences, Chengdu 610209, China; haoxuying20@mails.ucas.ac.cn (X.H.);
liuxianyuan16@mails.ucas.ac.cn (X.L.); liuyujia20@mails.ucas.ac.cn (Y.L.); cuiyi@ioe.ac.cn (Y.C.)

2 Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
3 School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences,

Beijing 101408, China
* Correspondence: taoleiyan@ioe.ac.cn

Abstract: Patch-based methods improve the performance of infrared small target detection, trans-
forming the detection problem into a Low-Rank Sparse Decomposition (LRSD) problem. However,
two challenges hinder the success of these methods: (1) The interference from strong edges of the
background, and (2) the time-consuming nature of solving the model. To tackle these two chal-
lenges, we propose a novel infrared small-target detection method using a Background-Suppression
Proximal Gradient (BSPG) and GPU parallelism. We first propose a new continuation strategy to
suppress the strong edges. This strategy enables the model to simultaneously consider heterogeneous
components while dealing with low-rank backgrounds. Then, the Approximate Partial Singular
Value Decomposition (APSVD) is presented to accelerate solution of the LRSD problem and further
improve the solution accuracy. Finally, we implement our method on GPU using multi-threaded
parallelism, in order to further enhance the computational efficiency of the model. The experimental
results demonstrate that our method out-performs existing advanced methods, in terms of detection
accuracy and execution time.

Keywords: infrared small target detection; proximal gradient; approximate partial SVD; GPU acceleration

1. Introduction

Infrared Small-Target Detection (ISTD) is an important component of infrared search
and tracking, aiming to exploit the thermal radiation difference between a target and
its background to achieve long-range target detection. According to the definition by
the Society of Photo-Optical Instrumentation Engineers (SPIE), small targets typically
refers to objects in a 256 × 256 image with an area of fewer than 80 pixels, accounting
for approximately 0.12% of the total image area [1]. These small targets usually appear
as faint, tiny points, characterized by their diminutive size and a lack of clear texture
and shape features. Moreover, the background in infrared images is often affected by
random noise, clutter, and environmental factors, making small targets vulnerable to
interference. Furthermore, some practical applications have strict requirements on the
real-time performance of detection algorithms. Therefore, the rapid and accurate detection
of small targets in complex backgrounds poses a significant challenge.

Two primary methods are employed in ISTD for target detection: Tracking-Before-
Detection (TBD) and Detection-Before-Tracking (DBT). TBD relies on the temporal infor-
mation of consecutive frames to capture the movement and features of potential targets.
It struggles with stationary or sporadically moving targets and is constrained by compu-
tational resources. On the other hand, DBT applies single-frame ISTD to infrared data,
identifying potential targets based on features such as contrast and low-rank sparsity.
Single-frame infrared small target detection has been widely concerned because of its

Remote Sens. 2023, 15, 5424. https://doi.org/10.3390/rs15225424 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15225424
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-4957-6364
https://orcid.org/0000-0002-3084-519X
https://orcid.org/0000-0001-5105-6045
https://orcid.org/0000-0002-0900-1582
https://doi.org/10.3390/rs15225424
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15225424?type=check_update&version=1

Remote Sens. 2023, 15, 5424 2 of 23

simple data acquisition, low computational complexity, not affected by target motion, and
wide applicability.

The categorization of single-frame ISTD can be determined by the structure of the image;
that is, whether (1) the original image or (2) the patch image is used [2]. The first category
detects the target directly from the original image; for example, by filtering or Human Vision
System (HVS). Filter-based methods [3–6] have limited utility in ISTD, due to their strict
requirements on the background variation and prior knowledge. Meanwhile, HVS-based
methods [7–11] use the contrast mechanism to quantify the difference between the target and
the background, thereby enhancing small targets. However, these methods are limited by the
local saliency of the target, rendering them ineffective when detecting targets that are dark
or similar to the background. Some deep learning technologies [12–15] have recently been
applied to this category, but a lack of large data sets limits their performance.

The other category—namely, patch-based methods—transforms small target detection
into a low-rank matrix recovery problem [16]. This transformation can circumvent the
aforementioned limitations, such as the dependence on prior knowledge and target saliency,
as well as the false detection of dark targets. The most popular method is Infrared Patch-
Image (IPI) [17], which uses a sliding window technique to generate a corresponding patch
image from the original image. Due to its outstanding performance, many studies [18–26]
have been conducted on IPI, which typically yields superior results. However, patch-based
methods still have two problems: (1) The misclassification of strong edges as sparse target
components, and (2) the time-consuming nature of the method.

The above-mentioned misclassification arises from the limited ability of the model
to distinguish strong edges from sparse components. To address this issue, we propose
a Background Suppression Proximal Gradient (BSPG) method, incorporating a novel
continuation strategy during the alternating updating of low-rank and sparse components.
Our proposed continuation strategy can preserve more components while updating the
low-rank matrix, while also reducing the update rate of sparse matrix. As strong edges
frequently correspond to larger singular values than targets, the former facilitates the
transition of strong edges from sparse components to low-rank components, thereby
enabling the model to eliminate the affect of strong edges. Meanwhile, the latter ensures
the convergence of the algorithm.

The time-consuming nature of patch-based methods is due to the complex nature of solving
the method, mainly including solving the LRSD problem and constructing/reconstructing
patch images. To address this issue, we utilize both algorithmic optimizations and hardware
enhancements. At the algorithmic level, we propose an approximate partial SVD (APSVD) for
efficiently solving the LRSD problem and use a rank estimation method to ensure the accuracy
of the solution. At the hardware level, we propose the use of GPU multi-threaded parallelism
strategies to expedite the construction and reconstruction modules, as these modules can be
decomposed into repetitive and independent sub-tasks.

Our main contributions can be summarized as follows:

• A novel continuation strategy based on the Proximal Gradient (PG) algorithm is intro-
duced to suppress strong edges. This continuation strategy preserves heterogeneous
backgrounds as low-rank components, hence reducing false alarms.

• The APSVD is proposed for solving the LRSD problem, which is more efficient than the
original SVD. Subsequently, parallel strategies are presented to accelerate the construction
and reconstruction of patch images. These designs can reduce the computation time at
the algorithmic and hardware levels, facilitating rapid and accurate solution.

• Implementation of the proposed method on GPU is executed and experimentally
validate its effectiveness with respect to the detection accuracy and computation
time. The obtained results demonstrate that the proposed method out-performs
nine state-of-the-art methods.

The remainder of this paper is organized as follows: Section 2 presents the related work.
Section 3 details our proposed BSPG algorithm and GPU acceleration strategies. Section 4
introduces the data set and experimental settings, as well as providing the experimental

Remote Sens. 2023, 15, 5424 3 of 23

results and analysis. Section 5 discusses the results of the experiments. Section 6 gives a
summary of our method.

2. Related Work
2.1. HVS-Based Methods

HVS-based methods detect small targets by utilizing the contrast differences between
the target region and its surrounding background. These methods can be categorized
based on the type of information they use: grey scale information, gradient information,
and a combination of both grey scale and gradient information. Local Contrast Measure
(LCM) [1] proposes a novel method for detecting small targets by leveraging grey scale
contrast. This method uses a contrast mechanism designed to enhance small targets while
effectively suppressing the background noise. Based on the improvement of LCM al-
gorithm, Relative Local Contrast Measure (RLCM) [8], Multiscale Patch-based Contrast
Measure (MPCM) [9], Weighted Local Difference Measure (WLDM) [27] and other methods
were proposed. Gradient-based contrast methods use first-order or second-order deriva-
tives of the image to extract gradient information. They then utilize this information to
design a gradient difference measure that effectively discriminates between small targets
and the surrounding background. Building on this concept, Derivative Entropy-based
Contrast Measure (DECM) [28] and Local Contrast-Weighted Multidirectional Derivative
(LCWMD) [29] propose the use of multidirectional derivative to incorporate more gradient
information. In addition, Local Intensity and Gradient (LIG) [30], Gradient-Intensity Joint
Saliency Measure (GISM) [31] fuse gradient and intensity information to further highlight
small targets. Although HVS-based methods can be effective in many scenarios, they
are susceptible to missed detections and false positives in images characterized by low
signal-to-clutter ratios and high-intensity backgrounds.

2.2. Deep Learning-Based Methods

In recent years, there has been a significant research focus on deep learning-based meth-
ods for infrared small target detection, which seek to achieve high-accuracy detection rates.
These deep learning models are trained to discern features within infrared images using vast
datasets, thereby enhancing their detection capabilities. To address the problem that infrared
small target features are easily lost in deep neural networks, Attention Local Contrast Network
(ALCNet) [32] proposes asymmetric contextual modulation to interact the feature information
between the high and low levels. Dense Nested Attention Network (DNANet) [15] adequately
fuses feature information through densely nested interaction modules to maintain small tar-
gets in deep layers. Miss Detection vs. False Alarm (MDvsFA) [33] proposes dual generative
adversarial network models, trained inversely to decompose the detection challenge into
sub-problems, aiming to strike a balance between miss detections and false alarms. While
publicly available datasets have advanced deep learning for infrared small target detection, the
scant features of small targets and the dependency on training samples limit the applicability
of the model in varied real-world scenarios.

2.3. Patch-Based Methods

A significant amount of research has been conducted to improve the detection ability
of IPI [17]. On one hand, some methods have used prior constraints, including Column-
Weighted IPI (WIPI) [18], Non-negative IPI with Partial Sum (NIPPS) [20], and Re-Weighted
IPI (ReWIPI) [21]. On the other hand, some studies have identified limitations in the nuclear
norm and L1 norm and, so, alternative norms to achieve improved target representation
and background suppression have been proposed; for example, Non-convex Rank Approxi-
mation Minimization (NRAM) [22] and Non-convex Optimization with Lp norm Constraint
(NOLC) [23] introduce non-convex matrix rank approximation coupled with L2,1 norm
and Lp norm regularization, while Total Variation Weighted Low-Rank (TVWLR) [24],
Kernel Robust Principal Component Analysis (KRPCA) [25] introduce total variation reg-
ularization, High Local Variance (HLV) [26] method present LV* norm to constrain the

Remote Sens. 2023, 15, 5424 4 of 23

background’s local variance. Patch-based methods mainly consider the low-rank nature of
the background, affecting their performance in the presence of strong edges. However, our
method pays additional attention to heterogeneous background suppression in low-rank
constraints, in order to avoid this problem.

2.4. Acceleration Strategies for Patch-Based Methods

Acceleration strategies for patch-based methods can be categorized into algorithm-
level and hardware-level acceleration. The first category mainly relies on the strategy of
reducing the number of iterations. Self-Regularized Weighted Sparse (SRWS) [34] and
NOLC [23] improve the iteration termination condition for acceleration, but still suffer
from the time consumption associated to decomposing large matrices. The other category
(i.e., hardware acceleration) relies on the use of computationally powerful hardware and
efficient parallelization strategies. In [35], the researchers proposed Separable Convo-
lutional Templates (SCT); however, this method has poor performance under complex
backgrounds. In addition, extending the patch model to tensor space can also achieve ac-
celeration [36–41]. Representative methods in this direction include Re-weighted Infrared
Patch-Tensor (RIPT) [36], LogTFNN [39] and the Pareto Frontier Algorithm (PFA) [37].
However, unfolding the tensor into a two-dimensional matrix before decomposition in-
creases the algorithm’s complexity. Partial Sum of the Tensor Nuclear Norm (PSTNN) [38]
and Self-Adaptive and Non-Local Patch-Tensor Model (ANLPT) [42] utilize the t-SVD
speed up tensor decomposition with t-SVD. However, these methods are limited by the
complexity of finding the applicable constrained kernel norm. Our work investigates
accelerated patch-based methods at both the algorithmic and hardware levels.

3. Method

In this section, we present the details and principles of the proposed method. First, a
novel continuous strategy is proposed for the suppression of strong edges. Then, APSVD
is used to accelerate solution of the LRSD problem. Finally, the integration of our proposed
method on GPU is presented. The overall framework is shown in Figure 1.

GPUCPU

……
…

…
…

…
…

…
…

Patch image �

…… …

…
…

…
…

…
…

Target patch image �

…
…

Mean filter

Pre-filter image �

Input image ��

Output image ��

Target image ��

…
…

…
…

…
…

Background patch image �

…

…
…

Global memory : • image size • patch size • sliding step

Original image ��

Data Copy

CPU to GPU

Data Copy

GPU to CPU

LRSD

Multi-threaded
mapping

Multi-threaded
filtering

Multit-hreaded
construction

B
ac

kg
ro

un
d

su
pp

re
ss

io
n

Fa
st

 S
V

D

Figure 1. Framework of the proposed infrared small-target detection method. Targets in the input
and output images are highlighted with red boxes.

Remote Sens. 2023, 15, 5424 5 of 23

3.1. BSPG Model

The infrared image is considered to be composed of the target image, background
image, and noise image, formulated as

fD = fB + fT + fN , (1)

where fD, fB, fT , and fN represent the original infrared, background, target, and noise
images, respectively. The IPI model uses a sliding window (from top-left to bottom-right)
to convert the original image into a patch image. The IPI model can be formulated as

D = B + T + N, (2)

where D, B, T, and N represent the patch image, background patch image, target patch
image, and noise patch image, respectively. Then, we can transform the small-target
detection problem into the following convex optimization under broad conditions; that is,

min
B,T
‖B‖∗ + λ‖T‖1, s.t. ‖D− B− T‖F ≤ δ, (3)

where ‖.‖∗ represents the nuclear norm, ‖.‖1 represents the column sum norm, λ is a
positive weighting parameter, and δ > 0. This convex optimization problem is called robust
principle component analysis (RPCA), which can recover low-rank and sparse parts of the

data matrix even when a fraction of the entries are missing. Let f (X) =
1
2
‖D− B− T‖2

F,

P(X) = µ(‖B‖∗ + λ‖T‖1), where µ is a relaxation parameter. Hence, we can express
Equation (3) as

minF(X) = f (X) + P(X). (4)

The PG algorithm is an efficient method to solve the RPCA problem, which esti-
mates the background image and the target image by minimizing the separable quadratic
approximation sequence of Equation (4); that is,

Q(X, Y) .
= f (Y) + 〈5 f (Y), X−Y〉+

τ

2
‖X−Y‖2

F + P(X)

=
τ

2
‖(X− G)‖2

F + P(X) + f (Y)−
1

2τ
‖5Y‖2

F,

(5)

where G = Y −
1

L f
5 f , L f is the Lipschitz constant (which is set to 2 in this problem),

and τ > 0 is a given parameter. The following function has a unique optimal solution as
Equation (5) is convex:

arg min{Qτ(X, Y|X ∈ dom(P))}, (6)

where dom(P) = {X|P(X) < +∞}. In our method, Equation (5) can be expressed as:

Q(B, T, µ, YB, YT) =
τ

2
‖B−YB|2F +

τ

2
‖T −YT |2F + f (YB, YT)

+ µP(B, T) +
1

2τ
|5 f (YB, YT)|2F.

(7)

To solve Equation (6), the iterative process of the PG algorithm repeatedly sets
Xk+1 = arg minQ(X, Yk), and Yk is obtained from X0, X1, ...Xk. In our method, XK to be
solved are ordered pairs (Bk, Tk). Therefore, we set

Yk = Xk +
tk−1 − 1

tk
(Xk − Xk−1), (8)

Remote Sens. 2023, 15, 5424 6 of 23

where tk is the sequence satisfying tk+1
2 − tk+1 ≤ tk

2.
The closed-form expression of Xk+1 can be obtained by soft-thresholding the singular

values. The soft-threshold operation is defined as

Sε[x]
.
=


x− ε, i f x > ε,
x + ε, i f x < −ε,
0, otherwise.

(9)

Then,
Tk+1 = Sτ [GT

k] = S λµ
L f

[GT
k],

Bk+1 = Sτ [GB
k] = US µ

L f
VT ,

(10)

where USVT is the SVD of GB
k .

The continuation strategy in [43] can speed up the convergence of the PG. This tech-
nique employs a decreasing sequence to derive µ̄, where µk is updated as follows:

µk = max{ηµk−1, µ̄}, 0 < η < 1. (11)

The value of η affects the convergence of the algorithm. A larger decrease results in more
Gk components to be retained, while fewer iterations to update µ̄ results in an inability to
separate the target. Conversely, a smaller η decrease has the opposite effect. Figure 2 shows
examples of the target images at different iterations. It can be seen that, in the early iterations,
the strong edges are separated first as the low component of the background is retained at the
highlights. This leads to many false alarms at the strong edges when the target is separated.
This phenomenon motivates us to use different decrement rates for GB

k and GT
k . We set a

higher rate for µB and set GB
k+1 to compute more singular values, in order to retain strong

edges. We also set a lower rate for µT, ensuring that the target is decomposed into sparse
parts when the algorithm converges. Thus, µk is updated as follows:

µT
k = max{αµT

k−1, µ̄},
µB

k = max{βµT
k , µ̄},

(12)

where 0 < α, β < 1. The solution of the BSPG algorithm is described in Algorithm 1.
The upper bound of the algorithm is discussed below. By denoting {Xk, Yk, tk} as

the sequence obtained by the algorithm with tk ≥
k + 2

2
, according to [44], for any k ≥ 1,

we have

F(Xk)− F(X∗) ≤
2L f ‖X∗ − X0‖2

F
(k + 1)2 , X∗ 6= 0. (13)

Then,
F(Xk)− F(X∗) ≤ ε, (14)

when k > k0 +

√
L f

ε
‖Xk0 − X∗‖F, where the convergence accuracy is ε > 0, yielding that

the algorithm has O
(√ L f

ε

)
iteration complexity.

Remote Sens. 2023, 15, 5424 7 of 23

k-th iteration target image last iteration target image(k+5)-th iteration target image

strong edges
target

input image

Figure 2. IPI target images at different iterations. Strong edges are preserved when the target is
detected. Targets are shown in red boxes and strong edges are denoted by green circles.

Algorithm 1: BSPG solution via APSVD

Input : Patch image: D ∈ Rm×n, weighting parameters: λ, µ, α, β
Output : B← Bk, T← Tk

1 Initialization: k = 0, Y0
B, Y0

T , B0, T0, t0, µ0;
2 while not converged do
3 update Yk

B, Yk
T by Equation (8);

4 GB
k ← YB

k − 1/2(YB
k + YT

k − D); GT
k ← YT

k − 1/2(YB
k + YT

k − D);
5 update rank estimation quantity svk by Equation (15);
6 //Approximate Partial SVD:

7 GB
′

k ← GB
k

T × GB
k ;

8 (S, V)svk ← partial_eig(GB
′

k , svk) ;
9 Usvk ← GB

k Vsvk Ssvk
−1;

10 update Bk+1, Tk+1 by Equation (10);
11 compute the current rank quantity:

12 svk+1 = length
(

f ind
(
diagS > µB

k /L f
))

;

13 update µT
k+1, µB

k+1 by Equation (12);
14 k← k + 1
15 end

3.2. APSVD

The most time-consuming step in each iteration of the PG algorithm is the execution
of the full SVD. It is worth mentioning that the soft-threshold operation only leaves a
portion of the singular values and vectors to participate in the subsequent calculations. In
particular, few singular values are needed in early iterations. Therefore, it is feasible to
replace full SVD with partial SVD. The crucial step of this strategy is rank estimation, which
involves estimating the number of singular values and singular vectors participating in the
computation after truncation. As the noise in infrared images is often not simply Gaussian
distributed, estimation functions such as minimax estimator or the simple quantitative
increase method proposed in [43] are not feasible. Due to the low-rank nature of the patch
image, the singular value matrix has a clear trend of change, as shown in Figure 3. Thus,
we estimate the rank by evaluating the degree of variation of the singular values. In the kth
iteration, the pre-determined rank svk−1 is initialized by the number of singular values in S
greater than µk/L f . We update svk as follows:

svk =

 svk−1 + 5, i f
σsvk

σsvk−1

< δ,

svk−1 + dγNe, otherwise,
(15)

where δ is the threshold for measuring the degree of singular value variation, N is the
width of the patch image, and δ and γ are empirically set to 0.95 and 0.1, respectively.

Remote Sens. 2023, 15, 5424 8 of 23

0

50

100

150

200

250

1 2 3 4 5 6 7

 image1

 image2

 image3

 image4

K-th iteration

R
an

k
of

 �
��

Figure 3. Trend of rank with an increasing number of iterations. Image 1 to image 4 represent the
patch images corresponding to four different infrared images from the used data set.

The truncated SVD of the patch image needs to satisfy two requirements: (1) Only a
small number of large singular values are retained, and (2) the singular vectors (including
the left and right) need to be computed. We approximate the SVD of the patch image A
by solving the eigenvalue decomposition of its covariance matrix AT A. Given the slender
nature of the patch matrix, the latter computation is considerably more straightforward
compared to the former. Moreover, the symmetry of AT A guarantees its suitability for
eigenvalue decomposition, leading to{

A = USVT ,
AT A = VS2VT .

(16)

It is apparent, from Equation (16), that the eigenvalues of AT A correspond to the
squares of the singular values of A. Additionally, both the right singular vectors of A and
the eigenvectors of AT A are unitary. This relationship further implies that the left singular
vectors U follow the equation U = AVS−1. The approximate SVD of matrix A satisfies

UT AV = S + ξ, (17)

where ξ depends on the rounding errors. The singular values and singular vectors of the
eigendecomposition in CUDA can approximate the accuracy of SVD to machine zero [45].
Furthermore, the larger the singular value, the smaller the error of U.

3.3. GPU Parallel Implementation

The GPU implementation consists of three main parts: Constructing the patch image,
solving the LRSD problem, and reconstructing the patch image. Our method uses GPU for
implementation purposes, and CPU only for data transfer and GPU control.

3.3.1. Construction

In order to reduce the number of data transfers between the host memory and the
device’s global memory, we first copy all the image data and hyperparameters read by the
CPU to the GPU via PCI Express, and then execute the parallelization kernel functions.
GPU parallelism mainly relies on data parallelism, i.e., performing the same operation
on multiple data elements. Correspondingly, a patch image is constructed to change the
storage location of each pixel in the original image. Therefore we build an index mapping
between the original image and the patch image. This mapping allows a thread to manage
the correspondence of a pixel position, facilitating the parallel processing of all pixels.

Remote Sens. 2023, 15, 5424 9 of 23

Let dw, dh denote the width and height of the sliding window, sx, sy denote the sliding
step in the x, y directions, and p denotes the number of patches in the x direction. The
mapping of the patch image pixel index Ip

x to the original image pixel index Io
x is

Io
x = Ip

x % p× sy +
Ip
y

dh
,

Io
y =

Ip
x

p
× sx + Ip

y % dh.
(18)

The execution of the kernel function requires the determination of the thread block and
grid size, where the grid size is determined based on the number of processing subtasks
and the thread block size. Suppose the output image size n of the kernel function is nx × ny
and the thread block size k is set to kx × ky (where nx, ny denote the size of the image in the
x and y direction, respectively, and kx, ky denote the number of threads per block in the x
and y direction, respectively), then the grid size is determined as ((nx)kx , (ny)ky), where
operator (∗)k is defined as

(n)k = kd∗e
n
k

, k ∈ N, n ∈ R. (19)

We set the thread block size for the construction kernel function based on the size of
the patch image. Assuming that the patch image dimensions are px × py, we configure the
thread block size as (px, b1024/pxc). For instance, given an image with a size of 200× 150, a
sliding window with a size of 50× 50, and a sliding step of 10, the size of the resulting patch
image would be 176× 2500. Accordingly, the thread block size is set to (176, 5) and the grid
dimensions are set to (1, 500). Consequently, a row of threads in the x direction corresponds
to a row within the patch image. The construction process is carried out pixel-by-pixel.
The processing time of each pixel is assumed to be t, for an M × N patch image, serial
execution of the construction module takes M× N × t. In contrast, our method operates
M× N threads in parallel, completing the process in time t. The theoretical speedup ratio
is M× N.

3.3.2. Reconstruction

Figure 4 shows the steps for reconstructing the background and target patch images
after LRSD. First, the target patch image is transformed into the pre-filtered image. We
provide the pseudo-code for this transformation in Algorithm 2. Then, the indices of the
first and last patches containing valid information are determined. Finally, filtering is
performed on the valid portions of each row to obtain the target image. In summary, the
reconstruction includes two parallel processes: One involving mapping from the patch
image to the pre-filter image, and another entailing filtering.

First patch

Last patch

……

Mean filter

Pre-filter image

…
…

Target image

Step 2: Determine the first patch serial
number and the last patch serial number
that contains the current pixel P.

Step 1: Correspond the current columns of the
patch-image to the columns of the pre-filter image
by index mapping.

Step 3: Filter the corresponding rows of the pre-
filter image from the first patch to the last patch
to get the target value corresponding to pixel P.

T
he

 fi
rs

t p
at

ch
 in

 th
e

so
ur

ce

im
ag

e
co

nt
ai

ni
ng

 P

C
or

re
sp

on
di

ng
 c

ol
um

ns
 o

f p
re

-im
ag

e

Pixel P

First patch
containing P

Last patch
containing P

Image size: 200×150
Patch size: 50×50; Step:10
Number of patches: 176

200×150
30,000×176

…

T
he

 fi
rs

t p
at

ch
 c

on
ta

in
in

g
P

2500×1

…

…

30,000×1

30,000×1

Figure 4. Three steps of the proposed reconstruction method.

Remote Sens. 2023, 15, 5424 10 of 23

Algorithm 2: The mapping of patch image and pre-filter image
Input : Patch image D, original image size w and h, patch size dw and dh, step s,

patch number of per row pr
Output : pre-filter image F

1 Step I: Compute the index ID in the patch image by using the row and column
numbers RD, CD.

2 RD = blockIdx.y× blockDim.y + threadIdx.y;
3 CD = blockIdx.x× blockDim.x + threadIdx.x;
4 ID = CD × dw× dh + RD;
5 Step II: Compute the row index Ir

p and column index Ic
p of the patch by using

patch index Ip.
6 Ip = ID/(dw × dh);
7 Ir

p=Ip/pr; Ic
p = Ip%pr;

8 Step III: Compute the index IF in F by using the row number RO and column
number CO in the original image O.

9 RO = Ir
p × s + RD%dh;

10 CO = Ic
p × s + RD/dh;

11 IF = CD × w× h + CO × h + RO;
12 F[IF] = D[ID].

We set the thread block and grid of the mapping kernel to the same size as the
construction kernel. The filter kernel handles a much larger matrix, and in order to improve
the resource usage, the thread block size is set to (32, 32), and the grid size is obtained
according to Equation (19). Then, the indices of the first patch and the last patch I f

p , Il
p

containing valid information can be expressed as:

I f
p =

Io
x − dw

sx
+ 1 + (

Io
y − dh

sy
+ 1)× p,

Il
p =

Io
x

sx
+ 1 + (

Io
y

sy
+ 1)× p.

(20)

In NVIDIA’s GPU architecture, one warp typically consists of 32 threads, while our
thread block contains 32× 32 threads. This means that each warp can effectively execute
an entire thread block. This high warp occupancy rate reaches 100%, efficiently harnessing
the performance of the GPU.

3.3.3. APSVD Using CUDA

The key to implementing the APSVD is the exact eigendecomposition, which can be
achieved using the Symmetric Eigenvalue Divide (SYEVD) function based on QR decom-
position or the Symmetric Eigenvalue Jacobi (SYEVJ) function based on Jacobi decomposi-
tion [46]. SYEVD employs a divide-and-conquer method to decompose a symmetric matrix
into smaller sub-problems and solves them recursively. Its runtime is primarily attributed
to QR decomposition. QR decomposition can be expressed as

Am×n = Qm×nRn×n, (21)

where Q is an orthogonal matrix and R is an upper triangular matrix. QR decomposition
usually requires Householder transformations for multiple iterations, and each transformation
needs to manipulate all elements of the matrix, which becomes redundant for small matrices.

SYEVJ transforms the symmetric matrix A into a diagonal matrix D by performing a
rotational transformation via the bilateral Jacobi method.

D = · · · JT
3 (JT

2 (JT
1 AJ1)J2)J3 · · · = (· · · JT

3 JT
2 JT

1)A(J1 J2 J3 · · ·), (22)

Remote Sens. 2023, 15, 5424 11 of 23

where J is denoted as J(i, j, θ), contains the rotation angle θ and an index pair (i, j), and
satisfies J(i, j, θ)T J(i, jθ) = E. The Jacobi method, with its element-wise rotations, offers
lower computational complexity, localized memory access, and parallelization potential,
making it more efficient for small matrices.

To quantitatively analyze both methods, we introduce arithmetic intensity [46] which
is a metric used to evaluate the performance of parallel computational tasks. Specifically,
the arithmetic intensity I is defined as

I =
FLOPs

bytes loaded
, (23)

where FLOPs represents the number of floating point operations and can measure the
complexity of an algorithm, bytes loaded represents the number of bytes loaded from
memory during kernel execution. Given an N × N matrix (single-precision), a Givens
rotation typically requires 8 floating-point operations (2 trigonometric functions, 4 multi-
plications, 2 additions) and loads 2N elements. This means that the number of FLOPS per
iteration is 8, and the memory access requires loading 8N bytes. In QR decomposition, the
computational complexity of each iteration, which involves Householder transformations,
is 2N3, and it loads the entire matrix, including 4N2 bytes. The arithmetic intensity of the
Jacobi kernel IJ and the arithmetic intensity of the QR decomposition kernel IQR can be
expressed as

IJ =
8

2N
, IQR =

2N3

4N2 . (24)

Therefore, from the perspective of arithmetic intensity, we choose the more efficient
Jacobi method to perform eigenvalue decomposition. The Jacobi method typically has lower
arithmetic intensity and is relatively memory-access efficient, whereas QR decomposition
involves orthogonal transformations and matrix updates, often requiring more memory
bandwidth and computation. QR decomposition has a higher arithmetic intensity, making
it perform better on larger matrices where the high arithmetic intensity can be fully utilized,
but not on small matrices.

Furthermore, the implementation of APSVD requires an efficient matrix multiplication
function. The General Element-wise Matrix Multiply (GEMM) function in CUDA takes
advantage of the GPU’s parallel computing capabilities and efficiently processes substantial
amounts of data, thereby enhancing computational performance. To reduce routing errors,
we use the double precision-controlled GEMM function, DGEMM, which has a time
complexity of 2MN2. Notably, other functions utilize single precision to strike a balance
between instruction throughput and accuracy. Figure 5 illustrates the runtime ratios for
each component of APSVD on matrices of varying size. Notably, the efficiency of SYEVJ is
demonstrated, as it is unaffected by the matrix height and exhibits a decreasing ratio of
time spent on eigendecomposition as the matrix size increases.

1,000,000

100,000

10,000

1000

Figure 5. The running time ratio of each component in APSVD. The matrix is taken from SIR_1 in the
experiment with a fixed width of 32.

Remote Sens. 2023, 15, 5424 12 of 23

4. Experiments and Analysis

In this section, we provide an evaluation of our method in terms of detection accuracy
and execution time.

4.1. Experimental Setup

Data. The experiments used the real single-frame infrared images provided in [32],
selected from infrared sequences in a variety of scenes, including ocean, cloud, sky, and
urban areas, as shown in Figure 6. The targets are marked with red boxes and magnified for
convenient viewing in the bottom left corner of each image. It can be seen that the targets
occupy very few pixels; most small targets lack shape and texture information and have
low intensity. Images with poor imaging quality exhibit strong noise, such as SIR_2 and
SIR_3. Some small targets are submerged in cloud or sea clutter as SIR_11 and SIR_13 and
suffered from highlight backgrounds with strong edges as SIR_8 to SIR_14. Furthermore,
we provide detailed information of the test images, including the background type, target
type, Signal Clutter Ratio (SCR), target size, and detection challenges, in Table 1.

SIR_1 SIR_2 SIR_4SIR_3 SIR_5 SIR_7SIR_6

SIR_8 SIR_9 SIR_11SIR_10 SIR_12 SIR_14SIR_13

Figure 6. Test images SIR_1 to SIR_14. The targets are highlighted with red boxes and the binary
mask of the target is given in the lower left corner of each image.

Table 1. Detailed information of the test images. The target size is expressed as the number of pixels.

Data Image Size Target Size SCR
Background Target Detection Challenges

Type Type Strong Edge Low
Contrast

Heavy
Noise

Cloud
Clutter

SIR_1 256 × 172 11 6.52 cloud + sky Irregular
shape X

SIR_2 256 × 239 3 8.63 building +
sky Weak X X X

SIR_3 300 × 209 12 1.04 sea + sky Low
intensity X X

SIR_4 280 × 228 2 3.09 cloud + sky Weak,
hidden X X

SIR_5 320 × 240 7 11.11 cloud + sky Hidden X

SIR_6 359 × 249 6 6.14 building +
sky

Irregular
shape X

SIR_7 640 × 512 4 10.52 cloud + sky Weak,
hidden X X

SIR_8 320 × 256 5 5.36 sea + sky Weak X
SIR_9 283 × 182 8 1.59 cloud + sea Hidden X X

SIR_10 379 × 246 3 10.57 building +
sky

Low
intensity X X

SIR_11 315 × 206 5 9.61 cloud + sky Low
intensity X X

SIR_12 305 × 214 17 8.43 tree + sky Irregular
shape X

SIR_13 320 × 255 4 4.12 cloud + sky Low
intensity X X X

SIR_14 377 × 261 6 2.38 cloud + sky Low
intensity X X

Remote Sens. 2023, 15, 5424 13 of 23

Hardware. We implemented our method on the embedded GPU Jetson AGX Xavier,
which has 7764 MB of global memory and 48 KB of shared memory. The version of CUDA
was 10.2. The experiments in MATLAB were based on an Intel(R) Core(TM) i7-8750H CPU
with 8 GB RAM.

Baselines and parameter settings. We compared our proposed method to other state-
of-the-art patch-based methods, including IPI [17], NIPPS [20], NRAM [22], NOLC [23],
SRWS [34] and HLV [26]. As tensor-based methods have better performance in terms
of computational efficiency, we also included three tensor-based methods for compari-
son, including RIPT [36], PSTNN [38], PFA [37], LogTFNN [39] and ANLPT [42]. The
parameter settings are provided in Table 2. We employed a sliding window with a size of
100× 100 and a step size of 30 on images with resolution equal to or exceeding 640× 512.
This setting ensured that the execution time remained within the desired range.

Table 2. Parameter settings. All methods used their original settings.

Method Patch Size Step Parameter

IPI [17] 50× 50 10 L = 1, λ = L/
√

min(m, n), ε = 10−7

RIPT [36] 50× 50 10 L = 1, λ = L/
√

min(n1, n2, n3), ε = 10−7

NIPPS [20] 50× 50 10 L = 1, λ = L/
√

min(m, n), ε = 10−7

NRAM [22] 50× 50 10 L = 1, λ = L/
√

min(m, n), ε = 10−7

NOLC [23] 50× 50 10 L = 1, λ = L/
√

min(size(D)), p = 0.5, ε = 10−7

PSTNN [38] 40× 40 40 L = 0.7, λ = L/
√

min(n1, n2) ∗ n3, ε = 10−7

SRWS [34] 50× 50 10 L = 1, λ = L/
√

min(m, n), γ = 0.09/
√

min(m, n), ε = 10−7

PFA [37] 25× 25 25 κ = 30, τ0 = 1e + 5, ε = 10−5

LogTFNN [39] 40× 40 40 L = 1, λ = L/
√

min(n1, n2)× n3, β = 0.01, µ = 200
HLV [26] 50× 50 10 L = 1, λ = L/

√
max(m, n), α = 1.3, β = 2.5, C = 8

ANLPT [42] 50× 50 10 λ = sigmoid(E/n3)/
√

min(n1, n2)× n3, E = entropy(T)
Ours 50× 50 10 L = 1, λ = L/

√
max(m, n), ε = 10−7

Evaluation metrics. We used two quantitative analysis evaluation indicators com-
monly used for small-target detection to evaluate our method: Signal Clutter Ratio Gain
(SCRG) and Background Suppress Factor (BSF). SCRG reflects the effect of increasing target
saliency, and is defined as follows:

SCRG =
SCRout

SCRin
, SCR =

|µt − µb|
σb

, (25)

where SCRin and SCRout represent the signal-to-clutter ratio of the input and output
images, respectively, µt represents the average pixel gray value of the target, µb represents
the average pixel gray value of the local background around the target, and σb represents
the standard deviation of the gray pixel value of the local background around the target.
BSF reflects the effect of suppressing background interference and is defined as follows:

BSF =
σin

σout
, (26)

where σout and σin are the standard deviation values of the local background around the
target in the output image and the original image, respectively.

We also analyzed the results using Receiver Operating Characteristic (ROC) curves.
The ROC curve is plotted by assessing the True Positive Rate (TPR) and the False Positive
Rate (FPR) at different classification thresholds, as defined below:

TPR =
number o f real targets detected

number o f real targets
,

FPR =
numer o f f alse targets detected

number o f real targets
.

(27)

To quantitatively compare the ROC curves, the area under the curve (AUC) can be used
as an evaluation criterion; the larger the AUC, the more accurate the detection performance.

Remote Sens. 2023, 15, 5424 14 of 23

4.2. Visual Comparison with Baselines

The visualization results of twelve detection methods are shown in Figures 7 and 8.
IPI, RIPT, and NIPPS only successfully detect targets under simple backgrounds with high
local patch similarity. In images with complex backgrounds, NIPPS present noticeable
clutter, while IPI and RIPT exhibit noise in highlighted backgrounds. NRAM and PFA can
detect the majority of targets, but they are prone to generating false alarms in regions with
strong edges. NOLC and SRWS suffer from the sea surface background and can not detect
weak dark targets. PSTNN has similar poor performance, with many false alarms under
clutter. LogTFNN is poorly detected under high-intensity backgrounds, leaving a large
amount of background residue. HLV and ANLPT perform poorly when detecting targets
that are dark or have low contrast with the neighboring background. In the case of images
SIR_7 to SIR_14, the highlighted backgrounds cause most methods to produce false alarms
near strong edges, leading to inaccurate detection. However, our method excels in terms of
effectively suppressing strong edges under such conditions. From the visualized detection
results, our method exhibits robust detection performance.

IP
I

R
IP
T

N
IP
P
S

N
R
A
M

N
O
L
C

S
R
W
S

P
FA

P
S
T
N
N

O
u
rs

SIR_1 SIR_2 SIR_4SIR_3 SIR_5 SIR_7SIR_6

L
og
T
F
N
N

H
L
V

A
N
L
P
T

Figure 7. Partial detection results for different methods. The correctly detected targets are highlighted
with red boxes and enlarged in the top left corner of each target image. The incorrect targets are
highlighted with green boxes and circles.

Remote Sens. 2023, 15, 5424 15 of 23

IP
I

R
IP
T

N
IP
P
S

N
R
A
M

N
O
L
C

S
R
W
S

P
FA

P
S
T
N
N

O
u
rs

SIR_8 SIR_9 SIR_11SIR_10 SIR_12 SIR_14SIR_13

L
og
T
F
N
N

H
L
V

A
N
L
P
T

Figure 8. Partial detection results for different methods. The correctly detected targets are highlighted
with red boxes and enlarged in the top left corner of each target image. The incorrect targets are
highlighted with green boxes and circles.

4.3. Quantitative Evaluation and Analysis

The results of the quantitative comparison of the various methods on the test images are
shown in Table 3. From the definitions of the two evaluation metrics, the larger the SCRG
and BSF values, the better the detection results. In terms of BSF, our method performs better
than the other methods on all images, indicating that our method excels in suppressing the
background. In terms of SCRG, our method outperforms the other methods on most images.
When the target is missed, the local background standard deviation is 0. Consequently, this
leads to the SCRG appearing as a NaN result and BSF tending to infinity. In addition, we
plotted the ROC curves corresponding to the experiments, in order to further validate the
effectiveness of our method. The results in Figure 9 demonstrate that our method outperforms
the other comparative methods on the test images. IPI and NIPPS are sensitive to clutter
and high-intensity backgrounds due to the difficulty in distinguishing between targets and
strong edges. NRAM and NOLC exhibit instability in detecting dim and weak targets. HLV
experiences an increase in false alarms when dealing with strong clutter interference on the
sea surface. Tensor-based detection methods show stable performance in simple backgrounds.
However, RIPT and LogTFNN exhibit low detection accuracy in high-intensity backgrounds
due to their high requirements for sparsity. PSTNN and PFA tend to erroneously reject targets

Remote Sens. 2023, 15, 5424 16 of 23

in the presence of background clutter. SRWS demonstrates effective clutter suppression in
high-intensity backgrounds but struggles to detect low-contrast weak targets. ANLPT exhibits
weaker clutter suppression capabilities in high-intensity structured backgrounds. In contrast,
our method achieves remarkable results in terms of detection accuracy and false alarm rate in
a wide range of scenarios.

To evaluate the execution speed of our method, we compared our method with other
patch-based methods. For fair comparison, we set these methods to share the same patch
and step configurations. We implemented our method in two versions; that is, CPU and
GPU versions. The GPU execution time includes the data transfer time between the host
and the device. To ensure the reliability of the time statistics, we took the average time of
10 executions for each method. The comparison results are presented in Table 4. Most patch-
based methods are time-consuming due to iteration and complex matrix decomposition,
including IPI, NIPPS, and NRAM. RIPT and ANLPT relatively improve the detection
efficiency, but the tensor decomposition is still complex. SRWS and HLV optimise the
iterative termination conditions to achieve a faster detection speed. The results demonstrate
that our method achieved impressive speed, particularly with significant acceleration when
using the GPU. Combined with the previous detection accuracy evaluation, our method
was found to achieve faster detection while maintaining higher accuracy.

Table 3. Comparison of SCRG and BSF under various methods. The best performance is indicated
in bold.

Methods IPI [17] RIPT
[17]

NIPPS
[20]

NRAM
[22]

NOLC
[23]

PSTNN
[38]

SRWS
[34]

PFA
[37]

LogTFNN
[39]

HLV
[26]

ANLPT
[42] Ours

SIR_1 SCRG 2.08 2.55 0.05 2.76 2.58 1.81 2.78 0.03 1.56 2.85 NaN 20.67
BSF 1.51 2.26 3.45 2.82 1.98 1.31 5.54 4.50 1.14 2.14 Inf 32.40

SIR_2 SCRG 3.29 2.38 1.17 2.89 NaN 3.13 5.20 0.91 1.82 4.24 3.40 23.50
BSF 1.05 0.59 0.26 0.75 Inf 0.80 2.48 0.40 0.48 1.08 0.83 7.20

SIR_3 SCRG 137.56 NaN 102.47 235.38 NaN 90.23 NaN 32.40 11.80 NaN NaN 151.21
BSF 11.39 Inf 5.99 17.02 Inf 18.42 Inf 12.10 1.28 Inf Inf 19.48

SIR_4 SCRG 16.36 15.36 9.46 Inf 39.94 Inf 60.86 NaN NaN 16.74 NaN Inf
BSF 3.55 3.47 2.04 Inf 8.80 Inf 13.90 Inf Inf 3.61 Inf Inf

SIR_5 SCRG 2.18 5.60 0.68 4.79 4.96 1.53 6.57 2.39 1.41 1.82 0.01 7.81
BSF 0.77 2.07 0.16 1.63 1.72 0.49 2.49 0.80 0.71 0.61 0.68 3.59

SIR_6 SCRG 28.99 17.08 7.77 Inf 26.84 NaN Inf NaN NaN 2.56 NaN Inf
BSF 32.21 6.18 1.96 Inf 8.08 Inf Inf Inf Inf 0.90 Inf Inf

SIR_7 SCRG 275.57 Inf Inf NaN NaN 5.36 NaN 2.13 3.42 351.29 NaN Inf
BSF 169.41 Inf Inf Inf Inf 3.30 Inf 1.69 2.47 215.97 Inf Inf

SIR_8 SCRG 7.53 32.22 7.89 17.04 41.07 6.16 NaN 2.40 3.48 8.75 4.76 90.97
BSF 3.98 25.67 3.28 9.77 43.57 4.50 Inf 192.28 1.82 4.88 2.39 69.74

SIR_9 SCRG 24.34 25.51 11.86 Inf NaN 14.85 Inf 5.41 18.08 23.11 NaN Inf
BSF 12.92 24.33 9.04 Inf Inf 7.95 Inf 10.00 9.44 12.42 Inf Inf

SIR_10 SCRG 1.94 Inf 0.38 Inf 3.37 Inf 4.31 NaN NaN 2.39 2.02 Inf
BSF 1.04 Inf 0.16 Inf 1.85 Inf 2.47 Inf Inf 1.30 1.36 Inf

SIR_11 SCRG 2.57 NaN 0.87 NaN NaN NaN 10.58 NaN 0.06 Inf 1.73 Inf
BSF 0.28 Inf 0.07 Inf Inf Inf 1.46 Inf 0.05 Inf 0.18 Inf

SIR_12 SCRG 1.47 Inf 1.42 Inf NaN 1.91 1.11 Inf 0.52 1.75 1.14 Inf
BSF 0.73 Inf 0.62 Inf Inf 1.02 1.75 Inf 0.25 0.91 0.55 Inf

SIR_13 SCRG 1.58 Inf 0.30 Inf Inf 5.67 Inf NaN NaN 31.94 Inf Inf
BSF 0.53 Inf 0.08 Inf Inf 3.40 Inf Inf Inf 6.23 Inf Inf

SIR_14 SCRG 4.28 7.69 1.87 8.26 Inf 3.25 Inf 1.58 0.52 7.25 5.73 Inf
BSF 1.55 2.79 0.48 3.09 Inf 1.14 Inf 0.63 0.19 2.88 2.06 Inf

Remote Sens. 2023, 15, 5424 17 of 23

ROC of SIR_1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FPR 10-3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
P
R

IPI
RIPT
NIPPS
NRAM
NOLC
PSTNN
SRWS
PFA
LogTFNN
HLV
ANLPT
OURS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FPR 10-3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
P
R

IPI
RIPT
NIPPS
NRAM
NOLC
PSTNN
SRWS
PFA
LogTFNN
HLV
ANLPT
OURS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FPR 10-3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
P
R

IPI
RIPT
NIPPS
NRAM
NOLC
PSTNN
SRWS
PFA
LogTFNN
HLV
ANLPT
OURS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FPR 10-3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
P
R

IPI
RIPT
NIPPS
NRAM
NOLC
PSTNN
SRWS
PFA
LogTFNN
HLV
ANLPT
OURS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FPR 10-3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
P
R

IPI
RIPT
NIPPS
NRAM
NOLC
PSTNN
SRWS
PFA
LogTFNN
HLV
ANLPT
OURS

ROC of SIR_13

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FPR 10-3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
P
R

IPI
RIPT
NIPPS
NRAM
NOLC
PSTNN
SRWS
PFA
LogTFNN
HLV
ANLPT
OURS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FPR 10-3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
P
R

IPI
RIPT
NIPPS
NRAM
NOLC
PSTNN
SRWS
PFA
LogTFNN
HLV
ANLPT
OURS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FPR 10-3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
P
R

IPI
RIPT
NIPPS
NRAM
NOLC
PSTNN
SRWS
PFA
LogTFNN
HLV
ANLPT
OURS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FPR 10-3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
P
R

IPI
RIPT
NIPPS
NRAM
NOLC
PSTNN
SRWS
PFA
LogTFNN
HLV
ANLPT
OURS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FPR 10-3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
P
R

IPI
RIPT
NIPPS
NRAM
NOLC
PSTNN
SRWS
PFA
LogTFNN
HLV
ANLPT
OURS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FPR 10-3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
P
R

IPI
RIPT
NIPPS
NRAM
NOLC
PSTNN
SRWS
PFA
LogTFNN
HLV
ANLPT
OURS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FPR 10-3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
P
R

IPI
RIPT
NIPPS
NRAM
NOLC
PSTNN
SRWS
PFA
LogTFNN
HLV
ANLPT
OURS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FPR 10-3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
P
R

IPI
RIPT
NIPPS
NRAM
NOLC
PSTNN
SRWS
PFA
LogTFNN
HLV
ANLPT
OURS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FPR 10-3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
P
R

IPI
RIPT
NIPPS
NRAM
NOLC
PSTNN
SRWS
PFA
LogTFNN
HLV
ANLPT
OURS

ROC of SIR_2

ROC of SIR_5 ROC of SIR_6

ROC of SIR_10 ROC of SIR_11 ROC of SIR_12

ROC of SIR_7 ROC of SIR_8 ROC of SIR_9

ROC of SIR_14

ROC of SIR_4ROC of SIR_3

Figure 9. ROC curves for the twelve methods on test images SIR_1 to SIR_14.

Table 4. Comparison of the execution time (s) across various patch-based methods. All baselines
were tested on the CPU, while our methods were tested on both the CPU and GPU. The best time is
denoted in bold, while the second-best is underlined.

Image id SIR_1 SIR_2 SIR_3 SIR_4 SIR_5 SIR_6 SIR_7 SIR_8 SIR_9 SIR_10 SIR_11 SIR_12 SIR_13 SIR_14

IPI [17] 3.28 5.23 7.63 6.45 12.52 12.93 12.67 11.28 4.12 15.32 7.88 7.29 14.87 18.72
RIPT [36] 1.17 2.76 2.02 2.82 4.70 2.88 8.01 4.35 0.96 1.85 1.02 1.40 2.12 2.14

NIPPS [20] 1.88 3.34 3.60 3.56 5.51 6.82 7.11 6.71 2.84 9.18 3.95 3.99 7.51 9.96
NRAM [22] 2.17 2.14 1.55 2.61 2.99 3.88 2.38 4.79 1.44 4.20 2.09 2.27 3.94 4.20
NOLC [23] 0.72 0.86 1.11 1.15 1.24 1.67 3.62 1.64 0.94 3.17 1.55 1.28 1.33 2.11
SRWS [34] 2.01 2.01 1.10 3.12 2.12 2.60 3.65 1.63 0.78 1.57 1.01 1.29 1.46 1.77
HLV [26] 1.13 1.76 2.32 1.55 2.86 4.51 4.26 3.54 1.44 4.47 2.30 2.27 4.01 6.09

ANLPT [42] 1.53 1.79 1.91 1.73 2.05 2.18 8.07 2.57 1.53 2.29 1.99 2.15 2.52 2.80

Ours (CPU) 0.49 0.76 0.94 0.93 1.55 1.94 2.10 1.29 0.53 1.77 0.86 0.87 1.64 1.89
Ours (GPU) 0.34 0.42 0.54 0.52 0.87 0.98 0.54 0.90 0.36 0.84 0.47 0.42 0.82 0.85

4.4. Ablation Study

The effect of relaxation parameters. We explored the effects of the relaxation param-
eters α and β on the detection accuracy of our method using ROC curves. Figure 10 shows
that excessively large or small values of α and β led to a decrease in the AUC value. Small
α can retain more background components, but overly small values result in insufficient
iteration, thereby failing to separate targets. Meanwhile, large α and β values can cause
false alarms by decomposing strong edges into sparse target portions. Therefore, we set α
and β to 0.4 and 0.7, respectively.

Comparison with other tensor-based methods. For a fair comparison, we studied
the tensor-based methods under the same settings as used for ours. We evaluated their
detection accuracy and execution time under various patch and step configurations. Table 5
shows the execution time results. When using the same patch and step settings, our
method on GPU is faster than PFA, PSTNN, and LogTFNN. As illustrated in Figure 11, our
method consistently achieves the best detection accuracy across most scenarios. However,
the detection accuracy of PFA, PSTNN, and LogTFNN significantly diminishes between
images with variations in the patch size and step values.

Remote Sens. 2023, 15, 5424 18 of 23

ROC Plots on SIR_1-SIR_14

Figure 10. ROC curves of our method under different α and β values.

Table 5. Execution time (s) of PFA, PSTNN, LogTFNN and the proposed method (Ours) under varying
patch size and number of steps. The best is denoted in bold, while the second-best is underlined.

Method SIR_1 SIR_2 SIR_3

(Patch, Step) (25,25) (40,40) (50,10) (25,25) (40,40) (50,10) (25,25) (40,40) (50,10)

PFA [37] 9.96 0.33 1.39 12.68 0.26 1.69 0.33 0.26 2.19
PSTNN [38] 0.04 0.05 1.15 0.06 0.07 3.90 0.16 0.06 1.44

LogTFNN [39] 0.89 1.33 15.06 1.22 1.81 11.63 1.27 1.38 26.92
Ours(CPU) 0.12 0.13 0.49 0.19 0.17 0.76 0.16 0.14 0.94
Ours(GPU) 0.02 0.02 0.34 0.04 0.02 0.42 0.02 0.01 0.54

ROC Plots on SIR_1 ROC Plots on SIR_2 ROC Plots on SIR_3

0 1 2 3 4 5 6

FPR 10-3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
P
R

LogTFNN(25,25) AUC=0.7910
PFA(25,25) AUC=0.9166
PSTNN(25,25) AUC=0.9998
Ours(25,25) AUC=0.9993
LogTFNN(40,40) AUC=0.9997
PFA(40,40) AUC=0.9166
PSTNN(40,40) AUC=0.9998
Ours(40,40) AUC=0.9993
LogTFNN(50,10) AUC=0.9989
PFA(50,10) AUC=0.8333
PSTNN(50,10) AUC=0.9999
Ours(50,10) AUC=1.0000

0 1 2 3 4 5 6

FPR 10-3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
P
R

LogTFNN(25,25) AUC=0.7497
PFA(25,25) AUC=0.5100
PSTNN(25,25) AUC=0.9699
Ours(25,25) AUC=0.9999
LogTFNN(40,40) AUC=0.9999
PFA(40,40) AUC=0.6399
PSTNN(40,40) AUC=0.9899
Ours(40,40) AUC=0.9999
LogTFNN(50,10) AUC=0.9999
PFA(50,10) AUC=0.5699
PSTNN(50,10) AUC=0.8299
Ours(50,10) AUC=0.9499

0 1 2 3 4 5 6

FPR 10-3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
P
R

LogTFNN(25,25) AUC=0.8286
PFA(25,25) AUC=0.7998
PSTNN(25,25) AUC=0.7998
Ours(25,25) AUC=0.9996
LogTFNN(40,40) AUC=0.9985
PFA(40,40) AUC=0.8332
PSTNN(40,40) AUC=0.7665
Ours(40,40) AUC=1.0000
LogTFNN(50,10) AUC=0.9943
PFA(50,10) AUC=0.7998
PSTNN(50,10) AUC=0.5000
Ours(50,10) AUC=0.9999

Figure 11. ROC curves for PFA, PSTNN, LogTFNN and the proposed method (Ours). The patch size
and step are labeled in the figure; for example, (25,25) means that the patch size was set to 25× 25 and
the step was set to 25.

The acceleration effect of different strategies. To validate the speed enhancement
due to our proposed APSVD, we compared its implementations on both MATLAB 2017b
and CUDA 10.2 platforms with various SVD functions, as shown in Table 6. It can be
observed that APSVD exhibits high efficiency on slender matrices. To explore the effec-
tiveness of the proposed acceleration strategies, we conducted tests on their cumulative
acceleration effects over the baseline method IPI. Table 7 demonstrates that our proposed
acceleration strategies yield commendable speed increases. Notably, PASVD avoids the
intricate decomposition of large matrices, thus significantly saving time; the new contin-
uation strategy employs a greater decrement for the relaxation parameters, reducing the
number of iterations and consequently accelerating the overall speed; and the GPU parallel
strategies provide significant acceleration, especially for larger images.

Remote Sens. 2023, 15, 5424 19 of 23

Table 6. Execution times (ms) of SVD functions in MATLAB and CUDA on different matrices, with a
fixed matrix width of 32 and a rank of 10 for partial SVD. The fastest time on MATLAB and CUDA is
marked in bold.

Matrix Height
MATLAB CUDA

SVD SVDS Lanczos RSVD APSVD SGESVD SGESVDJ APSVD

1000 1.03 6.68 4.59 7.67 0.53 9.07 5.75 1.06
10,000 6.27 19.93 22.08 10.05 1.83 16.71 7.36 1.24
100,000 280.12 406.70 298.77 50.82 11.82 / 24.06 9.58

Table 7. Cumulative acceleration effects at different sizes of SIR_1, obtained using the resize function.

Image Size Base +PASVD +New Continuation +GPU Parallelism

200× 150 1.42 0.86 0.29 0.09
280× 228 6.23 4.91 1.12 0.41
320× 256 12.77 9.24 1.99 0.74
640× 512 13.60 7.33 2.31 0.59
1020× 750 57.79 34.6 7.32 2.38

1260× 1024 207.13 116.58 22.20 3.65

The acceleration effects on images with different attributes. To validate the acceler-
ation effect of the proposed method, we conducted experiments on images with varying
attributes (i.e., resolution and background complexity). As shown in Figure 12, the acceler-
ation effect of our method becomes more pronounced with increasing image resolution.
On an image with a resolution of 1024× 1020, the execution speed of the proposed method
is nearly 60 times faster than that of IPI. Due to the influence of image complexity on execu-
tion time, the acceleration effect varies slightly at the same resolution. Furthermore, we
conducted a comparative analysis of the three stages of our method—namely, constructing
a patch image, solving the LRSD problem, and reconstructing a patch image—as shown
in Figure 13. It is evident that multi-threading parallelism and optimized memory access
significantly reduce the time required for the construction and reconstruction modules.
Additionally, the new continuation strategy and APSVD greatly contribute to reducing the
time required to solve the LRSD problem.

E
xe

cu
ti

on
 t

im
e(

m
s)

0

40,000

80,000

120,000

160,000

200,000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0

2000

4000

6000

8000

10,000

12,000

14,000

16,000

0

2000

4000

6000

8000

10,000

12,000

14,000

16,000

18,000

20,000

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

E
xe

cu
ti

on
 t

im
e(

m
s)

E
xe

cu
ti

on
 t

im
e(

m
s)

E
xe

cu
ti

on
 t

im
e(

m
s)

E
xe

cu
ti

on
 t

im
e(

m
s)

E
xe

cu
ti

on
 t

im
e(

m
s)

image1 image2 image3 image4 image5 image6 image7
0

500

1000

1500

2000

2500

3000

3500
(a)Image size: 200x150

image1 image2 image3 image4 image5 image6 image7

(b)Image size: 280x228 IPI (CPU)

Ours (GPU)

image1 image2 image3 image4 image5 image6 image7

(c)Image size: 320X256

image1 image2 image3 image4 image5 image6 image7 image1 image2 image3 image4 image5 image6 image7

(d)Imag size: 640X512 (e)Image size: 1020X750

image1 image2 image3 image4 image5 image6 image7

(f)Image size: 1024X1020

 IPI (CPU)

Ours (GPU)

 IPI (CPU)

Ours (GPU)

 IPI (CPU)

Ours (GPU)
 IPI (CPU)

Ours (GPU)

 IPI (CPU)

Ours (GPU)

Figure 12. Comparison of execution time between IPI and the proposed method (Ours) for images of
different resolution and complexity.

Remote Sens. 2023, 15, 5424 20 of 23

Ours (GPU)

IPI (CPU)

Ours (GPU)

IPI (CPU)

Ours (GPU)

IPI (CPU)

Solving the LRSD problem

Constructing patch image Reconstructing patch image

160,000

20
0×
15
0

32
0×
24
0

28
0×
22
8

64
0×
51
2

10
20
×
75
0

12
80
×
10
24

180

160

140

120

100

80

60

40

20

0

140,000

120,000

100,000

80,000

60,000

40,000

20,000

0

25,000

20,000

15,000

10,000

5,000

0

20
0×
15
0

32
0×
24
0

28
0×
22
8

64
0×
51
2

10
20
×
75
0

12
80
×
10
24

20
0×
15
0

32
0×
24
0

28
0×
22
8

64
0×
51
2

10
20
×
75
0

12
80
×
10
24

Figure 13. Comparison of execution time between IPI and the proposed method (Ours) for the
three parts.

5. Discussion

Patch-based methods are well-studied in single-frame infrared small target detection
for their reliability. The classical IPI algorithm is a notable example. It transforms the origi-
nal image into a patch image and leverages the non-local self-similarity of the background
to enhance the low-rank property of the patch image. This method allows for effective
infrared small target detection through low-rank and sparse decomposition.

In our comparison of small target detection methods, we observed that methods like
NIPPS, NRAM, and NOLC aim to improve detection accuracy by enhancing the nuclear
norm and l1 norm. However, these methods involve complex matrix decomposition and
iterative processes, leading to time-consuming issues. These methods also struggle to
differentiate between the edges and the actual targets due to the local sparsity of strong
edges. Conversely, SRWS and HLV, with their proposed multi-subspace assumptions and
high local variance constraints, generally perform well in most cases. They effectively
suppress strong edges but may miss dark and weak targets. Additionally, these methods
require complex matrix decomposition, making them time-consuming. RIPT expands the
patch model into tensor space, adding to the computational burden as tensors are unfolded
and decomposed. While tensor-based methods such as PSTNN, PFA, and logTFNN have
accelerated detection somewhat, their effectiveness is limited by the challenges of accurately
approximating nuclear norms within tensor models.

This paper aims to strike a balance between detection performance and time consump-
tion. To address interference from strong edges, the BSPG method proposed in this paper
introduces a novel continuous strategy in the alternating update process of low-rank and
sparse components. This allows the model to mitigate the influence of strong edges by
preserving more components while updating the low-rank matrix. For algorithm accelera-
tion, a combined approach involving algorithm optimization and hardware enhancement
is presented. On the algorithmic front, APSVD is introduced to expedite solving the LRSD
problem. On the hardware front, we suggest utilizing GPU multi-thread parallel strategies
to accelerate the construction and reconstruction of modules. This is possible as these mod-
ules can be decomposed into repetitive and independent subtasks. Visual and quantitative
results from experiments demonstrate that our method outperforms other state-of-the-art
methods. However, there is still room for improvement in terms of time performance, and
in the future, we plan to explore even faster methods.

Remote Sens. 2023, 15, 5424 21 of 23

6. Conclusions

In this paper, we proposed a novel infrared small-target detection method using
background-suppression proximal gradient and GPU parallelism. Considering that patch-
based methods often result in false alarms at strong edges, we first proposed a novel contin-
uation strategy to suppress such background interference. Then, we presented APSVD to
accelerate the solution of the LRSD problem, which involves complex and time-consuming
large matrix decomposition. Moreover, we employed GPU multi-threading parallelism
to accelerate the construction and reconstruction of patch images. Finally, we optimized
the proposed method on the GPU, ultimately achieving outstanding performance. The
obtained experimental results demonstrated that our method out-performs nine state-of-
the-art methods in terms of both detection accuracy and computational efficiency. The
proposed GPU parallelism strategy can be applied to infrared motion sensors and other
patch-based infrared small-target detection methods, thus facilitating their application in
practical engineering.

Author Contributions: Conceptualization, X.H.; data curation, X.H.; investigation, T.L.; methodology,
X.H.; software, X.H. and Y.L.; writing—original draft, X.H.; writing—review & editing, X.L. and Y.C.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by the CAS “Light of West China” Program.

Data Availability Statement: The data presented in this study are cited within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chen, C.P.; Li, H.; Wei, Y.; Xia, T.; Tang, Y.Y. A local contrast method for small infrared target detection. IEEE Trans. Geosci. Remote Sens.

2013, 52, 574–581. [CrossRef]
2. Zhang, C.; He, Y.; Tang, Q.; Chen, Z.; Mu, T. Infrared Small Target Detection via Interpatch Correlation Enhancement and Joint

Local Visual Saliency Prior. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5001314. [CrossRef]
3. Bai, X.; Zhou, F. Analysis of new top-hat transformation and the application for infrared dim small target detection.

Pattern Recognit. 2010, 43, 2145–2156. [CrossRef]
4. Zhao, Y.; Pan, H.; Du, C.; Peng, Y.; Zheng, Y. Bilateral two-dimensional least mean square filter for infrared small target detection.

Infrared Phys. Technol. 2014, 65, 17–23. [CrossRef]
5. Deshpande, S.D.; Er, M.H.; Venkateswarlu, R.; Chan, P. Max-mean and max-median filters for detection of small targets. In

Proceedings of the Signal and Data Processing of Small Targets, Denver, CO, USA, 20–22 July 1999; Volume 3809, pp. 74–83.
6. Liu, X.; Li, L.; Liu, L.; Su, X.; Chen, F. Moving dim and small target detection in multiframe infrared sequence with low SCR

based on temporal profile similarity. IEEE Geosci. Remote Sens. Lett. 2022, 19, 7507005. [CrossRef]
7. Qin, Y.; Li, B. Effective infrared small target detection utilizing a novel local contrast method. IEEE Geosci. Remote Sens. Lett. 2016,

13, 1890–1894. [CrossRef]
8. Han, J.; Liang, K.; Zhou, B.; Zhu, X.; Zhao, J.; Zhao, L. Infrared small target detection utilizing the multiscale relative local contrast

measure. IEEE Geosci. Remote Sens. Lett. 2018, 15, 612–616. [CrossRef]
9. Wei, Y.; You, X.; Li, H. Multiscale patch-based contrast measure for small infrared target detection. Pattern Recognit. 2016,

58, 216–226. [CrossRef]
10. Chen, Y.; Zhang, G.; Ma, Y.; Kang, J.U.; Kwan, C. Small infrared target detection based on fast adaptive masking and scaling with

iterative segmentation. IEEE Geosci. Remote Sens. Lett. 2021, 19, 7000605. [CrossRef]
11. Cui, H.; Li, L.; Liu, X.; Su, X.; Chen, F. Infrared small target detection based on weighted three-layer window local contrast.

IEEE Geosci. Remote Sens. Lett. 2021, 19, 7505705. [CrossRef]
12. Du, J.; Lu, H.; Hu, M.; Zhang, L.; Shen, X. CNN-based infrared dim small target detection algorithm using target-oriented

shallow-deep features and effective small anchor. IET Image Process. 2021, 15, 1–15. [CrossRef]
13. Du, J.; Lu, H.; Zhang, L.; Hu, M.; Chen, S.; Deng, Y.; Shen, X.; Zhang, Y. A spatial-temporal feature-based detection framework for

infrared dim small target. IEEE Trans. Geosci. Remote Sens. 2021, 60, 3000412. [CrossRef]
14. Zhang, M.; Dong, L.; Ma, D.; Xu, W. Infrared target detection in marine images with heavy waves via local patch similarity.

Infrared Phys. Technol. 2022, 125, 104283. [CrossRef]
15. Li, B.; Xiao, C.; Wang, L.; Wang, Y.; Lin, Z.; Li, M.; An, W.; Guo, Y. Dense nested attention network for infrared small target

detection. IEEE Trans. Image Process. 2022, 32, 1745–1758. [CrossRef]
16. Zhong, S.; Zhou, H.; Cui, X.; Cao, X.; Zhang, F. Infrared small target detection based on local-image construction and maximum

correntropy. Measurement 2023, 211, 112662. [CrossRef]

http://doi.org/10.1109/TGRS.2013.2242477
http://dx.doi.org/10.1109/TGRS.2021.3128189
http://dx.doi.org/10.1016/j.patcog.2009.12.023
http://dx.doi.org/10.1016/j.infrared.2014.03.006
http://dx.doi.org/10.1109/LGRS.2022.3168568
http://dx.doi.org/10.1109/LGRS.2016.2616416
http://dx.doi.org/10.1109/LGRS.2018.2790909
http://dx.doi.org/10.1016/j.patcog.2016.04.002
http://dx.doi.org/10.1109/LGRS.2020.3047524
http://dx.doi.org/10.1109/LGRS.2021.3133649
http://dx.doi.org/10.1049/ipr2.12001
http://dx.doi.org/10.1109/TGRS.2021.3117131
http://dx.doi.org/10.1016/j.infrared.2022.104283
http://dx.doi.org/10.1109/TIP.2022.3199107
http://dx.doi.org/10.1016/j.measurement.2023.112662

Remote Sens. 2023, 15, 5424 22 of 23

17. Gao, C.; Meng, D.; Yang, Y.; Wang, Y.; Zhou, X.; Hauptmann, A.G. Infrared patch-image model for small target detection in a
single image. IEEE Trans. Image Process. 2013, 22, 4996–5009. [CrossRef]

18. Dai, Y.; Wu, Y.; Song, Y. Infrared small target and background separation via column-wise weighted robust principal component
analysis. Infrared Phys. Technol. 2016, 77, 421–430. [CrossRef]

19. Wang, X.; Peng, Z.; Kong, D.; Zhang, P.; He, Y. Infrared dim target detection based on total variation regularization and principal
component pursuit. Image Vis. Comput. 2017, 63, 1–9. [CrossRef]

20. Dai, Y.; Wu, Y.; Song, Y.; Guo, J. Non-negative infrared patch-image model: Robust target-background separation via partial sum
minimization of singular values. Infrared Phys. Technol. 2017, 81, 182–194. [CrossRef]

21. Guo, J.; Wu, Y.; Dai, Y. Small target detection based on reweighted infrared patch-image model. IET Image Process. 2018,
12, 70–79. [CrossRef]

22. Zhang, L.; Peng, L.; Zhang, T.; Cao, S.; Peng, Z. Infrared small target detection via non-convex rank approximation minimization
joint l 2, 1 norm. Remote Sens. 2018, 10, 1821. [CrossRef]

23. Zhang, T.; Wu, H.; Liu, Y.; Peng, L.; Yang, C.; Peng, Z. Infrared small target detection based on non-convex optimization with
Lp-norm constraint. Remote Sens. 2019, 11, 559. [CrossRef]

24. Chen, X.; Xu, W.; Tao, S.; Gao, T.; Feng, Q.; Piao, Y. Total Variation Weighted Low-Rank Constraint for Infrared Dim Small Target
Detection. Remote Sens. 2022, 14, 4615. [CrossRef]

25. Yan, F.; Xu, G.; Wu, Q.; Wang, J.; Li, Z. Infrared small target detection using kernel low-rank approximation and regularization
terms for constraints. Infrared Phys. Technol. 2022, 125, 104222. [CrossRef]

26. Liu, Y.; Liu, X.; Hao, X.; Tang, W.; Zhang, S.; Lei, T. Single-Frame Infrared Small Target Detection by High Local Variance,
Low-Rank and Sparse Decomposition. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5614317. [CrossRef]

27. Deng, H.; Sun, X.; Liu, M.; Ye, C.; Zhou, X. Entropy-based window selection for detecting dim and small infrared targets.
Pattern Recognit. 2017, 61, 66–77. [CrossRef]

28. Bai, X.; Bi, Y. Derivative entropy-based contrast measure for infrared small-target detection. IEEE Trans. Geosci. Remote Sens. 2018,
56, 2452–2466. [CrossRef]

29. Xu, Y.; Wan, M.; Zhang, X.; Wu, J.; Chen, Y.; Chen, Q.; Gu, G. Infrared Small Target Detection Based on Local Contrast-Weighted
Multidirectional Derivative. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5000816. [CrossRef]

30. Zhang, H.; Zhang, L.; Yuan, D.; Chen, H. Infrared small target detection based on local intensity and gradient properties.
Infrared Phys. Technol. 2018, 89, 88–96. [CrossRef]

31. Li, Y.; Li, Z.; Li, W.; Liu, Y. Infrared Small Target Detection Based on Gradient-Intensity Joint Saliency Measure. IEEE J. Sel. Top.
Appl. Earth Obs. Remote Sens. 2022, 15, 7687–7699. [CrossRef]

32. Dai, Y.; Wu, Y.; Zhou, F.; Barnard, K. Attentional local contrast networks for infrared small target detection. IEEE Trans. Geosci. Remote Sens.
2021, 59, 9813–9824. [CrossRef]

33. Wang, H.; Zhou, L.; Wang, L. Miss detection vs. false alarm: Adversarial learning for small object segmentation in infrared
images. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2 November
2019; pp. 8509–8518.

34. Zhang, T.; Peng, Z.; Wu, H.; He, Y.; Li, C.; Yang, C. Infrared small target detection via self-regularized weighted sparse model.
Neurocomputing 2021, 420, 124–148. [CrossRef]

35. Wu, X.; Zhang, J.Q.; Huang, X.; Liu, D.L. Separable convolution template (SCT) background prediction accelerated by CUDA for
infrared small target detection. Infrared Phys. Technol. 2013, 60, 300–305. [CrossRef]

36. Dai, Y.; Wu, Y. Reweighted infrared patch-tensor model with both nonlocal and local priors for single-frame small target detection.
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3752–3767. [CrossRef]

37. Xu, L.; Wei, Y.; Zhang, H.; Shang, S. Robust and fast infrared small target detection based on pareto frontier optimization.
Infrared Phys. Technol. 2022, 123, 104192. [CrossRef]

38. Zhang, L.; Peng, Z. Infrared small target detection based on partial sum of the tensor nuclear norm. Remote Sens. 2019,
11, 382. [CrossRef]

39. Kong, X.; Yang, C.; Cao, S.; Li, C.; Peng, Z. Infrared small target detection via nonconvex tensor fibered rank approximation.
IEEE Trans. Geosci. Remote Sens. 2021, 60, 5000321. [CrossRef]

40. Wang, G.; Tao, B.; Kong, X.; Peng, Z. Infrared Small Target Detection Using Nonoverlapping Patch Spatial—Temporal Tensor
Factorization With Capped Nuclear Norm Regularization. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5001417. [CrossRef]

41. Li, J.; Zhang, P.; Zhang, L.; Zhang, Z. Sparse Regularization-Based Spatial-Temporal Twist Tensor Model for Infrared Small Target
Detection. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5000417. [CrossRef]

42. Zhang, Z.; Ding, C.; Gao, Z.; Xie, C. ANLPT: Self-Adaptive and Non-Local Patch-Tensor Model for Infrared Small Target Detection.
Remote Sens. 2023, 15, 1021. [CrossRef]

43. Toh, K.C.; Yun, S. An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems.
Pac. J. Optim. 2010, 6, 15.

44. Lin, Z.; Ganesh, A.; Wright, J.; Wu, L.; Chen, M.; Ma, Y. Fast Convex Optimization Algorithms for Exact Recovery of a
Corrupted Low-Rank Matrix. Coordinated Science Laboratory Report no. UILU-ENG-09-2214, DC-246. 2009. Available online:
https://people.eecs.berkeley.edu/~yima/matrix-rank/Files/rpca_algorithms.pdf (accessed on 30 September 2023).

http://dx.doi.org/10.1109/TIP.2013.2281420
http://dx.doi.org/10.1016/j.infrared.2016.06.021
http://dx.doi.org/10.1016/j.imavis.2017.04.002
http://dx.doi.org/10.1016/j.infrared.2017.01.009
http://dx.doi.org/10.1049/iet-ipr.2017.0353
http://dx.doi.org/10.3390/rs10111821
http://dx.doi.org/10.3390/rs11050559
http://dx.doi.org/10.3390/rs14184615
http://dx.doi.org/10.1016/j.infrared.2022.104222
http://dx.doi.org/10.1109/TGRS.2023.3291435
http://dx.doi.org/10.1016/j.patcog.2016.07.036
http://dx.doi.org/10.1109/TGRS.2017.2781143
http://dx.doi.org/10.1109/TGRS.2023.3244784
http://dx.doi.org/10.1016/j.infrared.2017.12.018
http://dx.doi.org/10.1109/JSTARS.2022.3204315
http://dx.doi.org/10.1109/TGRS.2020.3044958
http://dx.doi.org/10.1016/j.neucom.2020.08.065
http://dx.doi.org/10.1016/j.infrared.2013.06.002
http://dx.doi.org/10.1109/JSTARS.2017.2700023
http://dx.doi.org/10.1016/j.infrared.2022.104192
http://dx.doi.org/10.3390/rs11040382
http://dx.doi.org/10.1109/TGRS.2021.3068465
http://dx.doi.org/10.1109/TGRS.2021.3126608
http://dx.doi.org/10.1109/TGRS.2023.3234608
http://dx.doi.org/10.3390/rs15041021
https://people.eecs.berkeley.edu/~yima/matrix-rank/Files/rpca_algorithms.pdf

Remote Sens. 2023, 15, 5424 23 of 23

45. Ordóñez, Á.; Argüello, F.; Heras, D.B.; Demir, B. GPU-accelerated registration of hyperspectral images using KAZE features.
J. Supercomput. 2020, 76, 9478–9492. [CrossRef]

46. Seznec, M.; Gac, N.; Orieux, F.; Naik, A.S. Real-time optical flow processing on embedded GPU: An hardware-aware algorithm to
implementation strategy. J. Real Time Image Process. 2022, 19, 317–329. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s11227-020-03214-0
http://dx.doi.org/10.1007/s11554-021-01187-8

	Introduction
	Related Work
	HVS-Based Methods
	Deep Learning-Based Methods
	Patch-Based Methods
	Acceleration Strategies for Patch-Based Methods

	Method
	BSPG Model
	APSVD
	GPU Parallel Implementation
	Construction
	Reconstruction
	APSVD Using CUDA

	Experiments and Analysis
	Experimental Setup
	Visual Comparison with Baselines
	Quantitative Evaluation and Analysis
	Ablation Study

	Discussion
	Conclusions
	References

