
Citation: Zhao, X.; Liu, P.; Wang, B.;

Jin, Y. GPU-Accelerated Signal

Processing for Passive Bistatic Radar.

Remote Sens. 2023, 15, 5421. https://

doi.org/10.3390/rs15225421

Academic Editors: Eugin Hyun and

Inoh Choi

Received: 19 October 2023

Revised: 16 November 2023

Accepted: 17 November 2023

Published: 19 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing

Communication

GPU-Accelerated Signal Processing for Passive Bistatic Radar
Xinyu Zhao 1, Peng Liu 1,*, Bingnan Wang 2 and Yaqiu Jin 1

1 The Key Laboratory for Information Science of Electromagnetic Waves (MoE), Fudan University,
Shanghai 200433, China; 23210720053@m.fudan.edu.cn (X.Z.); yqjin@fudan.edu.cn (Y.J.)

2 The National Key Laboratory of Microwave Imaging Technology, Aerospace Information Research Institute,
Chinese Academy of Sciences, Beijing 100094, China; wbn@mail.ie.ac.cn

* Correspondence: pliu@fudan.edu.cn

Abstract: Passive bistatic radar is a novel radar technology that passively detects targets without
actively emitting signals. Since passive bistatic radar entails larger data volumes and computations
compared to traditional active radiation radar, the development of hardware and software platforms
capable of efficiently processing signals from passive bistatic radar has emerged as a research focus in
this field. This research investigates the signal processing flow of passive bistatic radar based on its
characteristics and devises a parallel signal processing scheme under graphic processing unit (GPU)
architecture for computation-intensive tasks. The proposed scheme utilizes high-computing-power
GPU as the hardware platform and compute unified device architecture (CUDA) as the software
platform and optimizes the extensive cancellation algorithm batches (ECA-B), range Doppler and
constant false alarm detection algorithms. The detection and tracking of a single target are realized on
the passive bistatic radar dataset of natural scenarios, and experiments show that the design of this
algorithm can achieve a maximum acceleration ratio of 113.13. Comparative experiments conducted
with varying data volumes revealed that this method significantly enhances the signal processing
rate for passive bistatic radar.

Keywords: passive bistatic radar; signal processing; GPU parallel computing; CUDA

1. Introduction

With the advancement of information technology, radar, as a commonly used detection
and measurement technology, has become an indispensable part of military, civil, scien-
tific research and other fields [1–3]. A traditional radar system mainly adopts the active
detection method, through its own transmission signal for target detection and measure-
ment. Nevertheless, with the development of radar countermeasure technologies, active
radar systems are confronted with various threats, including electronic interference, stealth
technology, low-altitude penetration, and anti-radiation weapons [4]. To address these
challenges, the concept of passive bistatic radar systems has emerged [5,6]. These radar
systems make use of third-party non-cooperative civilian radiation sources to illuminate
targets, eliminating the need for active signal transmission and enabling passive target
detection. Unlike traditional radar systems, the passive bistatic radar system does not
require a separate transmission device and does not emit electromagnetic radiation either.
Moreover, it offers a significant appeal and competitive advantage in scenarios where the
current spectrum is limited due to its independence from dedicated frequency bands [7].

The signal processing stage [8,9] is the most time-consuming component of the passive
bistatic radar system, frequently encountering challenges like large data volumes and
high computational complexity. The demand for computational resources is increasing
to meet the real-time signal processing requirements of radar systems [10]. The graphic
processing unit (GPU) offers higher cost-effectiveness [11], higher energy efficiency [12],
and more convenient development methods compared to the traditional digital signal
processor (DSP) and field-programmable gate array (FPGA). The powerful computational

Remote Sens. 2023, 15, 5421. https://doi.org/10.3390/rs15225421 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15225421
https://doi.org/10.3390/rs15225421
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-7385-6171
https://doi.org/10.3390/rs15225421
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15225421?type=check_update&version=2

Remote Sens. 2023, 15, 5421 2 of 15

and parallel processing capabilities of GPU open up new possibilities for signal processing
in passive bistatic radar systems [13–15].

In recent years, the development of high-performance computing technology has
attracted the interest of researchers who are exploring the potential of GPU parallel ac-
celeration for various radar signal processing algorithms. Bu et al. [13] designed a GPU-
accelerated clutter suppression algorithm for digital television terrestrial multimedia broad-
casting (DTMB)-based passive radar. Zhao et al. [14] proposed a parallel algorithm for
passive bistatic radar signal processing based on the orthogonal frequency division mul-
tiplexing (OFDM) waveform, which effectively reduces the processing time in the signal
processing stage. Wan et al. [15] present a parallel acceleration of target detection in a
passive radar system. However, none of these efforts parallelize the entire signal processing
system, so the acceleration performance improvement is limited. Furthermore, the GPU
graphics cards in common use today have a computing power of 8.x or less [16], and there
has been no further exploration of GPU with a computing power of 8.x or more or of the
new features available in newer versions of the GPU.

This paper presents an effective solution for the GPU acceleration of passive bistatic
radar signal processing. Parallel signal processing is implemented on the CUDA platform.
A clutter suppression module utilizes the more robust extensive cancellation algorithm
batches (ECA-B) to mitigate clutter [17], while the range Doppler module reduces compu-
tational complexity through filtering and decimation [18]. The constant false alarm ratio
(CFAR) module adopts the cell-averaging CFAR (CA-CFAR) algorithm. Using a dataset
of passive bistatic radar data collected from natural scenes [19], the paper demonstrates
the successful detection and tracking of an individual target. The achieved accelera-
tion ratio of the algorithm reaches up to 113.13 compared to that under the traditional
processing approach.

2. Radar Signal Processing

Passive bistatic radar signal processing [20] involves performing correlation processing
between the received echo signals and reference signals [5,6]. This processing is essential
for subsequent target parameter estimation and tracking. In this section, the main modules
of signal processing are designed, including clutter suppression, range Doppler processing,
and CFAR detection, to counteract the impact of strong clutter and noise in complex
environments on target detection.

2.1. Radar System Analysis

In passive radar systems, the maximum range and maximum Doppler frequency are
crucial parameters that directly affect the system’s performance [6]. The range and Doppler
characteristics are determined using the characteristics of the transmitted signals and the
geometry of the radar setup. The radar equation for passive bistatic radar is as follows:

Pr

Pn
=

PtGtGrλ2

(4π)3R2
t R2

r
· σ · 1

KT0BF
· L (1)

where Pr, Pn, and Pt are the received signal power, received noise power, and radiation
source transmit power. B, F, and L are the receiver’s effective bandwidth, the receiver’s
noise figure and system loss, T0 = 290K. λ is the wavelength, K is Boltzmann’s constant, Gr
is the receiver antenna’s gain, Rt is the distance between the target and the radiation source,
Rr is the distance between the receiver and the target, and σ is the radar cross-section area
(RCS) of the target.

The passive bistatic radar geometry is shown in Figure 1. The angle between the target
transmitter and target receiver segments, denoted by β, is called the bistatic angle. The
angle between the target velocity vector and bistatic bisector is denoted by δ. A canonical
definition of bistatic Doppler shift, fD, ignoring relativistic effects, is the rate of change in

Remote Sens. 2023, 15, 5421 3 of 15

the total path length of the transmitted signal. The bistatic Doppler shift caused by target
motion is written as follows [21]:

fD = v
λ

[
cos
(

δ− β
2

)
+ cos

(
δ + β

2

)]
= 2v

λ · cos(δ) cos
(

β
2

) (2)

where v is the relative speed between the radar and the target, and λ is the wavelength.

Remote Sens. 2023, 15, x FOR PEER REVIEW 3 of 16

canonical definition of bistatic Doppler shift, Df , ignoring relativistic effects, is the rate
of change in the total path length of the transmitted signal. The bistatic Doppler shift
caused by target motion is written as follows [21]:

()

cos cos
2 2

2 cos cos
2

D
vf

v

β βδ δ
λ

βδ
λ

 = − + +
 = ⋅

(2)

where v is the relative speed between the radar and the target, and λ is the wavelength.

Figure 1. Geometry of passive bistatic radar.

The maximum range of a passive radar system depends on several factors, including
the wavelength of the signal, the power of the signal, the sensitivity of the receiver and
the processing capabilities of the system. The range resolution is inversely proportional to
the bandwidth of the received signal. A larger bandwidth allows for a better range reso-
lution. The maximum Doppler frequency is influenced by the carrier frequency of the re-
ceived signal and the maximum relative velocity between the radar and the target. Higher
carrier frequencies and faster relative velocities result in higher Doppler frequencies [20].

Overlapping signal blocks may allow for improved range and Doppler by using mul-
tiple signals with different characteristics simultaneously. However, this approach re-
quires sophisticated signal processing techniques to handle the simultaneous reception of
multiple signals. Achieving both a high maximum range and high maximum Doppler in
passive radar design through overlapping signal blocks is challenging, and there are in-
herent trade-offs that need to be considered.

2.2. Clutter Suppression
In the clutter suppression module, the more robust ECA-B algorithm is utilized, and

can effectively suppress direct wave signals while also exhibiting some suppression capa-
bility against multipath clutter originating from other static objects in the echo signals. In
contrast to the traditional ECA algorithm, which necessitates the use of data from all sam-
pling points to compute filter coefficients, the ECA-B algorithm utilized in this study
achieves a reduction in the clutter subspace’s dimensionality and computational storage
requirements by segmenting both the surveillance and reference signals, leading to im-
proved efficiency.

The clutter subspace is constructed by segmenting and overlapping the reference sig-
nal with its delay components. The least squares method is employed to process each

Figure 1. Geometry of passive bistatic radar.

The maximum range of a passive radar system depends on several factors, including
the wavelength of the signal, the power of the signal, the sensitivity of the receiver and the
processing capabilities of the system. The range resolution is inversely proportional to the
bandwidth of the received signal. A larger bandwidth allows for a better range resolution.
The maximum Doppler frequency is influenced by the carrier frequency of the received
signal and the maximum relative velocity between the radar and the target. Higher carrier
frequencies and faster relative velocities result in higher Doppler frequencies [20].

Overlapping signal blocks may allow for improved range and Doppler by using
multiple signals with different characteristics simultaneously. However, this approach
requires sophisticated signal processing techniques to handle the simultaneous reception
of multiple signals. Achieving both a high maximum range and high maximum Doppler
in passive radar design through overlapping signal blocks is challenging, and there are
inherent trade-offs that need to be considered.

2.2. Clutter Suppression

In the clutter suppression module, the more robust ECA-B algorithm is utilized,
and can effectively suppress direct wave signals while also exhibiting some suppression
capability against multipath clutter originating from other static objects in the echo signals.
In contrast to the traditional ECA algorithm, which necessitates the use of data from
all sampling points to compute filter coefficients, the ECA-B algorithm utilized in this
study achieves a reduction in the clutter subspace’s dimensionality and computational
storage requirements by segmenting both the surveillance and reference signals, leading to
improved efficiency.

The clutter subspace is constructed by segmenting and overlapping the reference
signal with its delay components. The least squares method is employed to process each
segment of the surveillance signal, resulting in the generation of a clutter-suppressed
signal [22]:

Si
ECA−B = Si

surv − Xi

(
XH

i Xi

)−1
XH

i Si
surv (3)

Remote Sens. 2023, 15, 5421 4 of 15

where i is the segment number (i = 0, 1, 2, ..., b − 1), b is the total number of segments, Si
surv

is the reference signal for the i-th segment, and Xi represents the i-th clutter subspace.
The entire surveillance signal after ECA-B clutter suppression is written as follows [13]:

SECA−B =

S0

ECA−B
S1

ECA−B
...

Sb−1
ECA−B

 =

S0

surv − X0
(
XH

0 X0
)−1XH

0 S0
surv

S1
surv − X1

(
XH

1 X1
)−1XH

1 S1
surv

...

Sb−1
surv − Xb−1

(
XH

b−1Xb−1

)−1
XH

b−1Sb−1
surv

 (4)

2.3. Range Doppler Processing

After clutter suppression, the energy of the target signals within the echo signal
remains relatively feeble, and it is lower than the residual noise. Consequently, the target
lacks effective differentiation from the background noise. To enhance the target’s signal-
to-noise ratio, the signal processing system must accumulate the energy of target echoes.
This process is known as range Doppler processing, which facilitates the detection of weak
target positions [23].

After applying the ECA-B algorithm, the reference signal and the echo signal can be
represented as follows:

Secho(t) = Aechod(t− τm)ej2π fam(t−τm) (5)

Sre f (t) = Are f d(t− τd)ej2π fd(t−τd) (6)

where Aecho is the amplitude of the echo signal, τm is the time delay of the echo signal,
and fam is the Doppler shift of the echo signal. Similarly, Are f , τd, and fd represent the
respective characteristics (amplitude, time delay, and Doppler shift) of the reference signal,
and d(t) is the complex envelope of the direct signal. The radar receiver position is assumed
to be constant, at fd = 0.

The formula for utilizing the range Doppler two-dimensional cross-correlation is as
follows [16]:

Y(t) = Secho(t)S∗re f [t− ∆τ]

= Aecho A∗re f d(t− τm)d∗(t− τd − ∆τ)ej2π fam(t−τm)e−j2π fd(t−τd−∆τ) (7)

The above equation is then fast Fourier-transformed to obtain the following:

ψ(∆τ, f) =
∫ ∆t

0
Aecho A∗re f d(t− τm)d∗(t− τd − ∆τ) ∗e−j2π famτm ej2π famte−j2π f tdt (8)

where (τm− τd, fam) represents the peak of the aforementioned function, which corresponds
to the target position.

Given the substantial amount of data in range Doppler processing, filtering and deci-
mation operations are necessary to reduce the number of points for fast Fourier transform
(FFT). The filtering and decimation operation is shown in Figure 2 [24]. When the sampling
rate is M:1, it reads continuous L-point data from the signal, starting at positions 1, M + 1,
2M + 1 and so on. Subsequently, each segment of data undergoes low-pass filtering to
achieve signal anti-aliasing.

In range Doppler processing, the existence of a trade-off between the range resolu-
tion and Doppler resolution needs to be considered. The range resolution and Doppler
resolution of passive bistatic radar are expressed as follows:

∆R = c · ∆τ =
c
B

(9)

Remote Sens. 2023, 15, 5421 5 of 15

∆V = λ · ∆ fd =
λ

T
(10)

The bistatic range resolution depends on the ability to measure the relative delay
between the echo and reference signals. The delay measurement resolution, ∆τ, is inversely
proportional to the signal bandwidth, B; thus, ∆τ = 1/B. The Doppler frequency resolution,
∆ fd, is inversely proportional to the observation or integration time, T; thus, ∆ fd = 1/T.

Remote Sens. 2023, 15, x FOR PEER REVIEW 5 of 16

Figure 2. Filtering and downsampling operation.

In range Doppler processing, the existence of a trade-off between the range resolution
and Doppler resolution needs to be considered. The range resolution and Doppler resolu-
tion of passive bistatic radar are expressed as follows:

cR c
B

τΔ = ⋅Δ = (9)

dV f
T
λλΔ = ⋅Δ = (10)

The bistatic range resolution depends on the ability to measure the relative delay be-
tween the echo and reference signals. The delay measurement resolution, ∆τ, is inversely
proportional to the signal bandwidth, B; thus, 1 BτΔ = . The Doppler frequency resolu-
tion, dfΔ , is inversely proportional to the observation or integration time, T; thus,

1df TΔ = .
From Equations (9) and (10), there is often a trade-off between the range and Doppler

resolution in radar systems. Increasing the bandwidth of the received signal improves the
Doppler resolution but can reduce the range resolution [8]. While the dilemma remains,
there are several strategies and technologies that can be employed to mitigate its impact
in passive radar setups. For example, using multiple-input multiple-output (MIMO) tech-
niques, employing multiple antennas and utilizing spatial diversity can help improve the
range and Doppler resolution, implementing adaptive waveform strategies [25]. In addi-
tion, an adaptive waveform strategy is implemented, using waveforms such as frequency-
modulated continuous-wave (FMCW) signals that can adapt to changing environments
and requirements.

2.4. CFAR Processing
CFAR detection [26] is a threshold-based process in which each target cell is assigned

a threshold value. All cells that exceed the threshold value are retained, while cells that do
not exceed the threshold value are filtered out. In this paper, the CA-CFAR detection al-
gorithm is employed. This algorithm is capable of providing accurate thresholds and is
well-suited to scenarios with non-homogeneous targets.

In the CA-CFAR detector, the rectangular reference window is commonly used, as
shown in Figure 3. The length and width of the reference window are refN and refM ,

and the length and width of the protection window are protN and protM , respectively [27].

Figure 2. Filtering and downsampling operation.

From Equations (9) and (10), there is often a trade-off between the range and Doppler
resolution in radar systems. Increasing the bandwidth of the received signal improves the
Doppler resolution but can reduce the range resolution [8]. While the dilemma remains,
there are several strategies and technologies that can be employed to mitigate its impact
in passive radar setups. For example, using multiple-input multiple-output (MIMO) tech-
niques, employing multiple antennas and utilizing spatial diversity can help improve the
range and Doppler resolution, implementing adaptive waveform strategies [25]. In addi-
tion, an adaptive waveform strategy is implemented, using waveforms such as frequency-
modulated continuous-wave (FMCW) signals that can adapt to changing environments
and requirements.

2.4. CFAR Processing

CFAR detection [26] is a threshold-based process in which each target cell is assigned
a threshold value. All cells that exceed the threshold value are retained, while cells that
do not exceed the threshold value are filtered out. In this paper, the CA-CFAR detection
algorithm is employed. This algorithm is capable of providing accurate thresholds and is
well-suited to scenarios with non-homogeneous targets.

In the CA-CFAR detector, the rectangular reference window is commonly used, as
shown in Figure 3. The length and width of the reference window are Nre f and Mre f , and
the length and width of the protection window are Nprot and Mprot, respectively [27].

Remote Sens. 2023, 15, x FOR PEER REVIEW 6 of 16

Figure 3. The structure model of the 2D-CA-CFAR detector.

The noise estimate of the target unit window can be expressed as Equation (11),
where ,i jY denotes the value in the range Doppler two-dimensional matrix, and i and j
denote the indexes of the range dimension and Doppler dimension.

() (), ,
2 2 2 2

, ,
2 2 2 2

,

, ,
ref ref prot prot

ref ref prot prot

M N M N
i j i j

M N M N
i j i j

i j
ref ref prot prot

Y i j Y i j
Z

M N M N

= = = =

=− =− =− =−
−

=
× − ×

(11)

When the total number of selected reference cells is n, Equation (12) represents the
functional relationship between the false alarm probability, faP , and the threshold factor,
T, and the expression for the detection threshold, TU , at (i, j) is as follows:

1

1n
faT n P
 −

= −

 (12)

,T i jU T Z= × (13)

3. GPU Acceleration Realization
Radar signal processing is a computationally intensive task. Parallelization is an ef-

fective means to enhance its efficiency and speed. By using the CUDA programming
model [28], three parallelization algorithms were designed to harness the high parallelism
and computational power of GPU in the clutter cancellation, range Doppler processing,
and CFAR detection modules.

3.1. GPU Parallel Algorithm for Clutter Suppression
The most important steps in the clutter suppression ECA-B algorithm are the seg-

mentation and overlap of reference signals, least squares computation and the solution of
the remaining signals [13]. Algorithm acceleration is achieved by segmenting the compu-
tation tasks and utilizing GPU multi-threaded parallel processing.

In the clutter suppression ECA-B algorithm, the first step is to segment the echo sig-
nal and the reference signal, as shown in Figure 4. In this paper, signal segmentation is
achieved by constructing the kernel function SigDivision. The pseudocode for this kernel
function is presented in Algorithm 1. The segmented signal matrix, iX , has dimensions

of BN b∗ , where BN represents the length of data processed in each batch and b repre-
sents the total number of segments. Additionally, K represents the maximum-distance
elimination unit.

Figure 3. The structure model of the 2D-CA-CFAR detector.

Remote Sens. 2023, 15, 5421 6 of 15

The noise estimate of the target unit window can be expressed as Equation (11), where
Yi,j denotes the value in the range Doppler two-dimensional matrix, and i and j denote the
indexes of the range dimension and Doppler dimension.

Zi,j =

∑
i=

Mre f
2 ,j=

Nre f
2

i=−
Mre f

2 ,j=−
Nre f

2

Y(i, j)−∑
i=

Mprot
2 ,j=

Nprot
2

i=−
Mprot

2 ,j=−
Nprot

2

Y(i, j)

Mre f × Nre f −Mprot × Nprot
(11)

When the total number of selected reference cells is n, Equation (12) represents the
functional relationship between the false alarm probability, Pf a, and the threshold factor, T,
and the expression for the detection threshold, UT , at (i, j) is as follows:

T = n
(

P(− 1
n)

f a − 1
)

(12)

UT = T × Zi,j (13)

3. GPU Acceleration Realization

Radar signal processing is a computationally intensive task. Parallelization is an
effective means to enhance its efficiency and speed. By using the CUDA programming
model [28], three parallelization algorithms were designed to harness the high parallelism
and computational power of GPU in the clutter cancellation, range Doppler processing,
and CFAR detection modules.

3.1. GPU Parallel Algorithm for Clutter Suppression

The most important steps in the clutter suppression ECA-B algorithm are the segmen-
tation and overlap of reference signals, least squares computation and the solution of the
remaining signals [13]. Algorithm acceleration is achieved by segmenting the computation
tasks and utilizing GPU multi-threaded parallel processing.

In the clutter suppression ECA-B algorithm, the first step is to segment the echo signal
and the reference signal, as shown in Figure 4. In this paper, signal segmentation is achieved
by constructing the kernel function SigDivision. The pseudocode for this kernel function
is presented in Algorithm 1. The segmented signal matrix, Xi, has dimensions of NB ∗ b,
where NB represents the length of data processed in each batch and b represents the total
number of segments. Additionally, K represents the maximum-distance elimination unit.

Algorithm 1: Kernel Function SigDivision

input: Reference signal Sre f and segment number i.
output: Segmented signal matrix Xi
1 idx = threadIdx.x + blockIdx.x ∗ blockDim.x + i ∗NB;
2 idy = threadIdx.y + blockIdx.y ∗ blockDim.y;
3 R = K− 1;
4 if idy < K ∧ idx < (i + 1) ∗ NB ∧ i ∗ NB ≤ idx then
5 b← idy + (idxmodNB) ∗ K ;
6 a← R− idy + idx ;
7 Xi[b].x ← re f [a].x ;
8 Xi[b].y← re f [a].y ;
9 end

Remote Sens. 2023, 15, 5421 7 of 15Remote Sens. 2023, 15, x FOR PEER REVIEW 7 of 16

Figure 4. Signal segmentation in the ECA-B algorithm.

Algorithm 1: Kernel Function SigDivision
input: Reference signal refS and segment number i.
output: Segmented signal matrix iX
1 Bidx=threadIdx.x+blockIdx.x*blockDim.x+i*N ;
2 idy=threadIdx.y+blockIdx.y*blockDim.y ;
3 R=K-1;
4 (1) B Bidy K idx i N i N idx< ∧ < + ∗ ∧ ∗ ≤if then
5 (mod)Bb idy idx N K← + ∗ ;
6 a R idy idx← − + ;
7 [] []. .iX b x ref a x← ;
8 [] []. .iX b y ref a y← ;

9 end

The key to accelerating the ECA-B algorithm lies in the computation of the least

squares, () 1H H i
i i i i survX X X X S

−

, which involves a significant amount of matrix operations.
The CUDA platform provides libraries like CUBLAS and CUSOLVER, which provide a
range of functions that can be utilized for matrix operations on the GPU [29].

3.2. GPU Parallel Algorithm for Range Doppler Processing
Range Doppler processing aims to generate a two-dimensional matrix with range

and Doppler dimensions. The conjugate multiplication process of the reference and echo
signals can be achieved by using the FFT- Multiply -IFFT calculation [30], and the data
volume can be reduced by using filtering and downsampling. Since there is no specific
order governing the formation of each data segment, the acceleration of the algorithm can
be attained by leveraging data-level parallelism, as shown in Figure 5. The parallel accel-
eration steps for this process are as follows, and Figure 6 illustrates the flowchart of the
parallelized range Doppler processing algorithm.
(1) Using the cufftPlan2d function, zero-padding and FFT computations are performed

on the clutter-suppressed echo signal, echoS , and the reference signal;

Figure 4. Signal segmentation in the ECA-B algorithm.

The key to accelerating the ECA-B algorithm lies in the computation of the least
squares, Xi

(
XH

i Xi
)−1XH

i Si
surv, which involves a significant amount of matrix operations.

The CUDA platform provides libraries like CUBLAS and CUSOLVER, which provide a
range of functions that can be utilized for matrix operations on the GPU [29].

3.2. GPU Parallel Algorithm for Range Doppler Processing

Range Doppler processing aims to generate a two-dimensional matrix with range and
Doppler dimensions. The conjugate multiplication process of the reference and echo signals
can be achieved by using the FFT- Multiply -IFFT calculation [30], and the data volume can
be reduced by using filtering and downsampling. Since there is no specific order governing
the formation of each data segment, the acceleration of the algorithm can be attained by
leveraging data-level parallelism, as shown in Figure 5. The parallel acceleration steps for
this process are as follows, and Figure 6 illustrates the flowchart of the parallelized range
Doppler processing algorithm.

Remote Sens. 2023, 15, x FOR PEER REVIEW 8 of 16

(2) Complex multiplication on the transformed signals using a kernel function is per-
formed. After that, the range–domain correlation operation can be completed by per-
forming IFFT computations;

(3) gpuFilter() is used to achieve downsampling. To avoid aliasing issues stemming from
downsampling, it is imperative to apply anti-aliasing filtering concurrently during
the downsampling procedure;

(4) FFT is performed on the correlated data along the Doppler dimension.
The FFT and IFFT operations in range Doppler processing can be directly accelerated

by using the CUFFT function library in CUDA.

Figure 5. Parallelizability analysis of range Doppler processing algorithm.

Figure 6. Parallel implementation of range Doppler processing algorithm.

The clutter suppression and distance Doppler schemes proposed in this paper are
also applicable to waveforms with cyclic prefixes, but need to be corrected according to
the characteristics of the waveforms in use. Taking the digital terrestrial multimedia
broadcast (DTMB) signal as an example, which uses the cyclic extension structure of the
PN sequence as a prefix, if this feature is not handled, it will produce a number of regular
secondary peaks in the result of the cross-correlation computation, which will have an
effect on the detection of the target. In engineering, header zeroing is often used to process
the reference signal. For this type of signal, our design idea is first, to use the standard

Figure 5. Parallelizability analysis of range Doppler processing algorithm.

Remote Sens. 2023, 15, 5421 8 of 15

Remote Sens. 2023, 15, x FOR PEER REVIEW 8 of 16

(2) Complex multiplication on the transformed signals using a kernel function is per-
formed. After that, the range–domain correlation operation can be completed by per-
forming IFFT computations;

(3) gpuFilter() is used to achieve downsampling. To avoid aliasing issues stemming from
downsampling, it is imperative to apply anti-aliasing filtering concurrently during
the downsampling procedure;

(4) FFT is performed on the correlated data along the Doppler dimension.
The FFT and IFFT operations in range Doppler processing can be directly accelerated

by using the CUFFT function library in CUDA.

Figure 5. Parallelizability analysis of range Doppler processing algorithm.

Figure 6. Parallel implementation of range Doppler processing algorithm.

The clutter suppression and distance Doppler schemes proposed in this paper are
also applicable to waveforms with cyclic prefixes, but need to be corrected according to
the characteristics of the waveforms in use. Taking the digital terrestrial multimedia
broadcast (DTMB) signal as an example, which uses the cyclic extension structure of the
PN sequence as a prefix, if this feature is not handled, it will produce a number of regular
secondary peaks in the result of the cross-correlation computation, which will have an
effect on the detection of the target. In engineering, header zeroing is often used to process
the reference signal. For this type of signal, our design idea is first, to use the standard

Figure 6. Parallel implementation of range Doppler processing algorithm.

(1) Using the cufftPlan2d function, zero-padding and FFT computations are performed
on the clutter-suppressed echo signal, Secho, and the reference signal;

(2) Complex multiplication on the transformed signals using a kernel function is per-
formed. After that, the range–domain correlation operation can be completed by
performing IFFT computations;

(3) gpuFilter() is used to achieve downsampling. To avoid aliasing issues stemming from
downsampling, it is imperative to apply anti-aliasing filtering concurrently during
the downsampling procedure;

(4) FFT is performed on the correlated data along the Doppler dimension.

The FFT and IFFT operations in range Doppler processing can be directly accelerated
by using the CUFFT function library in CUDA.

The clutter suppression and distance Doppler schemes proposed in this paper are also
applicable to waveforms with cyclic prefixes, but need to be corrected according to the
characteristics of the waveforms in use. Taking the digital terrestrial multimedia broadcast
(DTMB) signal as an example, which uses the cyclic extension structure of the PN sequence
as a prefix, if this feature is not handled, it will produce a number of regular secondary
peaks in the result of the cross-correlation computation, which will have an effect on the
detection of the target. In engineering, header zeroing is often used to process the reference
signal. For this type of signal, our design idea is first, to use the standard signal frame
data to highlight the header with the captured reference channel in the inter-correlation
operation; then, to search for the header region in the inter-correlation result; and lastly, to
zero the header region in the searched signal.

3.3. GPU Parallel Algorithm for CFAR Processing

Figure 7 illustrates the parallel implementation of the two-dimensional CA-CFAR
(2D-CA-CFAR) algorithm. The input to this system is the signal that has undergone range
Doppler processing [27].

Remote Sens. 2023, 15, 5421 9 of 15

Remote Sens. 2023, 15, x FOR PEER REVIEW 9 of 16

signal frame data to highlight the header with the captured reference channel in the inter-
correlation operation; then, to search for the header region in the inter-correlation result;
and lastly, to zero the header region in the searched signal.

3.3. GPU Parallel Algorithm for CFAR Processing
Figure 7 illustrates the parallel implementation of the two-dimensional CA-CFAR

(2D-CA-CFAR) algorithm. The input to this system is the signal that has undergone range
Doppler processing [27].
(1) Malloc() and cudaMalloc() are used to allocate space for CPU variables and GPU var-

iables;
(2) The cudaMemcpy() function is used with the cudaMemcpyHostToDevice parameter

to copy CPU variables to GPU;
(3) The thread grid and block sizes are allocated and the square law detection kernel

function on the GPU, which can be called from official CUDA libraries, is executed;
(4) Threshold calculation and the decision making kernel function on the detection re-

sults are called;
(5) The cudaMemcpy() function is used with the cudaMemcpyDeviceToHost parameter

to copy the results from the GPU back to the CPU;
(6) Free() and cudaFree() are called to free the memory resources consumed on the CPU

and GPU.

Figure 7. Parallel implementation of the 2D-CA-CFAR algorithm.

4. Experimental Results
In this paper, the experimental simulation and testing section primarily aims to vali-

date the feasibility and practical effectiveness of GPU-based parallel acceleration in pro-
cessing radar signals originating from passive bistatic radar. In the experimental phase,
real GPU and CPU devices are utilized, combined with CUDA programming to imple-
ment parallel signal processing; this approach serves to establish the reliability and preci-
sion of the algorithms presented in this paper. In the testing phase, authentic radar data
are utilized alongside selected acceleration ratio metrics to evaluate the acceleration ratios
of crucial algorithms and of the whole algorithm of radar signal processing under differ-
ent data processing workloads.

4.1. Experimental Settings
In this experiment, the CPU model utilized is the Intel i9-10980XE processor with a

base frequency of 3.0 GHz and a boost frequency of 4.6 GHz. The GPU employed is the
NVIDIA RTX 3090 series, equipped with the computing capability of 8.6 and 10496 CUDA
cores. The hardware specifications are shown in Table 1. In addition, the software platform

Figure 7. Parallel implementation of the 2D-CA-CFAR algorithm.

(1) Malloc() and cudaMalloc() are used to allocate space for CPU variables and
GPU variables;

(2) The cudaMemcpy() function is used with the cudaMemcpyHostToDevice parameter
to copy CPU variables to GPU;

(3) The thread grid and block sizes are allocated and the square law detection kernel
function on the GPU, which can be called from official CUDA libraries, is executed;

(4) Threshold calculation and the decision making kernel function on the detection results
are called;

(5) The cudaMemcpy() function is used with the cudaMemcpyDeviceToHost parameter
to copy the results from the GPU back to the CPU;

(6) Free() and cudaFree() are called to free the memory resources consumed on the CPU
and GPU.

4. Experimental Results

In this paper, the experimental simulation and testing section primarily aims to vali-
date the feasibility and practical effectiveness of GPU-based parallel acceleration in pro-
cessing radar signals originating from passive bistatic radar. In the experimental phase,
real GPU and CPU devices are utilized, combined with CUDA programming to implement
parallel signal processing; this approach serves to establish the reliability and precision
of the algorithms presented in this paper. In the testing phase, authentic radar data are
utilized alongside selected acceleration ratio metrics to evaluate the acceleration ratios of
crucial algorithms and of the whole algorithm of radar signal processing under different
data processing workloads.

4.1. Experimental Settings

In this experiment, the CPU model utilized is the Intel i9-10980XE processor with a
base frequency of 3.0 GHz and a boost frequency of 4.6 GHz. The GPU employed is the
NVIDIA RTX 3090 series, equipped with the computing capability of 8.6 and 10496 CUDA
cores. The hardware specifications are shown in Table 1. In addition, the software platform
primarily encompasses Microsoft Visual Studio 2019 for C++ development and VS Code
for C language development, while the CUDA development environment employed is
CUDA 11.6.

Remote Sens. 2023, 15, 5421 10 of 15

Table 1. Hardware specifications.

Device Type Model Key Parameters

CPU Intel i9-10980XE

Base clock: 3.0 GHz
Boost clock: 4.6 GHz
Cores: 18 Threads: 36

L3 cache: 24.75 MB

GPU NVIDIA RTX3090

CUDA cores: 10496
GPU frequency: 19.5 GHz

GPU memory: 24 GB(GDDR6)
GPU computing power: 8.6

The experimental signal source is derived from a FM radio broadcast [31], detecting
and targeting a flying aircraft in the Halifax area, while the utilized radar data format is
HDF5 [32]. Figure 8 shows the position of the PBR system and the FM station; the target is
a Boeing-787 airliner, flying at roughly Mach 0.85, and the flying altitude is about 11.3 km.
The relevant parameters of the radar dataset are shown in Table 2; the dataset is of a a total
size of 6 GB and operates at a sampling frequency of 2.4 MHz. The maximum bistatic range
is 200.11 km, with the maximum Doppler frequency shift reaching 256.04 Hz.

Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 16

Figure 8. Position of the PBR system.

4.2. GPU Parallel Algorithm Correctness Verification
To ascertain the correctness of the parallel signal processing algorithm proposed in

this paper, an evaluation is conducted by comparing the processing outcomes of the GPU-
based parallel signal processing algorithm with those of the CPU-based serial algorithm
using the authentic radar data.

Figure 9 displays the target detection results acquired by executing the serial CPU
and parallel GPU signal processing algorithms. It is evident that the parallel algorithm
employed in this design effectively detects the target aircraft. Moreover, within an ac-
ceptable margin of error, the bistatic range and Doppler frequency shift of the targets de-
tected by the parallel algorithm remain consistent with those detected by the serial algo-
rithm.

(a) CPU serial algorithm (b) GPU parallel algorithm

Figure 8. Position of the PBR system.

Table 2. Radar dataset and related parameters.

Parameters Value

Signal type FM radio broadcast
Center frequency 101.9 MHz

Band width 200 kHz
Sampling rate 2.4 MHz

Maximum bistatic range 200.11 km
Range resolution 1.14 Km

Maximum Doppler frequency shift 256.04 Hz
Doppler resolution 0.5 Hz

The experiment employs the speedup ratio of the CUDA program as a metric to assess
the efficacy of parallel acceleration on the GPU. The specific derivation of this ratio is
outlined below:

Speedup =
Ws + Wp

Ws + Wp/n
(14)

Remote Sens. 2023, 15, 5421 11 of 15

where Ws represents the execution time of the sequential algorithm, Wp is the execution
time of the parallel implementation of the sequential algorithm, and n is the number of
processors or CUDA threads in the case of GPU programs.

4.2. GPU Parallel Algorithm Correctness Verification

To ascertain the correctness of the parallel signal processing algorithm proposed in this
paper, an evaluation is conducted by comparing the processing outcomes of the GPU-based
parallel signal processing algorithm with those of the CPU-based serial algorithm using the
authentic radar data.

Figure 9 displays the target detection results acquired by executing the serial CPU
and parallel GPU signal processing algorithms. It is evident that the parallel algorithm em-
ployed in this design effectively detects the target aircraft. Moreover, within an acceptable
margin of error, the bistatic range and Doppler frequency shift of the targets detected by
the parallel algorithm remain consistent with those detected by the serial algorithm.

Remote Sens. 2023, 15, x FOR PEER REVIEW 12 of 16

(a) CPU serial algorithm (b) GPU parallel algorithm

(c) CPU serial algorithm (d) GPU parallel algorithm

Figure 9. (a–d) Target detection results after signal processing by serial CPU and parallel GPU algo-
rithm.

4.3. GPU Parallel Algorithm Acceleration Performance Verification
During the phase of performance acceleration testing, this design utilizes 50 frames

of radar echo data, amounting to a total size of 400 MB, as the initial dataset. Both the CPU
serial algorithm and GPU parallel algorithm are executed on an identical hardware plat-
form, with their execution times being measured and recorded. In the serial program, the
total program runtime is determined by commencing the timer after the completion of
data file reading and concluding it once the CFAR detection phase is finalized. For each
signal processing module, timing begins when the module starts running and stops when
the module completes its calculations. In the parallel program, the overall program
runtime is gauged by initiating the timer after the data file reading process is complete
and halting it once the CFAR detection phase concludes. As for the signal processing mod-
ules, timing is initiated when a thread is launched and halted when all computational
modules within that thread have completed their tasks.

The CPU serial algorithm and GPU parallel algorithm for processing the passive bi-
static radar signal underwent ten separate tests. In each run, the execution time for each
of the three pivotal algorithms and the total processing time for the entire workflow were
measured and recorded in seconds. The average time for each algorithm was computed
by taking the mean of the ten experiments and rounding it to three decimal places. The
acceleration ratio of the proposed algorithm was determined using the CUDA program
acceleration ratio metric. The pertinent algorithm execution time and acceleration ratio
are presented in Table 3.

As illustrated in Figure 10, the parallel algorithm yields significant speedup in each
module when compared to the CPU platform. The overall algorithm achieves a speedup
of 50.34.

Table 3. Average time and acceleration ratios of serial and parallel algorithms.

Figure 9. (a–d) Target detection results after signal processing by serial CPU and parallel GPU algorithm.

4.3. GPU Parallel Algorithm Acceleration Performance Verification

During the phase of performance acceleration testing, this design utilizes 50 frames
of radar echo data, amounting to a total size of 400 MB, as the initial dataset. Both the
CPU serial algorithm and GPU parallel algorithm are executed on an identical hardware
platform, with their execution times being measured and recorded. In the serial program,
the total program runtime is determined by commencing the timer after the completion of
data file reading and concluding it once the CFAR detection phase is finalized. For each
signal processing module, timing begins when the module starts running and stops when
the module completes its calculations. In the parallel program, the overall program runtime
is gauged by initiating the timer after the data file reading process is complete and halting
it once the CFAR detection phase concludes. As for the signal processing modules, timing
is initiated when a thread is launched and halted when all computational modules within
that thread have completed their tasks.

Remote Sens. 2023, 15, 5421 12 of 15

The CPU serial algorithm and GPU parallel algorithm for processing the passive
bistatic radar signal underwent ten separate tests. In each run, the execution time for each
of the three pivotal algorithms and the total processing time for the entire workflow were
measured and recorded in seconds. The average time for each algorithm was computed
by taking the mean of the ten experiments and rounding it to three decimal places. The
acceleration ratio of the proposed algorithm was determined using the CUDA program
acceleration ratio metric. The pertinent algorithm execution time and acceleration ratio are
presented in Table 3.

Table 3. Average time and acceleration ratios of serial and parallel algorithms.

Signal Processing CPU (s) GPU (s) Speedup

ECA-B 0.122 0.009 14.37
RD-Processing 12.490 0.344 36.31
2D-CA-CFAR 6.440 0.026 247.69

Whole Algorithm 19.052 0.379 50.34

As illustrated in Figure 10, the parallel algorithm yields significant speedup in each
module when compared to the CPU platform. The overall algorithm achieves a speedup
of 50.34.

Remote Sens. 2023, 15, x FOR PEER REVIEW 13 of 16

Figure 10. Average execution time of serial and parallel algorithms for passive bistatic radar signal
processing in various stages.

Due to the dynamic nature of radar echo data volume in real-world environments,
further testing is necessary to evaluate the impact of varying data sizes on the acceleration
performance of the proposed parallelized algorithm. The experiment consisted of six dif-
ferent configurations of radar echo data volumes. For each group of data, both the passive
bistatic radar CPU serial and GPU parallel algorithms were run. Similarly to the previous
experiments, each group of data was repeated ten times, and the runtime for each module
algorithm and the total processing time for the entire algorithm were recorded for each
run. The average time in seconds was calculated by averaging the results of the ten exper-
iments for each group and rounding it to three decimal places, representing the experi-
mental result for that group. The average processing time of each module in the parallel
and serial algorithms was recorded for each data volume configuration, and the speedup
was calculated and shown in Table 4.

Table 4. Speedup of each key algorithm under different data volume.

Data Volume ECA-B RD-Processing 2D-CA-CFAR Whole Algorithm
10 frames (80 MB) 8.21 24.77 61.24 29.29
20 frames (160 MB) 10.52 23.28 214.25 31.99
50 frames (400 MB) 14.37 36.31 247.69 50.34

100 frames (800 MB) 17.87 55.91 243.49 74.72
150 frames (1200 MB) 23.61 92.11 227.39 113.13
200 frames (1600 MB) 25.95 90.54 271.02 112.95

As illustrated in Figure 11, there is a noticeable increase in the CUDA acceleration
ratios of the three critical algorithms for passive bistatic radar signal processing, as well
as in those if the overall algorithm, with there was an increase in radar echo data size.
However, as the input data size reaches a certain threshold, the rate of increase gradually
diminishes, and the acceleration ratios tend to stabilize. Furthermore, it is evident that the
acceleration ratio of the 2D-CA-CFAR algorithm significantly outpaces that of the other
algorithms, displaying rapid growth in the initial stages. In contrast, the clutter suppres-
sion algorithm exhibits a lower acceleration ratio in comparison to that of the other algo-
rithms, ultimately stabilizing at approximately 25 times. The acceleration ratio of the
range Doppler algorithm follows a relatively consistent trend as the echo data size in-
creases, ultimately stabilizing at around 90 times.

Figure 10. Average execution time of serial and parallel algorithms for passive bistatic radar signal
processing in various stages.

Due to the dynamic nature of radar echo data volume in real-world environments,
further testing is necessary to evaluate the impact of varying data sizes on the acceleration
performance of the proposed parallelized algorithm. The experiment consisted of six
different configurations of radar echo data volumes. For each group of data, both the
passive bistatic radar CPU serial and GPU parallel algorithms were run. Similarly to the
previous experiments, each group of data was repeated ten times, and the runtime for each
module algorithm and the total processing time for the entire algorithm were recorded
for each run. The average time in seconds was calculated by averaging the results of the
ten experiments for each group and rounding it to three decimal places, representing the
experimental result for that group. The average processing time of each module in the
parallel and serial algorithms was recorded for each data volume configuration, and the
speedup was calculated and shown in Table 4.

Remote Sens. 2023, 15, 5421 13 of 15

Table 4. Speedup of each key algorithm under different data volume.

Data Volume ECA-B RD-Processing 2D-CA-CFAR Whole Algorithm

10 frames (80 MB) 8.21 24.77 61.24 29.29
20 frames (160 MB) 10.52 23.28 214.25 31.99
50 frames (400 MB) 14.37 36.31 247.69 50.34
100 frames (800 MB) 17.87 55.91 243.49 74.72

150 frames (1200 MB) 23.61 92.11 227.39 113.13
200 frames (1600 MB) 25.95 90.54 271.02 112.95

As illustrated in Figure 11, there is a noticeable increase in the CUDA acceleration
ratios of the three critical algorithms for passive bistatic radar signal processing, as well
as in those if the overall algorithm, with there was an increase in radar echo data size.
However, as the input data size reaches a certain threshold, the rate of increase gradually
diminishes, and the acceleration ratios tend to stabilize. Furthermore, it is evident that the
acceleration ratio of the 2D-CA-CFAR algorithm significantly outpaces that of the other
algorithms, displaying rapid growth in the initial stages. In contrast, the clutter suppression
algorithm exhibits a lower acceleration ratio in comparison to that of the other algorithms,
ultimately stabilizing at approximately 25 times. The acceleration ratio of the range Doppler
algorithm follows a relatively consistent trend as the echo data size increases, ultimately
stabilizing at around 90 times.

Remote Sens. 2023, 15, x FOR PEER REVIEW 14 of 16

Figure 11. Changes in speedup of key algorithms and overall algorithm with different data sizes.

The observed trends can be attributed to several factors in the parallelization ap-
proach presented in this paper. The filtering and downsampling operations in the range
Doppler processing reduce the data size significantly. Additionally, range Doppler pro-
cessing involves a substantial number of FFT operations and their inverse transfor-
mations, which can be effectively parallelized using the cuFFT library in CUDA; this, com-
bined with the parallelization strategy employed in this paper, achieves a notable acceler-
ation ratio. The 2D-CA-CFAR detection algorithm involves numerous convolution opera-
tions, which traditionally can be time-consuming in CPU serial processing. However, in
this design, GPU parallel processing takes advantage of the parallelization capabilities of
GPUs, leading to significantly improved performance.

The overall algorithm acceleration ratio in this design also demonstrates an initial
upward trend and subsequently stabilizes as the data volume continues to increase, even-
tually reaching an acceleration ratio of approximately 110 times. Furthermore, the tradi-
tional CPU serial radar signal processing algorithms exhibit increasing execution times as
the data volume grows. In contrast, the GPU parallel algorithms complete equivalent tasks
in less than 1 s. This stark contrast underscores the effectiveness of the GPU/CPU hetero-
geneous coordination mode and the CUDA programming architecture in achieving par-
allel acceleration for passive bistatic radar signal processing algorithms.

5. Conclusions
This paper presents a study on the GPU parallel acceleration of signal processing for

the passive bistatic radar. By utilizing the CUDA programming technique and the im-
mense parallelism and computational capabilities of GPU, parallel acceleration algo-
rithms are developed for the clutter suppression ECA-B algorithm, range Doppler pro-
cessing, and two-dimensional CA-CFAR detection. In real passive bistatic radar datasets,
the acceleration ratio of the proposed algorithm reaches 113.13 compared to that under
the traditional CPU-based methods. This substantial speedup greatly enhances the effi-
ciency of passive bistatic radar systems, enabling the real-time processing of passive bi-
static radar data.

Future work will optimize the various aspects of passive bistatic radar signal pro-
cessing. In view of the incomplete clutter suppression, more innovative clutter suppres-
sion algorithms such as the iterative cancellation method with singular value decomposi-
tion (SVD) combined with entropy change will be considered. In addition, considering the
problems of obvious branching delay and slow data intercommunication between the host
side and the device side, when the amount of data is too large or the complexity of the
program increases, the further design of the algorithms can be accomplished by using
parallel methods such as CUDA streams and tensor cores, etc. It is envisioned that such
systems could play an important role in the current generation of spectrum limitation and

Figure 11. Changes in speedup of key algorithms and overall algorithm with different data sizes.

The observed trends can be attributed to several factors in the parallelization approach
presented in this paper. The filtering and downsampling operations in the range Doppler
processing reduce the data size significantly. Additionally, range Doppler processing
involves a substantial number of FFT operations and their inverse transformations, which
can be effectively parallelized using the cuFFT library in CUDA; this, combined with
the parallelization strategy employed in this paper, achieves a notable acceleration ratio.
The 2D-CA-CFAR detection algorithm involves numerous convolution operations, which
traditionally can be time-consuming in CPU serial processing. However, in this design,
GPU parallel processing takes advantage of the parallelization capabilities of GPUs, leading
to significantly improved performance.

The overall algorithm acceleration ratio in this design also demonstrates an initial
upward trend and subsequently stabilizes as the data volume continues to increase, eventu-
ally reaching an acceleration ratio of approximately 110 times. Furthermore, the traditional
CPU serial radar signal processing algorithms exhibit increasing execution times as the
data volume grows. In contrast, the GPU parallel algorithms complete equivalent tasks in
less than 1 s. This stark contrast underscores the effectiveness of the GPU/CPU heteroge-

Remote Sens. 2023, 15, 5421 14 of 15

neous coordination mode and the CUDA programming architecture in achieving parallel
acceleration for passive bistatic radar signal processing algorithms.

5. Conclusions

This paper presents a study on the GPU parallel acceleration of signal processing for
the passive bistatic radar. By utilizing the CUDA programming technique and the immense
parallelism and computational capabilities of GPU, parallel acceleration algorithms are
developed for the clutter suppression ECA-B algorithm, range Doppler processing, and two-
dimensional CA-CFAR detection. In real passive bistatic radar datasets, the acceleration
ratio of the proposed algorithm reaches 113.13 compared to that under the traditional
CPU-based methods. This substantial speedup greatly enhances the efficiency of passive
bistatic radar systems, enabling the real-time processing of passive bistatic radar data.

Future work will optimize the various aspects of passive bistatic radar signal process-
ing. In view of the incomplete clutter suppression, more innovative clutter suppression
algorithms such as the iterative cancellation method with singular value decomposition
(SVD) combined with entropy change will be considered. In addition, considering the
problems of obvious branching delay and slow data intercommunication between the host
side and the device side, when the amount of data is too large or the complexity of the
program increases, the further design of the algorithms can be accomplished by using
parallel methods such as CUDA streams and tensor cores, etc. It is envisioned that such
systems could play an important role in the current generation of spectrum limitation and
can be used with the critical applications of the system information that requires very low
latency (e.g., self-driving cars).

Author Contributions: X.Z. and P.L. conceived and developed the processing algorithm and analyzed
the processing results; B.W. and Y.J. discussed the processing procedure and examined the final results.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (NSFC)
Project under Grant 62231021 and 61771142.

Data Availability Statement: Data are contained within the article.

Acknowledgments: The authors would like to thank the editors and reviewers for their time and
effort spent in going through this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Liu, G.S.; Gu, H.; Su, W.M.; Sun, H.B.; Zhang, J.H. Random signal radar-a winner in both the military and civilian operating

environments. IEEE Trans. Aerosp. Electron. Syst. 2003, 39, 489–498.
2. Zhang, J.A.; Liu, F.; Masouros, C.; Heath, R.W.; Feng, Z.; Zheng, L.; Petropulu, A. An Overview of Signal Processing Techniques

for Joint Communication and Radar Sensing. IEEE J. Sel. Top. Signal Process. 2021, 15, 1295–1315. [CrossRef]
3. Sun, M.; Pan, J.; Le Bastard, C.; Wang, Y.; Li, J. Advanced signal processing methods for ground-penetrating radar: Applications

to civil engineering. IEEE Signal Process. Mag. 2019, 36, 74–84. [CrossRef]
4. Yan, Q.; Xia, D.; Zhao, Y. Radar Waveform Design Based on Linear Frequency Modulation Signal. In Proceedings of the 2019

IEEE 4th International Conference on Cloud Computing and Big Data Analysis (ICCCBDA), Chengdu, China, 12–15 April 2019;
pp. 574–578.

5. Kuschel, H.; Cristallini, D.; Olsen, K.E. Tutorial: Passive radar tutorial. IEEE Aerosp. Electron. Syst. Mag. 2019, 34, 2–19. [CrossRef]
6. Griffiths, H.; Baker, C. An Introduction to Passive Radar; Artech House Radar Library, Artech House: Norwood, MA, USA, 2017.
7. Tan, D.K.P.; Sun, H.; Lu, Y.; Lesturgie, M.; Chan, H.L. Passive radar using global system for mobile communication signal: Theory,

implementation and measurements. IEEE Proc.-Radar Sonar Navig. 2005, 3, 116–123. [CrossRef]
8. Palmer, J.E.; Harms, H.A.; Searle, S.J.; Davis, L. DVB-T passive radar signal processing. IEEE Trans. Signal Process. 2012, 61,

2116–2126. [CrossRef]
9. Berger, C.R.; Demissie, B.; Heckenbach, J.; Willett, P.; Zhou, S. Signal processing for passive radar using OFDM waveforms. IEEE

J. Sel. Top. Signal Process. 2010, 4, 226–238. [CrossRef]
10. Wan, X.R. An Overview on Development of Passive Radar Based on the LowFrequency Band Digital Broadcasting and TV Signals.

J. Radars 2012, 1, 109–123.
11. Nickolls, J.; Dally, W.J. The GPU computing era. IEEE micro. 2010, 30, 56–69. [CrossRef]

https://doi.org/10.1109/JSTSP.2021.3113120
https://doi.org/10.1109/MSP.2019.2900454
https://doi.org/10.1109/MAES.2018.160146
https://doi.org/10.1049/ip-rsn:20055038
https://doi.org/10.1109/TSP.2012.2236324
https://doi.org/10.1109/JSTSP.2009.2038977
https://doi.org/10.1109/MM.2010.41

Remote Sens. 2023, 15, 5421 15 of 15

12. Mittal, S.; Vetter, J. A Survey of CPU-GPU Heterogeneous Computing Techniques. ACM Comput. Surv. 2015, 47, 1–35. [CrossRef]
13. Bu, Z.; Zhu, H.; Qian, J. GPU-Accelerated Multipath Clutter Cancellation Algorithm for DTMB-Based Passive Radar. In

Proceedings of the 2020 International Conference on Information Science, Parallel and Distributed Systems (ISPDS), Xi’an, China,
14–16 August 2020; pp. 216–219.

14. Zhao, Z.; Wan, X.; Yi, J.; Xie, R.; Wang, Y. Radio frequency interference mitigation in OFDM based passive bistatic radar. AEU-Int.
J. Electron. Commun. 2016, 70, 70–76. [CrossRef]

15. Liu, Y.; Wan, X.; Sun, X. GPU parallel acceleration of target detection in passive radar system. In Proceedings of the 2016 CIE
International Conference on Radar (RADAR), Guangzhou, China, 10–13 October 2016; pp. 1–4.

16. Barkhatov, A.; Kozlov, A. Fast Calculation of Cross-Correlation Function with Video Cards in Coherent Radar. In Proceedings of
the 2020 9th Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro, 8–11 June 2020; pp. 1–5.

17. Colone, F.; Palmarini, C.; Martelli, T.; Tilli, E. Sliding extensive cancellation algorithm for disturbance removal in passive radar.
IEEE Trans. Aerosp. Electron. Syst. 2016, 52, 1309–1326. [CrossRef]

18. Moscardini, C.; Petri, D.; Capria, A.; Conti, M.; Martorella, M.; Berizzi, F. Batches algorithm for passive radar: A theoretical
analysis. IEEE Trans. Aerosp. Electron. Syst. 2015, 51, 1475–1487. [CrossRef]

19. Zhang, P.; Wu, Y.; Wang, J. Real-time signal processing for FM-based passive bistatic radar using GPUs. In Proceedings of the
2014 19th International Conference on Digital Signal Processing (DSP), Hong Kong, China, 20–23 August 2014; pp. 536–540.

20. Malanowski, M. Signal Processing for Passive Bistatic Radar; Artech House: Norwood, MA, USA, 2019.
21. Mathews, Z.; Quiriconi, L.; Schüpbach, C. Learning Resource Allocation in Active-Passive Radar Sensor Networks. Front. Signal

Process. 2022, 2, 822894. [CrossRef]
22. Wu, Y.; Chen, Z.; Peng, D. Target Detection of Passive Bistatic Radar under the Condition of Impure Reference Signal. Remote

Sens. 2023, 15, 3876. [CrossRef]
23. Ning, X.; Yeh, C.; Zhou, B.; Gao, W.; Yang, J. Multiple-GPU accelerated range-doppler algorithm for synthetic aperture radar

imaging. In Proceedings of the Radar Conference (RADAR), Kansas City, MO, USA, 23–27 May 2011; pp. 698–701.
24. Feng, W.; Friedt, J.M.; Cherniak, G.; Sato, M. Batch compressive sensing for passive radar range-Doppler map generation. IEEE

Trans. Aerosp. Electron. Syst. 2019, 55, 3090–3102. [CrossRef]
25. Liu, G.; Yang, W.; Li, P.; Qin, G.; Cai, J.; Wang, Y.; Wang, S.; Yue, N.; Huang, D. MIMO Radar Parallel Simulation System Based on

CPU/GPU Architecture. Sensors 2022, 22, 396. [CrossRef] [PubMed]
26. Liu, C.; Liu, Y.; Li, Q.; Wei, Z. Radar target MTD 2D-CFAR algorithm based on compressive detection. In Proceedings of the 2021

IEEE International Conference on Mechatronics and Automation (ICMA), Takamatsu, Japan, 8–11 August 2021; pp. 83–88.
27. Venter, C.; Grobler, H.; AlMalki, K. Implementation of the CA-CFAR algorithm for pulsed-Doppler radar on a GPU architecture.

In Proceedings of the 2011 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT),
Amman, Jordan, 6–8 December 2011; pp. 1–6.

28. Nishino, R.; Loomis, S.H.C. CuPy: A NumPy-compatible library for NVIDIA GPU calculations. In Proceedings of the Workshop
on Machine Learning Systems (LearningSys) in the Thirty-first Annual Conference on Neural Information Processing Systems
(NeurIPS), Long Beach, CA, USA, 4–9 December 2017.

29. Yang, H.; Zhang, T.; He, Y.; Dan, Y.; Yin, J.; Ma, B.; Yang, J. GPU-Oriented Designs of Constant False Alarm Rate Detectors for Fast
Target Detection in Radar Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5231214. [CrossRef]

30. Wu, S.; Xu, Z.; Wang, F.; Yang, D.; Guo, G. An improved back-projection algorithm for GNSS-R BSAR imaging based on CPU and
GPU platform. Remote Sens. 2021, 13, 2107. [CrossRef]

31. Malanowski, M.; Kulpa, K.; Kulpa, J.; Samczynski, P.; Misiurewicz, J. Analysis of detection range of FM-based passive radar. IET
Radar Sonar Navig. 2014, 8, 153–159. [CrossRef]

32. Passive Radar_20191102_1011.hdf5. Available online: https://drive.google.com/file/d/18dG__HnbuHJtG6WCHtPq3c_PRLqJA2
O/view (accessed on 18 October 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1145/2788396
https://doi.org/10.1016/j.aeue.2015.10.004
https://doi.org/10.1109/TAES.2016.150477
https://doi.org/10.1109/TAES.2015.130407
https://doi.org/10.3389/frsip.2022.822894
https://doi.org/10.3390/rs15153876
https://doi.org/10.1109/TAES.2019.2897474
https://doi.org/10.3390/s22010396
https://www.ncbi.nlm.nih.gov/pubmed/35009936
https://doi.org/10.1109/TGRS.2022.3188151
https://doi.org/10.3390/rs13112107
https://doi.org/10.1049/iet-rsn.2013.0185
https://drive.google.com/file/d/18dG__HnbuHJtG6WCHtPq3c_PRLqJA2O/view
https://drive.google.com/file/d/18dG__HnbuHJtG6WCHtPq3c_PRLqJA2O/view

	Introduction
	Radar Signal Processing
	Radar System Analysis
	Clutter Suppression
	Range Doppler Processing
	CFAR Processing

	GPU Acceleration Realization
	GPU Parallel Algorithm for Clutter Suppression
	GPU Parallel Algorithm for Range Doppler Processing
	GPU Parallel Algorithm for CFAR Processing

	Experimental Results
	Experimental Settings
	GPU Parallel Algorithm Correctness Verification
	GPU Parallel Algorithm Acceleration Performance Verification

	Conclusions
	References

