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Abstract: Forest change monitoring is a fundamental and routine task for forest survey and planning
departments, and the resulting forest change information acts as an underlying asset for sustainable
forest management strategy development, ecological quality assessment, and carbon cycle research.
The traditional ground-based manual monitoring of forest change has the disadvantages of high time
and labor costs, low accessibility, and poor timeliness over wide regions. Remote sensing technology
has become a popular approach for multi-scale forest change monitoring due to its multiple available
spatial, spectral, temporal, and radiometric resolutions and wide coverage. Particularly, the free access
policy of long time series archive data of Landsat (around 50 years) has triggered many automated
analysis algorithms for landscape-scale forest change analysis, such as VCT, LandTrendr, BFAST,
and CCDC. These automated algorithms differ in their principles, parameter settings, execution
complexity, and disturbance types to be detected. Thus, selecting a suitable algorithm to satisfy the
particular forest management demands is an urgent and challenging task for forest managers in a
given forested area. In this study, Lishui City, Zhejiang Province, a typical plantation forest region
in Southern China where forest disturbance widely and frequently exists, was selected as the study
area. Based on the GEE platform, the algorithmic adaptability of VCT, LandTrendr, and CCDC in
monitoring abrupt forest disturbance events was compared and assessed. The results showed that
the kappa coefficients of the abrupt disturbance events detected by the three algorithms were at
0.704 (LandTrendr), 0.660 (VCT), and 0.727 (CCDC), and the corresponding overall accuracies were at
0.852, 0.830, and 0.862, respectively. The validated disturbance occurrence time consistency reached
nearly 80% for the three algorithms. In light of the characteristics of forest disturbance occurrence in
southeastern China as well as the algorithmic complexity, efficiency, and adaptability, LandTrendr
was recommended as the most suitable one in this region or other similar regions. Overall, the forest
change monitoring process based on GEE is becoming more simplified and easily implemented, and
the comparisons and tradeoffs in this study provide a reference for the choice of long time series
forest monitoring algorithms.

Keywords: LandTrendr; VCT; CCDC; forest disturbance; GEE

1. Introduction

Changes in forest ecosystems have important and far-reaching implications for both
human and biosphere conditions as a whole [1]. Forest change monitoring is the primary
means to understand the dynamics of forest ecosystem and forest resource development
trends, enabling the guidance of forest management, planning, and restoration activities.
Particularly, the resulting spatio-temporally explicit forest change information from the
monitoring is crucial to the strategic development of sustainable forest management and
forestry industry planning and upgrading [2]. Ecologically, a forest disturbance (change
event) is defined as a temporary change in the state of the forest environment, which can

Remote Sens. 2023, 15, 5408. https://doi.org/10.3390/rs15225408 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15225408
https://doi.org/10.3390/rs15225408
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-5689-5091
https://doi.org/10.3390/rs15225408
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15225408?type=check_update&version=1


Remote Sens. 2023, 15, 5408 2 of 16

bring about significant changes in the forest ecosystem’s structure and function, such as
a substantial biomass loss [3]. Forest disturbances are caused by human activities, such
as logging and forest thinning, or natural factors, such as landslides and sudden climate
changes. Overall, these forces-induced forest change can be categorized into four categories
when using remote sensing data to detect [4]: (1) abrupt change, (2) seasonal change,
(3) gradual ecosystem change, and (4) short-term inconsequential change, of which, from
the perspective of restoration ecology, abrupt change is the most significant type of forest
change in forest management, and it is most easily detected by comparing multi-temporal
remote sensing observations. Thus, this study focuses on abrupt change events to test
the adaptability of different automated analysis algorithms based on Landsat time series
observations.

Traditional remote sensing-based forest disturbance or change mapping is principally
based on comparing bi-temporal or multi-temporal satellite scenes, followed by the analysis
of forest cover status or the calculation of increase or decrease in relevant indices to derive
a general picture of forest changes [5–7]. Obviously, this manner is inefficient in the change
analysis of long time span, e.g., 1990 to 2020, and requires the analysts to be well-trained
and have rich experiences in remotely sensed image analysis. With Landsat opening all its
historical archive data to the public for free access, monitoring forest change over a long time
span by using consecutive years’ images has now been the norm [8]. Based on the dense
image stacks, long-term forest change monitoring algorithms built upon spectral variable
tracking, image classification, spectral trajectories-based analysis, data fusion, and other
different means have surged [9]. The most reputational automated algorithms for forest
change analysis include the vegetation change tracker (VCT) model [10], the Break detection
For Additive Season and Trend (BFAST) [11], the Landsat-based detection of Trends in
Disturbance and Recovery (LandTrendr) [12,13], and the Continuous Change Detection
and Classification (CCDC) [14]. In recent decades, the development and promotion of
big data platforms have broken through the limitations of storage and computing power,
for example, the combination of big data and cloud computing on Google Earth Engine
(GEE) [15] makes these automated forest change analysis algorithms easily and efficiently
implemented in GEE environment, popularizing their practicability in more fields [16–18].
However, some algorithm application problems have also arisen with the popularization,
such as the incomplete matching of algorithm monitoring advantages with the actual forest
management demands [19], applications based solely on algorithm availability [20–22],
and the inability to perform algorithm selection with generalizable quantitative criteria
and evaluation systems [8,23]. Therefore, it is necessary to compare the effectiveness and
adaptability of the automated algorithms based on the GEE platform to guide a proper
selection of algorithms in particular forested areas to address these concerns.

Lishui has the highest forest coverage in Zhejiang Province and is a pioneer in China’s
forestry industry development [24,25]. The area of Lishui is characterized by extensive
plantation forests, and regular forest logging and post-harvesting forest recovery practices,
as well as casual forest fire events, are frequently witnessed in its forest ecosystems [26].
Thus, Lishui can be considered a typical prototype area to test the effectiveness of diverse
automated time series analysis algorithms. Moreover, the anthropogenic disturbance type is
more prominent in Lishui’s forest, which is a common feature of the forests in southeastern
China, helping to verify the transferability of the ultimately selected algorithm.

In summary, based on the long-term research and monitoring needs for the forests
in southeastern China, it is necessary to select an adaptable and efficient long time series
forest monitoring method for this region. The major objective of this study was to identify
the most suitable automated time series analysis algorithm for the forests in Southeast
China from GEE platform by considering algorithmic complexity, efficiency, and the match
degree of the detected disturbance types to the purposes of forest management.



Remote Sens. 2023, 15, 5408 3 of 16

2. Study Area and Materials

The study area, Lishui (118◦41′–120◦26′E, 27◦25′–28◦57′N), is located in the south-
western part of Zhejiang Province (Figure 1). Lishui is a mountainous city with good
hydrothermal conditions, which are conducive to vegetation growth. The main dominant
species are masson pine (Pinus massoniana Lamb.), Chinese fir (Cunninghamia lanceolata
(Lamb.) Hook.), and oak (Cyclobalanopsis glauca (Thunb.) Oerst.), and they constitute over
70% of the area of forested land in Lishui [27]. Lishui belongs to the subtropical monsoon
climate zone, with more obvious subtropical maritime monsoon climate characteristics. In
recent decades, forest change events have been frequent in Lishui, mainly caused by forest
harvesting, pests and diseases, and post-disturbance reforestation [26].
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Figure 1. Maps showing the location of the study area and land cover types in 2000 at Lishui City,
Zhejiang Province, China. The right map is the 2000 Land cover data supporting VCT algorithm
running, which is a subset of the GlobeLAND30.

In this study, the Landsat images archived in the GEE platform with a time span from
1990 to 2020 were used as the data source for monitoring those abrupt forest change events
in Lishui City. Landsat images have the characteristics of free access, long observation
history, and good spectral consistency among different sensors, including TM, ETM+, OLI,
and OLI-2, which are very suitable for land cover change analysis, particularly the forest
change analysis at landscape scale [28]. Using Landsat data archived by the GEE platform,
the spectral characterization among several sensors was maintained [29–31], thus we did
not need to perform additional pre-processing, such as radiometric normalization [32,33].
To guarantee the credibility of the detected abrupt forest change events from different auto-
mated analysis algorithms, we used the following image selection criteria: (1) cloud-free
or less than 10% cloud coverage, and (2) the image acquisition date falling into mid-June
through mid-September for mid-altitude region to make sure the vegetation growth is vigor-
ous, to select Landsat images to facilitate the running of VCT and LandTrendr algorithms.
For CCDC algorithm, we used all the archived images in the GEE platform from 1990 to 2020
to fit a full model of CCDC to detect the abrupt forest change events. Additionally, due to
the widespread stripe errors in the Landsat 7 images after May 2003, we used the temporally
corresponding Landsat 5 TM images as substitutes to support the running of all three detec-
tion algorithms. Moreover, it is worth noting that the official Chinese GlobeLAND30 global
geographic information public product (http://www.globallandcover.com/home.html ac-
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cessed on 22 February 2022) was used to streamline the running of VCT algorithm. We
used PyCharm Community Edition 2023.1.2 and ArcMap 10.8 to perform the necessary data
batch processing and analytical mapping operations.

The validation data used in this study was the archived high spatial resolution Google
Earth Maps resided in Google Earth Pro, which were visually interpreted as the reference
data to validate the accuracy of the three automated algorithms. When the high-resolution
maps were unavailable in certain years, we had to visually interpret corresponding Landsat
image pairs directly to produce the reference data.

3. Method

In this study, the vegetation change tracking algorithm (VCT) [10], LandTrendr algo-
rithm [12,13], and continuous change detection and classification algorithm (CCDC) [14]
were compared in mapping abrupt forest disturbance events under the same conditions to
identify the most suitable algorithm.

The VCT algorithm calculates the normalized integrated forest index (IFZ) and sets
the change threshold according to the actual forest coverage situations to identify forest
change [10]. IFZ is calculated from band spectral values, spectral value averages, and
standard deviation scores, which can characterize the changes in forest pixels more compre-
hensively, as shown in Equations (1) and (2). Generally, VCT is capable of capturing those
abrupt forest change events, such as clearcuts, fire-induced forest loss, and high-intensity
thinning, and insensitive to those low-intensity forest canopy change events [10].

FZi =

(
bpi − bi

)
SDi

(1)

IFZ =

√√√√ 1
N

N

∑
i=1

(FZi)
2 (2)

where bpi is the reflectance of pixel p in band i, bi and SDi are the mean and standard
deviation of the reflectance of band i, N is the number of bands involved in the calculation.

For annual Landsat TM and ETM+ images, only band 3 (Red band, R), band 5 (Short-
wave Infrared 1 band, SWIR1), and band 7 (Short-wave Infrared 2 band, SWIR2) are used
for the calculation [10]. For Landsat OLI and OLI-2 images, the spectrally corresponding
bands are band 4 (R), band 6 (SWIR1), and band 7 (SWIR2) for the calculation, respectively.
After the classical desktop stand-alone version of VCT algorithm is introduced into GEE
platform, the difficulty of acquiring high-quality images and significant computational cost
is accordingly solved to the greatest extent possible [17]. Thus, combined with high-quality
land cover data, VCT can be easily implemented in GEE environment to map yearly abrupt
forest disturbance events.

The LandTrendr algorithm extracts the spectral time series of forest pixels for trend
fitting and breakpoint analysis. The abrupt change of forest pixels is recorded from the
sudden spectral change in the time series, which corresponds to a spectral trajectory
breakpoint to delineate the trend change of the forest [12]. The model can be constructed
from simple to complex and from rough to smooth to achieve the purpose of eliminating
noise and streamlining details, as shown in Figure 2. It is important to note that most of the
changes monitored as trends over a long period are not caused by noise, but the changes
within a year are more likely to be caused by spectral noise. Therefore, in the GEE version,
the parameters of LandTrendr are set to treat the changes within a year as errors, and the
GEE platform also simplifies the pre-processing steps of LandTrendr by presenting the core
time series segmentation algorithm in its entirety and even improving it [16]. The GEE
version of LandTrendr algorithm eliminates restrictions on raw data and computational
costs, reducing the barriers to applying the algorithm and allowing more non-professionals
to use LandTrendr algorithm to make breakthroughs in their own areas of expertise. The
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current work made adjustments to each of the LandTrendr parameters suitable for the
natural conditions of Lishui City, to improve the spatial and temporal accuracy of the
abrupt forest change monitoring.
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Figure 2. The conceptual diagram of LandTrendr change detection algorithm [12]. After removal of
ephemeral spikes (a), potential vertices are identified using deviation from simple regression lines (b)
as much as possible. Then, excess vertices are removed based on low angle change (c), according
to the max_segments, a single path of model was chosen (d) and creating successively simplified
models of the trajectory with removing segments (e). The model with the best fit is chosen (f).

The image processing for local application of CCDC algorithm is very costly, which
necessitates the development of an online version of CCDC in the GEE platform. The
core idea of CCDC is to build a time series model for each pixel in each band to monitor
trend changes, seasonal variations, and abrupt changes in forest landscapes following the
Fourier harmonic model thoughts [34]. The improved advanced CCDC model adds two
intra-annual bimodal variation coefficients, and the full model of CCDC adds a pair of
intra-annual trimodal variation coefficients based on the advanced CCDC model, as shown
in Equation (3), to enhance the modeling performance of the intra-annual variation of the
Landsat time series [14]. The model recalculates the coefficients once a new image is added
to the time series, so the model refitting is actually real-time with newly added image
data, which is a unique feature of model building known as “online” [35]. Once the newly
added image spectral value differs substantially from the previous model fitting value,
for example, the difference between them exceeding triple times of RMSE, the new image
data are considered to provide an “abrupt change” for the time series and the mutation in
spectral value ends the previous model and restarts the next modeling process [34].

ρ̂(i, x) = a0,i +
n

∑
k=1

(
ak,icos

(
2kπ

T
x
)
+ bk,isin

(
2kπ

T
x
))

+ c1,ix (3)

where ρ̂(i, x) is the predicted spectral reflectance of the ith band for the xth Julian day
of the fit, i represents the ith spectral band, and T represents the number of days per
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year, a0,i represents the annual overall coefficient of the ith band, and c1,i represents the
annual coefficient of variation of the ith band. The ak,i with bk,i represents the intra-annual
coefficient of variation of reflectance of band i, the k represents the pairs of the intra-annual
coefficients (such as a1,i and b1,i), and in the complete CCDC fitting model, k = n = 3, which
means three pairs of the intra-annual coefficients will be used.

Of course, accurate fitting requires numerous consecutive clear images as the basis.
When the number of consecutive clear images is greater than or equal to 6, the simple
model of CCDC can be fitted, and when the number of consecutive clear images exceeds 24,
the full CCDC model is estimated by using the LASSO modeling method [14]. The clearer
observations, the more complex the model used, and the better the fitting effect. Figure 3
shows the model fitting differences among the three-level CCDC models. When porting
CCDC to GEE platform, the algorithm breaks through the application space limitation,
allowing users to apply the algorithm globally to facilitate their own research [14].
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Figure 3. Schematic diagram of CCDC fitting model [34]. (A) shows the results of a simple model
fitting, (B) shows an advanced model fitting, and (C) shows the full model fitting to derive three sets
of coefficients.

At this stage, the main approach for forest change detection results validation is still
to build a confusion matrix to derive related statistics [8,20]. Building a confusion matrix
can unify different detection algorithms into the same validation framework, making the
accuracy statistics comparable with each other. In this study, the results obtained by the three
algorithms were verified from two aspects: temporal and spatial accuracy verification. In the
validation of algorithmic temporal accuracy, 1550 random points were generated uniformly
by year via implementing a stratified random sampling in the change areas detected by the
three algorithms. Visual interpretation of the reference image pairs containing these random
points was performed to count their real change number to derive the accuracy statistics. It
is necessary to note that those random points when their detected change time was different
from the actual change time by more than 5 years were considered false detections. After
weighing similar studies [21,36] and the general conditions in Lishui [26], we argued that it
was feasible to set the time bias to 5 years. If the interval between the disturbed time detected
by the algorithms and the actual occurrence time of disturbance was more than 5 years,
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it was considered to be two different disturbance events at the same location. Similarly, a
stratified sampling method was used to verify the spatial accuracy, in which we selected
500 random points in each area identified as changed class or unchanged class by each
algorithm in order to obtain an unbiased accuracy estimation.

In terms of the algorithmic performance evaluation, this study evaluated various as-
pects, including the spatial and temporal accuracy, model principle differences, disturbance
types to be detected, time and space costs of running the algorithms, and the limitation
of the algorithms to guide the selection of a more suitable long time series monitoring
algorithm in southeastern China.

4. Results
4.1. Spatial Accuracy of the Detected Disturbance Events

After visually interpreting the corresponding Google Earth maps or original Landsat
image pairs as the reference data, the accuracy statistics, including the overall spatial
accuracy (OA), kappa coefficients, user’s accuracy, and producer’s accuracy of LandTrendr,
VCT, and CCDC detected forest disturbance results were derived and summarized in
Table 1, Table 2, and Table 3, respectively.

Table 1. The validation accuracy statistics of LandTrendr-detected abrupt forest disturbances.

LandTrendr
Reference Data

Forest Change Non-Change Total User’s Accuracy

Forest change 466 34 500 0.932
Non-change 114 386 500 0.772

Total 580 420 1000
Producer’s accuracy 0.803 0.919

OA: 0.852 Kappa: 0.704

Table 2. The validation accuracy statistics of VCT-detected abrupt forest disturbances.

VCT
Reference Data

Forest Change Non-Change Total User’s Accuracy

Forest change 448 52 500 0.896
Non-change 108 392 500 0.784

Total 556 444 1000
Producer’s accuracy 0.806 0.883

OA: 0.840 Kappa: 0.680

Comparing Tables 1–3 shows that LandTrendr had the highest user’s accuracy at 0.932
and a producer’s accuracy of 0.803 for the forest disturbance class, and the least omission
error of 0.081 (1.000–0.919) for the non-change class among the three algorithms. On the
whole, LandTrendr algorithm gained an OA of 0.852, with a kappa coefficient at 0.704,
indicating that LandTrendr missed certain real forest changes, but more than 90% of the
detected forest changes were correct. Additionally, a certain degree of omissions occurred in
LandTrendr’s statistical data (the producer’s accuracy of 0.803 in forest change class) caused
by LandTrendr parameter settings, where some short-term and less intense disturbance
events were discarded in the detection process of LandTrendr. Although the stripe errors of
Landsat 7 were eliminated, the high-quality demand for the input Landsat images made the
monitoring performance of VCT limited by the number of available images. Table 2 shows
that the OA (0.840) and kappa coefficient (0.680) of VCT were not very high, and the user’s
accuracy (0.896) and producer’s accuracy (0.806) suggested that VCT remained sensitive in
monitoring abrupt changes. CCDC achieved a more balanced effect in the two accuracy
directions of user’s (0.898) and producer’s (0.838), with the highest OA (0.862) and kappa
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coefficient (0.724) and the least commission error of 0.174 (1.000–0.826) for the non-change
class among the three algorithms (Table 3). Under the same evaluation framework, CCDC
performed best on most of the evaluation indices.

Table 3. The validation accuracy statistics of CCDC-detected abrupt forest disturbances.

CCDC
Reference Data

Forest Change Non-Change Total User’s Accuracy

Forest change 449 51 500 0.898
Non-change 87 413 500 0.826

Total 536 454 1000
Producer’s accuracy 0.838 0.890

OA: 0.862 Kappa: 0.724

4.2. Temporal Accuracy of the Detected Disturbance Events

Figure 4 conveys the temporal accuracy dynamics of the three algorithms detected
abrupt forest disturbance events. Overall, the temporal accuracies of CCDC and LandTrendr
were better than that of VCT, with their average temporal accuracy reaching 87.30% (CCDC),
78.97% (VCT), and 87.74% (LandTrendr). Since LandTrendr and CCDC constructed time
series analysis models based on the input images, which enabled the fitting of the analysis
models to include the year 2012 for disturbance detection mapping, but this inclusion was
not the case for VCT due to the absence of the 2012 images (abandoning the Landsat 7
ETM+ image due to its stripe errors), thus, the monitoring in 2012 was skipped in the time
series analysis of VCT (Figure 4). The temporal accuracy of VCT fluctuated more intensely
year by year, and the accuracy of VCT depended only on the quality of the respective
selected images in each single year and did not affect the accuracy in nearby years. In
contrast, LandTrendr and CCDC, which needed to build time series analysis models for
forest disturbance monitoring, had different degrees of accuracy reduction at the beginning
and end of the time series (Figure 4).

Remote Sens. 2023, 15, x FOR PEER REVIEW 8 of 18 
 

 

Comparing Tables 1–3 shows that LandTrendr had the highest user’s accuracy at 
0.932 and a producer’s accuracy of 0.803 for the forest disturbance class, and the least 
omission error of 0.081 (1.000–0.919) for the non-change class among the three algorithms. 
On the whole, LandTrendr algorithm gained an OA of 0.852, with a kappa coefficient at 
0.704, indicating that LandTrendr missed certain real forest changes, but more than 90% 
of the detected forest changes were correct. Additionally, a certain degree of omissions 
occurred in LandTrendr’s statistical data (the producer’s accuracy of 0.803 in forest change 
class) caused by LandTrendr parameter settings, where some short-term and less intense 
disturbance events were discarded in the detection process of LandTrendr. Although the 
stripe errors of Landsat 7 were eliminated, the high-quality demand for the input Landsat 
images made the monitoring performance of VCT limited by the number of available im-
ages. Table 2 shows that the OA (0.840) and kappa coefficient (0.680) of VCT were not very 
high, and the user’s accuracy (0.896) and producer’s accuracy (0.806) suggested that VCT 
remained sensitive in monitoring abrupt changes. CCDC achieved a more balanced effect 
in the two accuracy directions of user’s (0.898) and producer’s (0.838), with the highest 
OA (0.862) and kappa coefficient (0.724) and the least commission error of 0.174 (1.000–
0.826) for the non-change class among the three algorithms (Table 3). Under the same 
evaluation framework, CCDC performed best on most of the evaluation indices. 

4.2. Temporal Accuracy of the Detected Disturbance Events 
Figure 4 conveys the temporal accuracy dynamics of the three algorithms detected 

abrupt forest disturbance events. Overall, the temporal accuracies of CCDC and Land-
Trendr were better than that of VCT, with their average temporal accuracy reaching 
87.30% (CCDC), 78.97% (VCT), and 87.74% (LandTrendr). Since LandTrendr and CCDC 
constructed time series analysis models based on the input images, which enabled the 
fitting of the analysis models to include the year 2012 for disturbance detection mapping, 
but this inclusion was not the case for VCT due to the absence of the 2012 images(aban-
doning the Landsat 7 ETM+ image due to its stripe errors), thus, the monitoring in 2012 
was skipped in the time series analysis of VCT (Figure 4). The temporal accuracy of VCT 
fluctuated more intensely year by year, and the accuracy of VCT depended only on the 
quality of the respective selected images in each single year and did not affect the accuracy 
in nearby years. In contrast, LandTrendr and CCDC, which needed to build time series 
analysis models for forest disturbance monitoring, had different degrees of accuracy re-
duction at the beginning and end of the time series (Figure 4). 

 
Figure 4. The validated temporal accuracy dynamics of LandTrendr, VCT, and CCDC detected ab-
rupt forest change events. 

Figure 4. The validated temporal accuracy dynamics of LandTrendr, VCT, and CCDC detected abrupt
forest change events.

Figure 5 shows the wall-to-wall maps of the abrupt forest disturbance events during
the period 1990 to 2020 in Lishui City, detected by VCT, LandTrendr, and CCDC, respec-
tively. Overall, the spatial distribution patterns of the disturbances mapped by the three
algorithms were similar, but the disturbed patches detected by LandTrendr and CCDC
were much less than those of VCT.
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Figure 5. Forest abrupt changes mapping from 1990 to 2020 in Lishui derived from LandTrendr (A),
VCT (B), and CCDC (C) algorithms.

4.3. Field Patch Matching

For the same forest change events on the ground, algorithms may give different detec-
tion results in terms of temporal (the timing of forest change) and spatial (the morphology
of forest change patches) features. The number and morphology of the disturbance patches
obtained by each algorithm were different. In terms of numbers, LandTrendr had the
smallest number of patches at 32,827, CCDC had a total of 65,011, and VCT obtained the
largest number of patches at 94,547. The number differences in the disturbance patches
detected by the three algorithms were attributed to the algorithmic principle differences.
Compared to CCDC and LandTrendr, VCT did not construct a time series model, so it was
much rougher in change monitoring, with more fragmented changes and more patches.
LandTrendr and CCDC constructed time series analysis models for pixels to portray the
pixel change process. CCDC retained the complete time series change simulation, but
LandTrendr performed model simplification (Figure 2e) and change filtering to streamline
the model, therefore, LandTrendr obtained the fewest change patches.

Figure 6 exhibits an example of how progressive deforestation events were captured
by the three algorithms. Obviously, the morphologies of patches detected by LandTrendr
and CCDC in different years were more regular and consistent with the actual shapes
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depicted by corresponding high-resolution Google Earth maps and Landsat 8 data than
VCT-depicted morphology, and VCT and CCDC-detected disturbance patches were more
finely fragmented than LandTrendr detected patches. VCT did not construct a time series,
hence, its patches were more disorganized, while CCDC monitored more sub-year changes
of vegetation, so the patches of disturbance occurring at different times were more detailed.
In terms of the general morphologies of patches, LandTrendr’s result was accurate and
clear, but VCT over-depicted the number of disturbance patches and CCDC fragmented
the patches due to over-sensitivity (Figure 6).
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From the aspect of monitoring the disturbance occurrence time, Figure 6 shows that
CCDC-monitored change time was clearer than LandTrendr and VCT. We found that some
abrupt changes which occurred in late autumn and winter months of the previous year
might be mapped into the next year in LandTrendr’s monitoring results. LandTrendr was a
bit correctly monitored for changes that occurred in 2014, but there were also some changes
that were relegated to 2015 (Figure 6). That was mainly because the images selected for
the algorithm construction were narrowed in the vegetation growth period, thus, these
selected images could not capture the spectral signals of forest changes occurring in the late
autumn and winter months. In contrast, the change time monitoring in 2014 of CCDC was
more detailed and accurate. For changes that occurred between October 2015 and March
2016, and their exact occurrence times were not given by the images, CCDC’s monitoring
results were earlier than LandTrendr overall (locations labeled as a and b in Figure 6). This
is undoubtedly due to CCDC’s more sophisticated modeling and richer data series used,
but this delicacy is also making the monitored patches and timing of change fragmented.

5. Discussion
5.1. Comparative Evaluation of the Algorithms

Each of the three algorithms has its own advantages and disadvantages, and dif-
ferent situations need to be considered in the process of practical application to choose
the appropriate method. Table 4 details the differences between the three GEE version
algorithms.

Table 4. Trade-off factors for LandTrendr, VCT and CCDC in the implementation process.

Terms LandTrendr VCT CCDC

Source Online documentation with [16] Code cases with [17] Online Tools and [18]
Online/offline Offline Offline Online

Principle
Monitoring “vertices” based on

time series, threshold
determination changes

Monitoring forest change by
calculating IFZ contrast

thresholds

Constructing independent
segments based on time series

and calculating different
model coefficients for each
segment to record changes

Land cover type all land cover changes forest changes all land cover changes

Composition of results

Changes are filtered by the
platform, and the resultant data
are directly exported for a total

of 6 bands

Changes by year are exported
by the platform, with

subsequent filtering to
synthesize outcome data

A total of 75 bands were
exported by the platform for

each individual segment
parameter and related
information slice file

Time of running Within 1 h Several hours Several days

Selection of results Output the patches after
filtering Output all patches yearly Output all patches monitored

Images used Using vegetation growth period
images

Using vegetation growth
period images Using year-round images

Types of change Abrupt and trend changes Abrupt changes Abrupt, trend, and gradual
ecosystem changes

Scale of time Interannual monitoring Interannual monitoring Sub-annual monitoring

In terms of the complexity of model construction, it is progressively more complicated
from VCT, LandTrendr, to CCDC. And all three algorithms are pixel-based change moni-
toring algorithms, enabling them to be validated by a unified standard. With the help of
introducing a land cover classification map, VCT can distinguish forest pixels from the rest
of other land cover pixels, thus, it can categorize forest pixels into persisting forests and
non-persisting forests during the entire monitoring period. Such information that cannot
be provided by the other two algorithms is just a unique output of VCT. Additionally, VCT
has a high demand on the quality of the input Landsat images, e.g., cloud-free and images
acquired in the peak season of plant growth, and the changeable threshold settings, e.g., IFZ
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not less than 0.3 for dense forest coverage regions and IFZ not less than 0.2 for sparse forest
coverage regions. However, due to the difficulty in achieving the high demands of VCT,
some commission and omission errors take place in the monitoring process, leading to the
relatively low accuracy of VCT [8]. LandTrendr also requires the input Landsat time series
images falling into the peak growing season, the same as VCT, but the model of LandTrendr
is constructed by associating images with individual years and describing the time series
by “vertices” and “segments” [23]. CCDC is also the method for forest monitoring by
constructing a time series model, which is based on annual data for model construction.
However, compared to the model of LandTrendr, CCDC associates images with specific
dates of image acquisition to construct “breakpoints” and independent segments [23].
Meanwhile, CCDC uses simulation to obtain Landsat data at any date [34], which greatly
enriches the number of images involved in the monitoring. Because of the high precision
of the pixel time series characterized by various coefficients, CCDC does not filter out
its monitored changes directly, and analysts can choose the rules to keep and filter the
disturbance results. The high level of specialization also results in significant computational
and data storage costs. Performing CCDC on the GEE platform shifts the computational
processing pressure to the cloud platform and outputs and stores the time-series coefficient
data and disturbance information in the form of slices, but it is still tightly controlled to
geographic extent.

During the implementation process, LandTrendr is more flexible and lenient for
temporal screening of the input data, and its parameters and thresholds can be adjusted
directly [16]. However, both VCT and CCDC encapsulate this section completely without
requiring researchers to adjust themselves. The encapsulation of algorithms also limits
the potential for the algorithms to be more regionally specific. The three algorithms have
different complexities and take different amounts of time to obtain the results on the GEE
platform. Taking the current work as an example, LandTrendr took about half an hour
to obtain results, VCT took more than two hours, and the speed of CCDC getting data
on the platform was related to the size and shape of the study area, and CCDC required
researchers to filter changes monitored subsequently. As a result, CCDC took about seven
days to achieve the forest disturbance distribution maps like LandTrendr’s results.

The three algorithms also differ in the way they organize their results. VCT publishes
the outcome data in the form of annual forest disturbance distribution maps within the
entire monitoring period [17]. In addition to providing information on the timing of the
disturbances, LandTrendr obtains information on the duration and spatial extent of the
disturbances. LandTrendr organizes the results in terms of disturbance time, variability,
duration, and other disturbance elements and filters the forest disturbances monitored in
the same region at different times, only keeping the most intense disturbances in history [16].
CCDC does not do filtering directly, and it can obtain forest change status in any area at
any date, but if we want to obtain the complete CCDC monitoring results of the whole area
within the entire time period, we need to filter and collocate the result data.

In terms of forest disturbance types to be monitored, the three algorithms respond
sensitively to abrupt changes occurring in the forest. Compared with VCT, which is good at
capturing the abrupt forest changes year by year, CCDC and LandTrendr are more detailed
in monitoring forest disturbances. The advantages of CCDC over LandTrendr are the
sub-annual monitoring and the “online” modeling approach [35]. This is why CCDC can
monitor the gradual changes in the forest. These advantages of CCDC were confirmed
during the verification of the algorithm accuracy in Lishui, but some of the trend changes
were overwritten by more obvious and drastic abrupt changes in the 31 years of monitoring.
Therefore, although the advantages of CCDC were not fully exploited in this study, the
temporal sensitivity of CCDC was substantially higher than the other two methods.

The three algorithms can theoretically carry out long time series of forest monitoring
for any area, but each has some limitations in the specific operation process. The limitation
of VCT is that it needs to input a rough land cover classification map of the monitoring area
to drive the running of VCT. For areas without official land cover classification maps, ana-
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lysts have to develop this rough map beforehand and convert or aggregate the classification
codes in compliance with NLCD’s definitions [17]. Meanwhile, the maximum monitoring
period of the GEE platform version of VCT method is 30 years [17], which limits the appli-
cation of VCT to longer time series. The limitation of LandTrendr is that the disturbance
determination threshold is defined by the user, which can be more region-specific, but
also makes the model structure uncontrollable under extreme conditions and causes the
subjectivity of the results to some extent. CCDC may have errors when monitoring in areas
with large inter-annual variability, so it is less effective when transplanting to semi-arid
areas [34]. However, leaving aside the structural limitations, CCDC has no limitations in
data acquisition and timing and is highly portable.

For the local forest disturbances in Lishui, three methods relied on their own focus
to obtain reliable monitoring results. LandTrendr had the most refined results, captured
the most intense and prominent disturbance patches, and neglected some small patches;
VCT focused on the overall changes in the whole area, and some details might appear to be
rough; CCDC produced reliable results, both for the abrupt changes that dominate the area
and for those seasonal and gradual changes in the forest. In such an abrupt change pattern,
CCDC was more accurate in monitoring the time of change patches and achieved the best
spatial accuracy, but LandTrendr achieved a similar level of accuracy with CCDC in many
aspects, with simpler modeling.

5.2. Characteristics and Adaptability of the Three Algorithms

VCT has the advantage of providing an overall picture of the vegetation status of
the whole region by analyzing yearly IFZ values (Equations (1) and (2)). The threshold
definition based on IFZ can achieve year-by-year monitoring results for each forest pixel in
the study area. Furthermore, VCT can refine the forest disturbance monitoring process by
combining machine learning [27] or using multiple sources of data for fusion [37]. These
refined monitoring results contribute to seeking solutions for many scientific problems,
such as accurate forest biomass calculations [17] and forest fragmentation analysis [37,38].
However, when the input Landsat data quality is poor, VCT will not only decrease the
quality of VCT monitoring in the current year but also affect the accuracy of the whole time
series. Therefore, in this regard, VCT is worse than algorithms that use time series fitting
to remove noises or errors, such as LandTrendr and CCDC, both in terms of accuracy and
monitoring effectiveness.

The GEE version CCDC uses all available Landsat images to build time series models
for each pixel and then extrapolates the model to all the dates of the monitoring period
to produce clear Landsat images at any date [14]. Based on the expanded data capacity,
a complete model including the monitoring of the seasonal variation can be adopted by
adding the parameters of a3,i and b3,i in Equation (3) to characterize the seasonal gradients
of forest pixel change, which turns CCDC more acute and delicate [14]. By projecting
GEE version CCDC into the monitoring of long time series, it is possible to monitor the
subtle changes including greenness trends in the ecosystem layers [39]. In recent years,
improved algorithms based on CCDC have emerged, such as the COLD algorithm [40],
which makes its fitting method more accurate, the MCCDC method [41], which filters the
range of input data, and the S-CCDC method [42], which incorporates a state-space model.
Taking advantage of its sharp and progressive advantages, CCDC will be more widely
used in forest monitoring.

In fact, CCDC is too sensitive when monitoring forest abrupt changes over long time
series, and the cost of retaining the full monitoring results is that the true monitoring
patches will be covered by trivial and weak changes, which makes the CCDC results
cluttered and fragmented [23]. Instead, LandTrendr simplifies the well-fitting but complex
model and does not consider the forest changes within one year. Therefore, LandTrendr
does not include seasonal and intra-annual changes, but when monitoring abrupt forest
change in long time series, it can obtain more complete patches than CCDC, and the whole
effect of abrupt change monitoring is better.
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LandTrendr is the most efficient method for forest change monitoring in terms of
the time complexity of running, the accuracy of the results, as well as the completeness
of the monitored patches. Running LandTrendr algorithm locally is very complex and
often takes more than ten hours or even days to complete [43]. The GEE version of
LandTrendr compresses the pre-processing steps, calculates them more quickly, and obtains
the monitoring results in less than half an hour, faster than both VCT and CCDC running
in the same application. It is easier to adjust parameters and filter settings, which greatly
improves the efficiency of algorithm and broadens the application areas. In view of
such advantages, more and more long time series forest monitoring missions have taken
LandTrendr algorithm as the first choice, whether it is applied in integration with other
methods such as VCT, EWMACD, MIICA [44], and CCDC [45] or adding deep learning
algorithms to further refine the monitoring results [16,46], and these efforts have made
LandTrendr a reliable and efficient algorithm suitable for further developments. From a
broader perspective, the perfect presentation of GEE version LandTrendr can be expanded
not only in the field of forest monitoring but also in other domains related to forest change,
such as impervious surface expansion [19], fire-induced forest recovery and renewal [47],
and ecological monitoring of open pit mines [48].

5.3. Forest Disturbance Monitoring Algorithm Suited to Southeastern China

Coniferous and bamboo forests are widely distributed in Lishui, and plantation forest
industries are intensive [49], so forest disturbance events in Lishui are principally driven
by human activities, such as clear-cutting and post-harvesting regeneration. Considering
the regional characteristics of Lishui, such as developed plantation forest industry, a long
history of forest development, fewer natural disasters in a subtropical climate, and well-
constructed protected areas, LandTrendr is a more suitable algorithm to monitor forest
changes in southeastern China than CCDC and VCT. And LandTrendr can eliminate the
influence of cloud and shadow problems on Landsat image quality by yearly selecting
images, and it can directly obtain information on the occurrence time of forest disturbance
and the intensity of disturbance to support the mapping [16], which is more beneficial for
wider ecological applications.

6. Conclusions

In this study, based on the Landsat time series observations archived on GEE from 1987
to the present, three algorithms, including LandTrendr, VCT, and CCDC, were implemented
to monitor forest abrupt changes in the Lishui of Zhejiang Province from 1990 to 2020,
and the similarities and differences among the three methods were compared. The overall
spatial accuracies reached 0.852 (LandTrendr), 0.830 (VCT), and 0.862 (CCDC), the kappa
coefficients reached 0.704 (LandTrendr), 0.660 (VCT), and 0.727 (CCDC), and the average
temporal accuracy reached to 87.30% (LandTrendr), 79.33% (VCT), and 87.74% (CCDC). In
conclusion, GEE is a convenient, flexible, and efficient platform that facilitates long-term
forest change monitoring in conjunction with highly automated algorithms, streamlines the
cost required for downloading and storing data, brings down the application threshold of
the monitoring algorithms, and expands their applicability. LandTrendr obtains the most
refined results, monitors the most intense and prominent disturbance patches, and neglects
some small patches. Therefore, LandTrendr is highly recommended in Southern China or
similar regions when monitoring abrupt forest change events.

Author Contributions: Conceptualization, M.L.; methodology, M.L. and N.D.; software, N.D.; valida-
tion, N.D.; formal analysis, N.D.; investigation, N.D.; resources, N.D.; data curation, N.D.; writing—
original draft preparation, N.D.; writing—review and editing, M.L.; visualization, N.D.; supervision,
M.L.; project administration, M.L.; funding acquisition, M.L. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was jointly funded by the Forestry Science and Technology Innovation and
Promotion Project Sponsored by Jiangsu Province (LYKJ(2022)02), the National Natural Science



Remote Sens. 2023, 15, 5408 15 of 16

Foundation of China (grant No. 31971577) and the Priority Academic Program Development (PAPD)
of Jiangsu Higher Education Institutions.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Xu, W.; Jin, X.; Liu, J.; Yang, X.; Ren, J.; Zhou, Y. Analysis of spatio-temporal changes in forest biomass in China. J. For. Res. 2021,

33, 261–278. [CrossRef]
2. Xu, Y. The 11th session of the United Nations Forum on Forests. Green China 2015, 13, 8–23.
3. Zhu, J.; Liu, Z. A review on disturbance ecology of forest. Chin. J. Appl. Ecol. 2004, 10, 1703–1710. [CrossRef]
4. Vogelmann, J.E.; Xian, G.; Homer, C.; Tolk, B. Monitoring gradual ecosystem change using Landsat time series analyses: Case

studies in selected forest and rangeland ecosystems. Remote Sens. Environ. 2012, 122, 92–105. [CrossRef]
5. Cohen, W.B.; Fiorella, M.; Gray, J.; Helmer, E.; Anderson, K. An Efficient and Accurate Method for Mapping Forest Clearcuts in

the Pacific Northwest Using Landsat Imagery. Photogramm. Eng. Remote Sens. 1998, 64, 293–300.
6. Serneels, S.; Said, M.Y.; Lambin, E.F. Land cover changes around a major east African wildlife reserve: The Mara Ecosystem

(Kenya). Int. J. Remote Sens. 2001, 22, 3397–3420. [CrossRef]
7. Coppin, P.; Jonckheere, I.; Nackaerts, K.; Muys, B.; Lambin, E. Review ArticleDigital change detection methods in ecosystem

monitoring: A review. Int. J. Remote Sens. 2004, 25, 1565–1596. [CrossRef]
8. Cohen, W.; Healey, S.; Yang, Z.; Stehman, S.; Brewer, C.; Brooks, E.; Gorelick, N.; Huang, C.; Hughes, M.; Kennedy, R.; et al. How

Similar Are Forest Disturbance Maps Derived from Different Landsat Time Series Algorithms? Forests 2017, 8, 98. [CrossRef]
9. Shen, W.; Li, M.; Huang, C. Review of remote sensing algorithms for monitoring forest disturbance from time series and

multi-source data fusion. J. Remote Sens. 2018, 22, 1005–1022. [CrossRef]
10. Huang, C.; Goward, S.N.; Masek, J.G.; Thomas, N.; Zhu, Z.; Vogelmann, J.E. An automated approach for reconstructing recent

forest disturbance history using dense Landsat time series stacks. Remote Sens. Environ. 2010, 114, 183–198. [CrossRef]
11. Verbesselt, J.; Hyndman, R.; Newnham, G.; Culvenor, D. Detecting trend and seasonal changes in satellite image time series.

Remote Sens. Environ. 2010, 114, 106–115. [CrossRef]
12. Kennedy, R.E.; Yang, Z.; Cohen, W.B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1.

LandTrendr—Temporal segmentation algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [CrossRef]
13. Cohen, W.B.; Yang, Z.; Kennedy, R. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2.

TimeSync—Tools for calibration and validation. Remote Sens. Environ. 2010, 114, 2911–2924. [CrossRef]
14. Zhu, Z.; Woodcock, C.E.; Holden, C.; Yang, Z. Generating synthetic Landsat images based on all available Landsat data: Predicting

Landsat surface reflectance at any given time. Remote Sens. Environ. 2015, 162, 67–83. [CrossRef]
15. Cao, B.; Yang, X.; Qiu, J. Research Progress and Application of Remote Sensing Big Data Analysis Based on Google Earth Engine.

Geospat. Inf. 2021, 19, 13–19. [CrossRef]
16. Cohen, W.B.; Yang, Z.; Healey, P.S.; Kennedy, E.R.; Gorelick, N. A LandTrendr multispectral ensemble for forest disturbance

detection. Remote Sens. Environ. 2018, 205, 131–140. [CrossRef]
17. Obata, S.; Bettinger, P.; Cieszewski, J.C.; Lowe, C.R., III. Mapping Forest Disturbances between 1987–2016 Using All Available

Time Series Landsat TM/ETM+ Imagery: Developing a Reliable Methodology for Georgia, United States. Forests 2020, 11, 335.
[CrossRef]

18. Arévalo, P.; Bullock, E.L.; Woodcock, C.E.; Olofsson, P. A Suite of Tools for Continuous Land Change Monitoring in Google Earth
Engine. Front. Clim. 2020, 2, 576740–576758. [CrossRef]

19. Chai, X.; Jin, Y. Dynamic Monitoring of Construction Land Expansion in Shanxi Province based on Landsat Time Series. J. Shanxi
Norm. Univ. Nat. Sci. Ed. 2019, 33, 118–122. [CrossRef]

20. Su, W. Monitoring and Driving Factors of Forest Disturbance and Restoration of “Three Mountains” Nature Reserve in Ningxia.
Master’s Thesis, Ningxia University, Yinchuan, China, 2022. [CrossRef]

21. Li, J.; Zhang, Y.; Zhang, C.; Xie, H.; Zhang, C.; Du, M.; Wang, Y. Applicability Analysis of LandTrendr and CCDC Algorithms for
Vegetation Damage Identification in Shendong Coal Base. Met. Mine 2023, 1, 55–64. [CrossRef]

22. Yin, X.; Chen, B.; Gu, X. Rapid Monitoring of Tropical Forest Disturbance in Hainan Island Based on GEE Platform and LandTrendr
Algorithm. J. Geo-Inf. Sci. 2023, 25, 2093–2106.

23. Pasquarella, V.J.; Arévalo, P.; Bratley, K.H.; Bullock, E.L.; Gorelick, N.; Yang, Z.; Kennedy, R.E. Demystifying LandTrendr and
CCDC temporal segmentation. Int. J. Appl. Earth Obs. Geoinf. 2022, 110, 102806–102818. [CrossRef]

24. Xu, C. An analysis of the economic effects of forestry in the Lishui area. J. Zhejiang For. Sci. Technol. 1981, 3, 133–138.
25. Yang, F.; Cheng, Q. Natural resources in the Lishui area and proposals for the protection and development of forests. Environ.

Pollut. Control 1983, 2, 41–44.
26. Liu, S.; Wei, X.; Li, D.; Lu, D. Examining Forest Disturbance and Recovery in the Subtropical Forest Region of Zhejiang Province

Using Landsat Time-Series Data. Remote Sens. 2017, 9, 479. [CrossRef]

https://doi.org/10.1007/s11676-021-01299-8
https://doi.org/10.3321/j.issn:1001-9332.2004.10.003
https://doi.org/10.1016/j.rse.2011.06.027
https://doi.org/10.1080/01431160152609236
https://doi.org/10.1080/0143116031000101675
https://doi.org/10.3390/f8040098
https://doi.org/10.11834/jrs.20187089
https://doi.org/10.1016/j.rse.2009.08.017
https://doi.org/10.1016/j.rse.2009.08.014
https://doi.org/10.1016/j.rse.2010.07.008
https://doi.org/10.1016/j.rse.2010.07.010
https://doi.org/10.1016/j.rse.2015.02.009
https://doi.org/10.3969/j.issn.1672-4623.2021.04.004
https://doi.org/10.1016/j.rse.2017.11.015
https://doi.org/10.3390/f11030335
https://doi.org/10.3389/fclim.2020.576740
https://doi.org/10.16207/j.cnki.1009-4490.2019.03.021
https://doi.org/10.27257/d.cnki.gnxhc.2022.000696
https://doi.org/10.19614/j.cnki.jsks.202301006
https://doi.org/10.1016/j.jag.2022.102806
https://doi.org/10.3390/rs9050479


Remote Sens. 2023, 15, 5408 16 of 16

27. Diao, J.; Feng, T.; Li, M.; Zhu, Z.; Liu, J.; Biging, G.; Zheng, G.; Shen, W.; Wang, H.; Wang, J.; et al. Use of vegetation change
tracker, spatial analysis, and random forest regression to assess the evolution of plantation stand age in Southeast China. Ann.
For. Sci. 2020, 77, 27–42. [CrossRef]

28. Zhu, Z.; Wulder, M.A.; Roy, D.P.; Woodcock, C.E.; Hansen, M.C.; Radeloff, V.C.; Healey, S.P.; Schaaf, C.; Hostert, P.; Strobl, P.; et al.
Benefits of the free and open Landsat data policy. Remote Sens. Environ. 2019, 224, 382–385. [CrossRef]

29. Bryant, R.; Moran, M.; McElroy, S.; Holifield, C.; Thome, K.; Miura, T.; Biggar, S. Data continuity of earth observing 1 (eo-1)
advanced land imager (ali) and landsat tm and etm+. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1204–1214. [CrossRef]

30. Roy, D.P.; Kovalskyy, V.; Zhang, H.K.; Vermote, E.F.; Yan, L.; Kumar, S.S.; Egorov, A. Characterization of Landsat-7 to Landsat-8
reflective wavelength and normalized difference vegetation index continuity. Remote Sens. Environ. 2016, 185, 57–70. [CrossRef]

31. Markham, B.L.; Helder, D.L. Forty-year calibrated record of earth-reflected radiance from Landsat: A review. Remote Sens. Environ.
2012, 122, 30–40. [CrossRef]

32. Masek, J.G.; Vermote, E.F.; Saleous, N.E.; Wolfe, R.; Hall, F.G.; Huemmrich, K.F.; Gao, F.; Kutler, J.; Lim, T.K. A Landsat Surface
Reflectance Dataset for North America, 1990–2000. Ieee Geosci. Remote Sens. Lett. 2006, 3, 68–72. [CrossRef]

33. Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface
reflectance product. Remote Sens. Environ. 2016, 185, 46–56. [CrossRef] [PubMed]

34. Zhe, Z.; Curtis, E.W. Continuous change detection and classification of land cover using all available Landsat data. Remote Sens.
Environ. 2014, 144, 152–171. [CrossRef]

35. Zhe, Z. Change detection using landsat time series: A review of frequencies, preprocessing, algorithms, and applications. ISPRS J.
Photogramm. Remote Sens. 2017, 130, 370–384. [CrossRef]

36. Liu, S.; Huang, X.; Zhao, S.; Chen, Y. Analysis of Forest Disturbance and Recovery Dynamic Characteristics Based on LandTrendr
Time Segmental Algorithm. J. Subtrop. Resour. Environ. 2020, 15, 15–22. [CrossRef]

37. Zhang, Y.; Shen, W.; Li, M.; Lv, Y. Integrating Landsat Time Series Observations and Corona Images to Characterize Forest Change
Patterns in a Mining Region of Nanjing, Eastern China from 1967 to 2019. Remote Sens. 2020, 12, 3191. [CrossRef]

38. Li, M.; Huang, C.; Zhu, Z.; Wen, W.; Xu, D.; Liu, A. Use of remote sensing coupled with a vegetation change tracker model to
assess rates of forest change and fragmentation in Mississippi, USA. Int. J. Remote Sens. 2009, 30, 6559–6574. [CrossRef]

39. Zhu, Z.; Fu, Y.; Woodcock, C.E.; Olofsson, P.; Vogelmann, J.E.; Holden, C.; Wang, M.; Dai, S.; Yu, Y. Including land cover change in
analysis of greenness trends using all available Landsat 5, 7, and 8 images: A case study from Guangzhou, China (2000–2014).
Remote Sens. Environ. 2016, 185, 243–257. [CrossRef]

40. Zhu, Z.; Zhang, J.; Yang, Z.; Aljaddani, A.H.; Cohen, W.B.; Qiu, S.; Zhou, C. Continuous monitoring of land disturbance based on
Landsat time series. Remote Sens. Environ. 2020, 238, 111116–111133. [CrossRef]

41. Zhang, Y.; Li, M. A new method for monitoring start of season (SOS) of forest based on multisource remote sensing. Int. J. Appl.
Earth Obs. Geoinf. 2021, 104, 102556–102568. [CrossRef]

42. Ye, S.; Rogan, J.; Zhu, Z.; Eastman, J.R. A near-real-time approach for monitoring forest disturbance using Landsat time series:
Stochastic continuous change detection. Remote Sens. Environ. 2021, 252, 112167–112183. [CrossRef]

43. Pasquarella, V.J.; Holden, C.E.; Woodcock, C.E. Improved mapping of forest type using spectral-temporal Landsat features.
Remote Sens. Environ. 2018, 210, 193–207. [CrossRef]

44. Healey, S.P.; Cohen, W.B.; Yang, Z.; Brewer, C.K.; Brooks, E.B.; Gorelick, N.; Hernandez, A.J.; Huang, C.; Hughes, M.J.;
Kennedy, R.E.; et al. Mapping forest change using stacked generalization: An ensemble approach. Remote Sens. Environ. 2018,
204, 717–728. [CrossRef]

45. Cohen, W.B.; Healey, S.P.; Yang, Z.; Zhu, Z.; Gorelick, N. Diversity of Algorithm and Spectral Band Inputs Improves Landsat
Monitoring of Forest Disturbance. Remote Sens. 2020, 12, 1673. [CrossRef]

46. Hua, J. Spatiotemporal Patterns of Forest Disturbance and Recovery Using Integrated LandTrendr Algorithm and Machine
Learning Method. Master’s Thesis, Zhejiang A&F University, Hangzhou, China, 2021. [CrossRef]

47. Xu, H.; Wei, Y.; Liu, C.; Li, X.; Fang, H. A Scheme for the Long-Term Monitoring of Impervious−Relevant Land Disturbances
Using High Frequency Landsat Archives and the Google Earth Engine. Remote Sens. 2019, 11, 1891. [CrossRef]

48. Guo, J.; Li, Q.; Xie, H.; Li, J.; Qiao, L.; Zhang, C.; Yang, G.; Wang, F. Monitoring of Vegetation Disturbance and Restoration at
the Dumping Sites of the Baorixile Open-Pit Mine Based on the LandTrendr Algorithm. Int. J. Environ. Res. Public Health 2022,
19, 9066. [CrossRef]

49. Liu, S.; Wu, S.; Wang, H. Managing planted forests for multiple uses under a changing environment in China. N. Z. J. For. Sci.
2014, 44, S3. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s13595-020-0924-x
https://doi.org/10.1016/j.rse.2019.02.016
https://doi.org/10.1109/TGRS.2003.813213
https://doi.org/10.1016/j.rse.2015.12.024
https://doi.org/10.1016/j.rse.2011.06.026
https://doi.org/10.1109/LGRS.2005.857030
https://doi.org/10.1016/j.rse.2016.04.008
https://www.ncbi.nlm.nih.gov/pubmed/32020955
https://doi.org/10.1016/j.rse.2014.01.011
https://doi.org/10.1016/j.isprsjprs.2017.06.013
https://doi.org/10.3969/j.issn.1673-7105.2020.04.003
https://doi.org/10.3390/rs12193191
https://doi.org/10.1080/01431160903241999
https://doi.org/10.1016/j.rse.2016.03.036
https://doi.org/10.1016/j.rse.2019.03.009
https://doi.org/10.1016/j.jag.2021.102556
https://doi.org/10.1016/j.rse.2020.112167
https://doi.org/10.1016/j.rse.2018.02.064
https://doi.org/10.1016/j.rse.2017.09.029
https://doi.org/10.3390/rs12101673
https://doi.org/10.27756/d.cnki.gzjlx.2021.000315
https://doi.org/10.3390/rs11161891
https://doi.org/10.3390/ijerph19159066
https://doi.org/10.1186/1179-5395-44-S1-S3

	Introduction 
	Study Area and Materials 
	Method 
	Results 
	Spatial Accuracy of the Detected Disturbance Events 
	Temporal Accuracy of the Detected Disturbance Events 
	Field Patch Matching 

	Discussion 
	Comparative Evaluation of the Algorithms 
	Characteristics and Adaptability of the Three Algorithms 
	Forest Disturbance Monitoring Algorithm Suited to Southeastern China 

	Conclusions 
	References

