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Abstract: Vegetation in natural desert hinterland oases is an important component of terrestrial
ecosystems. Determining how desert vegetation responds to natural variability is critical for a
better understanding of desertification processes and their future development. The aim of this
study is to characterize the spatial distribution of vegetation in the natural desert hinterland and to
reveal how different environmental factors affect vegetation changes. Taking a Taklamakan Desert
hinterland oasis as our research object, we analyzed the effects of different environmental factors
on desert vegetation using a time-series normalized difference vegetation index (NDVI) combined
with meteorological, topographic, and hydrological data, including surface water and groundwater
data. Vegetation was distributed in areas with high surface water frequency, shallow groundwater
levels, relatively flat terrain, and dune basins. NDVI datasets show greening trends in oasis areas
over the past 20 years. The frequency of surface water distribution influences water accessibility and
effectiveness and shapes topography, thus affecting the spatial distribution pattern of vegetation. In
this study, areas of high surface water frequency corresponded with vegetation distribution. The
spatial distribution of groundwater depth supports the growth and development of vegetation,
impacting the pattern of vegetation growth conditions. Vegetation is most widely distributed in areas
where the groundwater burial depth is 3.5–4.5 m. This study provides data for restoring riparian
vegetation, ecological water transfer, and sustainable development.

Keywords: Taklamakan Desert hinterland; climate change; topography; hydrological processes;
vegetation pattern

1. Introduction

Vegetation is an important component of terrestrial ecosystems with a critical role in
maintaining the sustainable development of global and regional ecosystems [1]. Desert
vegetation supports the survival and development of oases. While vegetation in desert
areas is typically sparse, it is instrumental in anchoring sand dunes and countering de-
sertification [2]. Understanding how desert vegetation adapts to shifts in natural and
human-induced stressors is crucial for a deeper comprehension of desertification dynamics
and its prospective progression.

According to the fifth report from the Intergovernmental Panel on Climate Change
(IPCC), global climate change has significantly intensified in recent years. In fact, the last
30 years have seen the highest average temperatures since 1400; meanwhile, rainfall has
increased in humid zones and decreased in arid zones, with the frequency of extreme
rainfall increasing [3]. These notable changes in climate impact the vegetation growth
environment, which in turn affects the phenology, distribution, and growth of vegetation,
thus affecting the ecosystem material–energy conversion and carbon cycle [4,5]. Climate
influences the long-term evolution of vegetation and causes changes in vegetation growing
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seasons by altering the duration and rate of photosynthesis and respiration of plants, which
affects the global vegetation–atmosphere pattern of carbon, water, and energy cycles [6,7].
Among the abiotic factors affecting plant growth, the most immediate and significant
influences are temperature and precipitation [8,9]. Climate change can alter temperature
and soil moisture levels. Such shifts in hydrothermal conditions can profoundly influence
the health and growth of vegetation.

In arid and semi-arid areas, where soil moisture primarily constrains plant growth,
a temperature rise elevates evapotranspiration rates, reducing soil water content when
temperature and precipitation are negatively and positively correlated with vegetation
health, respectively [10]. Considering that spatiotemporal changes in vegetation are closely
related to climate change, detecting the spatiotemporal correlation between climate change
and vegetation characteristics is important for understanding the impact of climate change
on vegetation ecosystems.

Topography, as the most prominent and complex geographical factor in the region,
is an important source of environmental spatial and temporal heterogeneity. It influences
changes in temperature, precipitation, wind speed, insolation, and evapotranspiration,
which are spatially redistributed and can cause local environmental changes, forming
microclimate zones and affecting vegetation growth [11]. Topographic factors regulate soil
conditions, microclimate, and water availability across regions at small scales [12–14]. As
such, they shape the locational conditions for plant growth and drive abiotic and biotic
interactions [15], determining plant community diversity, structure, and function [13]. To-
pography is also important in providing spatial species diversity and expanding ecological
niches at different scales, increasing species diversity and resistance to harsh environ-
ments [14,16].

More specifically, in the top and slope areas of dunes, nutritious soil and water are
often not stored, making the vegetation more competitive for light and nutrients than at
the bottom of the dune [13,17]. Currently, the use of variability in topographic features to
reveal the spatial distribution patterns of vegetation and the influence of natural factors on
vegetation distribution has been widely deployed in the analysis of vegetation patterns at
landscape and community scales.

As typical desert vegetation ecosystems, natural oasis regions in the desert hinterlands
of China are strongly dependent on water resources. Thus, analyzing the spatial distribu-
tion and dynamic changes in vegetation in response to water resources is necessary for
the sustainable management and maintenance of healthy ecosystems [18,19]. Relatively
abundant and stable water sources in oases provide the necessary water and nutrients
for vegetation growth and are prerequisites for the development of natural oases in arid
zones [20]. Surface water and its distribution are key factors shaping the spatial vegetation
distribution patterns of oases [21].

Groundwater controls vegetation ecosystems [22,23] as a water supply source that
supports vegetation growth and transpiration [24,25]. Physiological and ecological indi-
cators of vegetation, water-use strategies, patch distribution characteristics, community
abundance, age structure, and succession are closely related to groundwater [26]. Surface
water and groundwater jointly influence the survival and development of oasis vegeta-
tion. Surface hydrological processes, including the frequency and duration of flooding,
determine the distribution pattern of vegetation in riparian zones at the watershed scale,
whereas subsurface hydrological processes influence the mechanism between the spatial
and temporal ecological succession of natural vegetation, affecting the critical depth of
burial of vegetation, ecological water demand of vegetation, and optimum suitable water
level for vegetation.

Dramatic climate changes can impact vegetation cover; however, scientific opinions on
the drivers of vegetation growth in the Northern Hemisphere are divided. Some researchers
posit that global warming is the main cause of increased vegetation cover in the Northern
Hemisphere [27]. In contrast, others postulate that global warming increases evaporation
and rapidly depletes soil moisture in the arid zones of the Northern Hemisphere, inhibiting
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the increase in vegetation cover [28]. Meanwhile, in extremely arid conditions, such as the
hinterland of the Taklamakan Desert, although climate change may have an impact, the
hydrological processes and topography have an extremely important influence on vegetation
cover, significantly affecting the survival and development of vegetation. Within this region,
most studies have focused on large-scale assessments, such as the response of vegetation
on the Tibetan Plateau to climate change [29] or the impact of climate change on vegetation
productivity in the dry zone of Central Asia [30]. Meanwhile, fewer studies have reported
small- or medium-scale assessments with regard to changes in vegetation cover.

Located in the desert hinterland, the Daliyabui oasis covers an area of approximately
342 km2; it represents an area for small- to medium-scale assessments. The use of long-
term remotely sensed data is an effective method for studying vegetation changes and
atmospheric processes at different spatial and temporal scales [31]. Remotely sensed NDVI
calculated from red and near-infrared reflectance has been recognized as an indicator of
vegetation cover [32]. Of all the NDVI products, Moderate Resolution (MODIS) NDVI and
Landsat NDVI are the most widely used because of their simultaneous high spatial and
temporal resolution [33].

Therefore, we selected a natural oasis in the hinterland of the Taklamakan Desert
as our research object, with the desert riparian vegetation ecosystem as the core, and
explored the effects of climate change, topography, and water resource changes on the
spatiotemporal distribution patterns of oasis vegetation. Additionally, we identified the
general patterns in desert vegetation characteristics, provided basic datasets for restoring
riparian vegetation and curbing oasis desertification, and provided scientific support for
oasis health management and sustainable development.

2. Materials and Methods
2.1. Study Area

Nestled within the heart of the Taklamakan Desert—China’s grandest desert—lies
the Daliyabui oasis, with the borders of 81◦90′15′′–82◦23′41′′E and 37◦20′39′′–39◦10′35′′N.
The core area of the oasis covers an area of 324 km2, with a relatively flat topography
(1061–1177 m) and an average elevation of 1108 m above sea level. The Kriya River traverses
this area, flowing from south to north, vanishing into the desert’s deep interiors. The oasis
predominantly sits on the alluvial plain formed by the tail end of the Kriya River, from which
it emerged, presenting a relatively untouched natural sanctuary (Figure 1). The area has a
temperate continental arid desert climate characterized by high evaporation, low rainfall,
a large diurnal temperature difference, and a long frost-free period. The average annual
precipitation is <10 mm, and the average annual temperature is 11 ◦C. The oasis vegetation
composition is dominated by poplars, tamarisks, and reeds, which are representative of
the desert ecosystem. Oasis vegetation is mostly distributed in lowlands with shallow
groundwater. Poplars primarily grow on both sides of the fine river network, washed
out by rivers, shrubs, and annual herbs sparsely growing on sand dunes. In some large
inter-mound basins in the interior of the desert, shrubs dominate the plant community,
forming relatively large vegetation patches with low coverage.

2.2. Methods
2.2.1. Meteorological and Topographic Data

The impact of climate change on vegetation trends was analyzed using precipitation
and temperature data from 2000 to 2020. Ground-based observations were not used in
this study as no meteorological stations provided long-term observations in the study
area. Therefore, a high-precision 1 km resolution precipitation and temperature dataset
was selected and generated for the study area using delta spatial downscaling (http://
data.tpdc.ac.cn, accessed on 23 April 2023). Data from 496 independent meteorological
observation points were used for validation (Figure 2). Correlation analysis between multi-
year meteorological data and NDVI data was performed using Matlab (2021b) software to
derive the effect of meteorological factors on vegetation.

http://data.tpdc.ac.cn
http://data.tpdc.ac.cn
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To understand the response of vegetation distribution patterns to topography, the 90
m resolution digital elevation model data were used to generate topographic data, calculate
and correlate the slope of the study area with vegetation indices, and derive the factors
influencing the growth of vegetation (Figure 2). The topographic data were obtained from the
U.S. Geological Survey (USGS, https://earthexplorer.usgs.gov/, accessed on 23 April 2023).

2.2.2. Hydrological Data
Surface Water Data

The United States Geological Survey (USGS) provided 130 cloud-free Landsat images
from 2000 through 2020 for this investigation. The data were preprocessed using ENVI 5.3
to obtain better-quality images. Then, 13 water body indices were selected to extract water
bodies in the study area. This selection considered the degree of numerical differentiation
between the surface water image elements and background image elements, that is, the
numerical size difference, and the larger the difference, the more conducive it is to the
application of automatic thresholding to determine the method of extracting the distribution
range of the water bodies and obtaining a better accuracy. Based on a previous analysis [21],
the AEWIno shadow water body index is the most effective. Mapping the spatial distribution
of the surface water was achieved using the maximum entropy threshold segmentation
method (Figure 3). Finally, the relative distribution frequency of surface water was obtained
by using the TOTAL function to sum the images at the image element scale and dividing
by the number of images, N, to normalize the image element values between 0 and 1; 0
indicated that no surface water reached the image element during the study period, and
1 indicated that surface water was always present during the study period. It should be
noted that due to image availability and the influence of clouds and cloud shadows, the
resulting surface water frequency does not absolutely indicate the presence or absence
of surface water, which is in flux, and is only used to characterize the differences in the
spatial and temporal distributions of surface water as continuous data for surface water are
not available.
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Groundwater Data

To invert the groundwater burial depth, data from 19 groundwater level observation
wells (HOBO water level observation meters) in the study area were used to build a
model by combining 16 environmental covariates (Figure 4) with high correlation with

https://earthexplorer.usgs.gov/


Remote Sens. 2023, 15, 5299 6 of 19

groundwater (topographic, meteorological, and vegetation data), and the spatial resolution
of the environmental covariates was uniformly re-sampled to 90 m using ArcGIS 10.8.
Finally, a groundwater level model was created with Matlab (2021b) software based on the
random forest (RF) model, and a remote sensing inversion of the groundwater level in the
research region was carried out and mapped.
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Figure 4. Environmental covariates used for modeling the spatial patterns of groundwater parameters
in the Daliyabui oasis (In LULC, 22, 23, 31, 32, 33, 41, 42, 46, 64, 61 represent shrubwood, sparse shrub,
high cover grassland, medium cover grassland, low cover grassland, graff, lake, bottomland, marsh,
bare land respectively).
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To validate the model’s ability to predict groundwater burial depth data, we split the
entire sample into two. One copy contained samples 9/10 for modeling and 1/10 for vali-
dation, yielding ten groups for cross-validation. The model’s validity was assessed using
root-mean-square error (RMSE) and the coefficient of determination (R2). The temporal
and geographical predictive capacity of the RF model for groundwater parameters may be
completely assessed by combining the validation technique for time-varying prediction of
the RF model with 10-fold cross-validation (Figure 5).
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2.2.3. Vegetation Data

NDVI is a critical measure for tracking changes in plant distribution patterns in a
research region. The Google Earth Engine (GEE) platform was used to calculate NDVI for
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the Landsat and MODIS (MODIS/006/MOD13A2) datasets (Table 1) with resolutions of 30
m and 250 m, respectively. The NDVI raster images were obtained by masking the vector
range of the study area, cropping the monthly NDVI raster images for 2000–2020, and
obtaining the annual average NDVI raster images using the mean method. The comparison
of the two time series revealed differences in the Landsat and MODIS satellite sensors that
led to uncertainties.

Table 1. Landsat and MODIS satellite sensor information.

Satellites Sensors Year Resolution (m) Period (Days)

Landsat-5 MSS, TM 2000–2013 90 16
Landsat-8 OLI 2013–2020 90 16

MODIS 2000–2020 250 16

Statistical analyses of the Landsat and MODIS NDVI image elements were used to
obtain the NDVI distribution characteristics for the entire desert, including the frequency
distribution of the NDVI and the mean value. Finally, the nonparametric Mann–Kendall
test was performed to determine the statistical significance of the trends for each NDVI
dataset for each picture element over the observation period. The calculated statistical
indicator Z was used to classify the trends as significant increase (Z > 1.96, significant at
5%), significant decrease (Z < −1.96, significant at 5%), and no significant change.

2.2.4. NDVI Calculation

NDVI is an important monitoring indicator for quantifying changes in plant cover
due to climate change, and it is especially sensitive in arid areas with scant vegetation [34].
The formula is presented in Equation (1):

NDVI =
ρnir − ρred
ρnir + ρred

(1)

where ρnir is for the near-infrared band and ρred is for the infrared band.

2.2.5. Water Index Calculation

The AWEIno shadow can effectively threshold segment water bodies with high accuracy and
improved detection at the surface water distribution’s boundaries. It is ideal for monitoring
complex water environments in desert areas [35] and is calculated using Equation (2):

AWEIno shadow = 4
(
ρgreen − ρswir1

)
− (0.25ρnir + 0.75ρswir2) (2)

where ρgreen, ρswir1, ρnir, and ρswir2 are the reflectance values of the green, swir1, near-
infrared, and swir2 bands, respectively.

2.2.6. Mann–Kendall Test and Sen’s Slope Estimator—Trend Detection [36]

Sen’s slope is widely used in ecohydrological climates and is calculated as per Equation (3):

slope = Median
[(

xj − xi
)
/(j− i)

]
, ∀j > i (3)

where Median [] represents the median value; if the slope is >0, a positive trend is assigned
to the vegetation cover; if the slope is <0, a decreasing trend is assigned.

The Mann–Kendall test is a nonparametric statistical test used to detect the significance
of changes in trends and is calculated using Equations (4) and (5):

S = ∑n−1
i=l ∑n

j=i+1 sgn
(
xj − xi

)
(4)



Remote Sens. 2023, 15, 5299 9 of 19

sgn(xj − xi) = {
1
(
xj − xi

)
> 0

0(xi − xi) = 0
−1
(

xj + xi
)
< 0

(5)

The Z test statistic was used to perform the trend test in Equation (6):

Z = {

S√
Var(S)

(S > 0)

0 (S = 0)
+
−

S+1
Var(S) (S < 0)

(6)

where n is the length of the sample and xi and xj are the data values in time series i and j,
respectively. The formula for Var is presented as Equation (7):

Var(s) =
n(n− 1)(2n + 5)

18
(7)

2.2.7. Calculation of Correlation Analysis

Correlation analysis of vegetation with precipitation and temperature was performed
using Pearson’s correlation coefficient as presented in Equation (8):

R =
Cov(x, y)

σxσy
=

n ∑ xy−∑ x ∑ y√[
n ∑ x2 − (∑ x)2

]
·
[
n ∑ y2 − (∑ y)2

] (8)

where R is the correlation coefficient, Cov is the covariance, and σ is the standard deviation.

2.2.8. Random Forest (RF) Model

RF models [37] utilize integrated learning methods and are nonlinear tree-based mod-
els. These models use multiple decision trees, making them less prone to oversaturation.
Their accuracy is also improved due to the voting of multiple decision trees. Moreover,
when dealing with high-dimensional data, there is no need to select features to obtain the
value of each. The parallel computing implemented by the RF algorithm is fast and easy
to implement, and the introduction of stochasticity reduces the variance of the model run,
making it insensitive to multivariate covariances and improving the computation of data
with missing values.

Modeling between groundwater level and environmental covariates was performed
using RF models in Matlab2018b. Indeed, RFs have better performance in multivariate
inversion and can effectively invert groundwater levels, making the results more reliable.

3. Results
3.1. Vegetation Distribution Pattern

The pixel levels of the multiyear average NDVI of the Daliyabui oasis were calculated
based on the Landsat and MODIS (Figure 2) NDVI datasets. Although these datasets
differ in spatial resolution, they both display comparable distribution patterns. In general,
the NDVI at the oasis inlet in the central region was higher than at the tail of the oasis.
Higher-resolution Landsat data showed that several sizable vegetation patches with higher
NDVI were also distributed in the inner desert region. According to a field survey, these
patches of vegetation in the middle of the desert were mostly distributed on both sides
of wider river channels, as well as in large open interdune basins surrounded by large
sand dunes.

Based on the MODIS and Landsat NDVI datasets, the frequency distribution of NDVI
for each image element in the oasis showed a clear single-peaked distribution with a main
peak close to 0.06 (Figure 6). This indicated the predominance of sparsely vegetated active
dunes in the oasis. The NDVI showed a positively skewed distribution, with the right
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side > 0.15 representing vegetation patches. This indicates that the oasis is dominated
by low-coverage vegetation with a very small and scattered area of high-density vegeta-
tion. This reflects the effects of hydrological and climatic drought conditions on normal
vegetation growth.
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3.2. Greening Trends in the Daliyabui Oasis

The mean values of the Landsat and MODIS NDVI time series were fairly low; both
showed a clear rising tendency (Figure 7). The interannual variation in mean NDVI values
of both time series was similar, based on Landsat and MODIS NDVI growth rates of 0.001
and 0.0075 per decade during 2000–2020, respectively. Temporally, the oasis vegetation
showed an overall greening trend, and degradation existed in local areas. Spatially, the
vegetation greening area was primarily distributed in the oasis’s western and center areas;
the declining area was mainly distributed north of the oasis end and in the eastern region.
The stable region was primarily concentrated in the southeastern part of the oasis (Figure 8).
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3.3. Climate Effects of Climate on Oasis Vegetation

Among the various climatic variables that drive vegetation change, the most basic
and important are solar radiation, temperature, and precipitation, which provide the light,
heat, and water conditions necessary for vegetation growth, respectively [38]. Radiation
is the source of energy for plant photosynthesis, which can only proceed under suitable
light conditions. Temperature affects the rates of photosynthesis and respiration, as well as
the efficiency of nutrient utilization by plants, and precipitation is the main source of plant
water [39–41]. Precipitation is thus a key factor for plant growth [42].

Since the 1980s, Northwest China’s dry and semi-arid areas have become increasingly
warm and humid. The analysis of climatic data showed that the mean and maximum
temperatures in the desert hinterland oases increased during the study period (Figure 9a,c).
Rainfall showed insignificant interannual variability, while in 2010, there were significant
extreme precipitation events (Figure 9b), which had a profound effect on plant growth. At
the image metric scale, the relationship between climatic elements such as temperature,
precipitation, and NDVI was investigated (Figure 10). The findings revealed that NDVI was
positively associated with temperature and precipitation in most of the research locations
but was only significant in certain regions (p < 0.05). This may be because of the complex
response of the NDVI to climate environment changes, which is nonlinear and influenced
by topography and hydrological processes [43].
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3.4. Effect of Topography on Oasis Vegetation

As shown in Figure 11, regional topography affected the geographic heterogeneity
of the observed NDVI distribution. Huge pockets of flora in the hinterland of the desert
oasis, which include banded vegetation patches in the middle of the oasis, were typically
found in lowlands or vast inter-mound basins with level landscapes, corresponding to
the visual interpretation of unmanned aerial vehicle (UAV) images, high-resolution data,
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and field surveys (Figure 6). The slopes of the desert hinterland oasis varied greatly in
space. (Figure 11). The NDVI pixel values for slopes <8◦ were larger than those for slopes
>8◦, where the NDVI was typically below 0.1. Previous research has revealed that local
environmental factors regulated by topography impact the development of plants [44].
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Vegetation cover was negatively correlated with slope; that is, the greater the slope,
the lower the vegetation cover. The significant variation in vegetation cover with slope
is due to the fact that slopes influence surface runoff and water redistribution, creating
substantial habitat heterogeneity [45]. Similarly, the size and movement of sand dunes
have a significant impact on the geographical distribution pattern of vegetation in desert
hinterlands. The geographic spatial distribution pattern of sand dunes affects the distri-
bution and effectiveness of, and accessibility to, surface water, which indirectly affects the
spatial distribution of vegetation. Surface water movement has a remodeling effect on
sand dunes, driving the transformation of nearby riparian deserts into riverbanks; with the
considerable mobility of sand, plants living on dunes are endangered by sand burial.

Meanwhile, in the bottom area of the tall dunes, more water and nutrients can be
gathered, providing a good substrate for vegetation growth and development. However,
the slope at the top and profile of the dunes prevents water and nutrients from being stored,
which is not conducive to the growth of vegetation [46]. Furthermore, the basins formed
between individual dunes can provide a more favorable environment for plants to survive
in the harsh desert environment by shielding them from wind, sand, and direct sunlight,
reducing sand burial and evaporation [47].

3.5. Effects of Spatial Distribution Frequency of Surface Water on Vegetation

Surface water was extracted using the AEWIno shadow water body index with the
maximum entropy threshold segmentation method from 2000 to 2020. Surface water’s
relative distribution frequency was obtained by summing all images at the image element
scale and dividing by the number (N); this was used to characterize the differences in the
spatiotemporal distribution of surface water. The relative distribution frequency of surface
water was 1.29. Regarding spatial distribution, the western, central, and southeastern
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regions of the oasis were the main distribution areas of surface water; the range was
consistent with the vegetation distribution range of the oasis (Figures 7 and 12).
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Directionally, 45.54% of the regional surface water frequency in the oasis was positively
correlated with NDVI, and 54.46% was negatively correlated with NDVI, owing to the
presence of rivers, lakes, waterlogged depressions, and high salinity in high-frequency
waterlogged areas (Table 2). Oasis vegetation, water bodies, and sand dunes interact
and influence each other, constituting the natural factors controlling changes in the oasis
landscape. With the recent change in upstream runoff (Figure 9d), surface water enters
the oasis and scours the sand dunes to form the internal river network of the oasis; the
accessibility and effectiveness of its water profoundly affect the vegetation on both sides of
the river network water system. The surface water end is reduced by the decreased water
velocity and flow and the tall sand dunes. This is consistent with the results showing that
the topographic slope of the oasis affects vegetation distribution and growth.

Table 2. Frequency correlation of NDVI and surface water distribution from 2000 to 2020.

Classification Relevance Percentage Total

Positive
correlation

0.8–1 Very strong positive correlation 8.27%

45.54%
0.6–0.8 Strong positive correlation 9.41%
0.4–0.6 Moderate positive correlation 9.84%
0.2–0.4 Weak positive correlation 9.32%
0–0.2 Very weak positive correlation 8.70%

Negative
correlation

−0.2–0 Very weak negative correlation 10.20%

54.46%
−0.4–0.2 Weak negative correlation 8.08%
−0.6–0.4 Moderate negative correlation 7.60%
−0.8–0.6 Strong negative correlation 11.02%
−1–0.8 Very strong negative correlation 17.56%
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3.6. Effect of Groundwater Level on Oasis Vegetation

Groundwater is the main factor influencing plant growth and development [48]. Some
studies have concluded that riparian zones are groundwater-sustained ecosystems and
that many riparian-zone plants are groundwater-dependent [49]. Groundwater properties
(depth of water table burial and groundwater mineralization) determine the distribution of
plant composition and diversity in the arid zone [50]. Groundwater can be taken up directly
by deep-rooted plants or supplied for the growth of plants with shallow roots as a result of
the regulation of the moisture content of the envelope [51]. Changes in groundwater levels
can affect water use efficiency and the physiological and ecological responses of plants [52].
To maintain plant growth in riparian zones, the burial depth of the water table must be
maintained at a suitable interval. In this study, the burial depth of groundwater in the
oasis was mapped based on the environmental covariates selected for correlation with the
groundwater level and measured groundwater data. The average depth of groundwater in
the vegetated area of the oasis was 3.75 m.

Figure 13 shows that the groundwater burial depth in the vegetated region of the
Daliyabui oasis decreased from southwest to northeast, with shallow water table areas
at the river inlets on both sides of the oasis, a high groundwater table in the central area
owing to topography, and greater groundwater depth in the coccyx area owing to low water
accessibility. The groundwater burial depth in the vegetated areas of the oasis ranged from
2 to 7 m, with the minimum and maximum values occurring in small areas in the southern
and northern parts of the oasis, respectively. Most of the vegetation was distributed in
areas with a groundwater burial depth of 3–5 m, and the distribution range was largest
when the groundwater burial depth was 3.5–4.5 m.
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4. Discussion

Arid and semi-arid zones are ecologically fragile, highly sensitive to climate change,
and contain vegetation as the main terrestrial ecosystem with vegetation activities produc-
ing a dynamic, nonlinear response law that reflects the interaction between hydrothermal
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elements and vegetation activities [53]. Although previous studies have provided a prelim-
inary understanding of the increase in vegetation cover change, the results varied widely
due to the use of different collection methods, multiple sources of NDVI data, and short
NDVI time series [54]. In comparison with Landsat NDVI, LTDR NDVI is more accurate
than GIMMS NDVI at the regional scale, in terms of static values and dynamics; however,
GIMMS LTDR NDVI data are slightly more accurate than LTDR NDVI data in terms of
most vegetation dynamics. This may be due to the GIMMS NDVI values being spatially
biased and temporally less biased [55]. Therefore, the use of NDVI data from the same
sensor platform and long time series can reduce the data errors caused by different sensor
platforms, enabling a better understanding of the changes in vegetation cover in desert
hinterland oases and providing a more accurate theoretical basis for predicting changes
in vegetation cover and modeling the relationship between vegetation and climate at the
global and regional scales. In this study, Landsat, MODIS, and meteorological data did not
respond well to the vegetation changes in response to environmental factors due to the
limited spatial resolution. However, Sentinel and GF data with higher resolution could be
utilized for analysis in subsequent studies. Moreover, this paper only considered the effect
of a single environmental factor on vegetation and did not consider the effect of coupling
between environmental factors on vegetation. In addition, only climatic, topographic, and
hydrological environmental factors were considered, whereas others, such as soil organic
matter, nutrient elements, and microclimate, also affect vegetation.

In the present study, 130 Landsat images from 2000 to 2020 were utilized to extract
surface water data by adopting the water body index and threshold segmentation method.
Although this method achieved better results in water body extraction, the quality and
quantity of images and the limitation of spatial and temporal resolution made it difficult
for the extracted water bodies to characterize the surface water distribution in the study
area accurately. Moreover, only the depth of groundwater burial was modeled using the RF
algorithm, with an overall accuracy of 0.729 (Figure 5), indicating that the direct modeling
strategy has a limited ability to predict groundwater levels. Zhu et al. improved the
prediction accuracy of SPAD using the RF algorithm and a GMM clustering model [56].
Meanwhile, Yang et al. used K-mean and RF machine learning methods, reporting a
significant improvement in the accuracy of estimating SPAD [57]. Hence, machine learning
methods that are more predictive of groundwater should be introduced in subsequent
studies. Moreover, only 16 environmental covariates were included when estimating the
depth of groundwater, whereas Zhang et al. selected 24 environmental covariates and
used principal component analysis to determine the main variables for predicting soil
organic matter in the whole country, which improved the prediction accuracy. Hence,
additional environmental covariates should be selected for groundwater level prediction in
subsequent studies [37].

5. Conclusions

This study reveals the influence of the distribution pattern of natural oasis vegetation
in the hinterland of the Taklamakan Desert by studying the patterns of change in climate,
topography, and hydrological processes, and it explores the response of natural oasis
vegetation to a series of environmental factors. In general, the oasis vegetation showed
a greening trend over time. Spatially, the vegetation showed backward shrinkage in the
central region and significant greening in the northwest region. As a result of the effects of
climate change, NDVI was positively linked with both temperature and precipitation in
the majority of the research locations, but the association was only significant in some parts
of the positive correlation region. In natural desert hinterland oases, the most essential
element influencing plant growth is water availability, and the combined effects of surface
water and groundwater profoundly affect the survival and development of oasis vegetation.
A higher frequency of surface water distribution means that the area has better accessibility
and water use efficiency, which is also a key factor in shaping the topography of the oasis
and determines the distribution pattern of vegetation in the riparian zone at the watershed
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scale. The major spatial extent of surface water distribution coincides with vegetation
distribution. Meanwhile, a shallow groundwater level affects the mechanism between
spatial and temporal ecological succession, critical depth, ecological water demand, and
optimal water level of vegetation. Vegetation is most widely distributed in areas with a
groundwater burial depth of 3.5–4.5 m. Therefore, this study is informative in exploring
how climate change affects oasis vegetation and the impact of water resources on vegetation
to guide future water delivery policies for oases.
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