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Abstract: Mangrove wetlands are hotspots of global biodiversity and blue carbon reserves in coastal
wetlands, with unique ecological functions and significant socioeconomic value. Annual fine-scale
monitoring of mangroves is crucial for evaluating national conservation programs and implementing
sustainable mangrove management strategies. However, annual fine-scale mapping of mangroves
over large areas using remote sensing remains a challenge due to spectral similarities with coastal
vegetation, tidal periodic fluctuations, and the need for consistent and dependable samples across
different years. In previous research, there has been a lack of strategies that simultaneously consider
spatial, temporal, and methodological aspects of mangrove extraction. Therefore, based on an
approach that considers mangrove habitat, tides, and a semantic segmentation approach, we propose
a method for fine-scale mangrove mapping suitable for long time-series data. This is an optimized
hybrid model that integrates spatial, temporal, and methodological considerations. The model
uses five sensors (GF-1, GF-2, GF-6, ZY-301, ZY-302) to combine deep learning U-Net models with
mangrove habitat information and algorithms during low-tide periods. This method produces a
mangrove map with a spatial resolution of 2 m. We applied this algorithm to three typical mangrove
regions in the Beibu Gulf of Guangxi Province. The results showed the following: (1) The model
scored above 0.9 in terms of its F1-score in all three study areas at the time of training, with an
average accuracy of 92.54% for mangrove extraction. (2) The average overall accuracy (OA) for
the extraction of mangrove distribution in three typical areas in the Beibu Gulf was 93.29%. When
comparing the validation of different regions and years, the overall OA accuracy exceeded 89.84%
and the Kappa coefficient exceeded 0.74. (3) The model results are reliable for extracting sparse
and slow-growing young mangroves and narrow mangrove belts along roadsides. In some areas
where tidal flooding occurs, the existing dataset underestimates mangrove extraction to a certain
extent. The fine-scale mangrove extraction method provides a foundation for the implementation
of fine-scale management of mangrove ecosystems, support for species diversity conservation, blue
carbon recovery, and sustainable development goals related to coastal development.

Keywords: mangrove forest; U-Net; multisource high resolution; remote sensing; mangrove habitat

1. Introduction

Mangroves are mainly distributed in tropical and subtropical regions between 32◦N
and 38◦S around the world, and they play important roles in coastal environmental pro-
tection [1,2], water purification [3,4], carbon sequestration [5–7], biodiversity conserva-
tion [8,9], and other ecological functions [4,10,11]. Due to human activities and climate
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change, the mangrove ecosystem is one of the most fragile ecosystems on Earth and has
unique habitat conditions. Over the past 50 years, global mangrove coverage has decreased
by approximately 20–35% [12]. In China, mangroves have experienced a gradual increase
recently after an initial decrease, but the current stock is still only approximately 40% of that
in 2000 [13]. The severe degradation of mangroves has attracted the attention of the Chinese
government. Through the efforts of various sectors in China, mangroves have slowly begun
to recover since 2015 [14]. Reliable, high-precision, and regular monitoring of mangroves is
crucial for formulating and implementing sustainable mangrove management strategies.

Remote sensing plays a unique role in monitoring inaccessible coastal ecosystems [11].
With the development of satellite remote sensing and intelligent classification algorithms,
significant progress has been made in the extraction and monitoring of mangrove wetland
areas [15–18]. In recent years, high-resolution GF and ZY series satellites have been widely
used for mangrove monitoring tasks [14,19]. With characteristics such as high image
resolution and short revisit intervals, these satellites have great potential for detailed and
effective mangrove monitoring.

To date, based on existing remote sensing datasets, researchers have conducted a large
amount of mangrove monitoring work on local to global scales. Using Landsat datasets
with a spatial resolution of 30 m, researchers used machine learning methods such as
random forests to create a global mangrove map with a resolution of 30 m from 2000 to 2016
to capture human and natural impacts on mangroves [12]. They have also generated long-
term (1973–2015) dynamics of Chinese mangroves using image thresholding methods and
analyzed the effectiveness of Chinese mangrove protection measures [13]. This research
strategy takes into account temporal optimization by identifying the low-tide periods
for mangroves using corresponding ecological indices. This method is more suitable for
global-scale mapping of mangroves at a 30 m resolution. However, such methods have a
higher demand for samples and still pose challenges for fine-scale annual monitoring of
long-term mangrove changes. Using Sentinel and Landsat datasets with spatial resolutions
ranging from 10 m to 30 m, researchers evaluated the applicability of different indicators
and selected the interannual changes of EVI and NDVI indices in mangroves time-series
analysis [20]. And Theil–Sen median trend analysis and the Mann–Kendall test were used
to explore the spatiotemporal variation trends in mangroves in the Qinglan Harbor Nature
Reserve in Hainan, China from 1987 to 2020 [20]. Researchers generated mangrove maps
of China using the Otsu method for six time periods from 1973 to 2015, and analyzed
national- and local-scale changes in mangroves over a 42-year period [13]. Studies based
on UAV (unmanned aerial vehicle) data, hyperspectral data, and multispectral data have
also used methods such as XGBoost (extreme gradient boosting) for mangrove extraction
at a small spatial scale [21,22], SVMs (support vector machines) for mangrove species
classification [23–25], CNN (convolutional neural networks) to overcome manual leaf sam-
ple identification during image recognition process for mangrove extraction and species
classification [26]. This research strategy considers spatial optimization by combining
deep learning with mangrove habitat information to identify potential growth areas of
mangroves and then extract mangroves based on this information. This approach helps
avoid confusion between mangroves and other terrestrial vegetation due to spectral sim-
ilarity. However, this research strategy often overlooks the uncertainty of tides, leading
to underestimation of extracted mangroves compared with the actual extent of the man-
groves. Additionally, these methods require high-quality samples and are still not suitable
for long-term mangrove monitoring. These studies indicate that Landsat 30 m spatial
resolution and Sentinel 10 m spatial resolution images are mainly used for large-scale
mangrove monitoring, but there is a gap in large-scale fine spatial resolution monitoring
(2 m) for long time series. Since the policy for protecting mangroves was established, the
fluctuation in mangrove areas has increased. In this situation, high spatial resolution and
dense time-series mangrove monitoring pose even more rigorous challenges in evaluating
national protection plans.
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Machine learning algorithms are the most widely used methods for extracting man-
groves. For example, machine learning algorithms rely on rich and unbiased training
samples from which they can learn to obtain accurate mappings [27]. In addition, machine
learning algorithms require setting the weights of features to balance prior probabilities
and fitting quality [28–30]. CNNs achieve high scores in automatic classification tasks, but
the results of traditional CNNs for mangrove extraction rely on stable sample quality [31].
Researchers have utilized attention mechanisms and CNNs to extract mangroves in the
Dongzhai Port National Nature Reserve in Hainan, China, further improving mangrove
extraction accuracy [32]. However, obtaining stable, long-term mangrove samples remains
a challenge. Semantic segmentation models like U-Net provide an opportunity for full-
sample mapping, requiring only one year of stable samples for training; the model results
can be applied to other years [33]. The U-Net deep learning semantic segmentation model
network can reduce the dependence on sample points and achieve good classification
results (OA = 81%) based on Landsat images [34]. In addition, some improved U-Net
models have demonstrated excellent performance in mangrove extraction [35,36]. Seman-
tic segmentation models have shown excellent performance in binary extraction tasks
and have been repeatedly proven to be more suitable for fine-scale, long-term mangrove
extraction. However, mangrove extraction tasks still present challenges, such as errors
caused by spectral similarity confusion leading to an overestimation of mangrove area,
and errors resulting from tidal uncertainty leading to an underestimation of mangrove
area. Similarly, an independent study in China showed that farmlands, inland shrublands,
bushes, and aquatic plants have very similar spectral characteristics to mangroves, and
thus misclassifications are common [37]. This indicates that obtaining stable samples for
mangrove extraction tasks is highly challenging.

Fine-scale annual monitoring of mangroves still presents three major challenges:
(1) Spectral similarity: Mangroves share a high spectral similarity with coastal vegetation.
Relying solely on spectral data often results in the misclassification of a significant amount
of other vegetation as mangroves. (2) Tidal influence: The appearance of mangroves in
imagery is greatly influenced by tidal conditions. Existing extraction strategies struggle to
obtain accurate mangrove boundaries due to these tidal fluctuations. (3) Sample availability:
Current mangrove extraction strategies require a substantial number of reliable samples.
Obtaining reliable samples from noncurrent years is challenging, making it difficult to
monitor long-term changes in mangroves.

The aim is to solve these challenges. The objective of this research is to develop and
evaluate hybrid U-Net deep learning models for mapping mangroves from multisource
high-resolution data. This research includes the following aspects: (1) developing a hybrid
U-Net model based on a habitat–tide-semantic segmentation approach; (2) extracting the
maximum extent of annual mangrove data using multisource high-resolution imagery;
(3) qualitatively and quantitatively evaluating the model results through visual interpreta-
tion and validation by multiple experts; and (4) comparing the model results with existing
mangrove datasets.

The rest of this paper is organized as follows: Section 2 provides detailed information
about the study area, data sources, and auxiliary data. Section 3 describes the hybrid
U-Net deep learning model for mapping mangroves from multisource high-resolution data.
Section 4 provides an evaluation of the performance of the hybrid U-Net model. Section 5
provides a discussion of the advantages and limitations of the hybrid U-Net model and
emphasizes the advantages of multisource high score data in mangrove extraction. Finally,
the major findings of this research are presented in Section 6.

2. Study Areas and Data Sources
2.1. Study Areas

The study areas are located in three typical regions of Guangxi Province in southern
China (Figure 1): (1) Zhenzhu Har bor–Fangcheng Harbor in Guangxi (ZZW); (2) Dafeng
River in Guangxi (DFJ); and (3) Tieshan Harbor in Guangxi (TSG). The study areas have two
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national nature reserves (Guangxi Beilun Estuary National Nature Reserve and Guangxi
Shankou Mangrove Ecological and National Nature Reserve) and one autonomous region
nature reserve (Guangxi Maowei Sea-Dafeng River Mangrove Forest Autonomous Region
Nature Reserve). ZZW belongs to the Guangxi Beilun Estuary National Nature Reserve,
which is the largest and most typical bay-type mangrove in China. The mangroves of DFJ
have the typical characteristics of estuary-type mangroves. The major species of mangroves
include Aegiceras corniculatum, Kandelia obovata, Avicennia Marina, Acanthus ilicifolius L., and
Sonneratia apetala [38]. The predominant species in the mangrove communities of TSG,
which span the low, mid-, and high intertidal zones, include Avicennia Marina, Aegiceras
corniculatum, Kandelia obovata, Rhizophora stylosa Griff, and Bruguiera gymnorrhiza (Linn.)
Savigny [39]. The mangrove data presented in Figure 1 are openly available at [Science Data
Bank (ScienceDB)] at [doi:10.11922/sciencedb.00449], reference number [40].
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2.2. Data Preprocessing

This study used five types of multispectral satellites, namely GF-1, GF-2, GF-6, ZY3-01,
and ZY3-02. The main parameters are shown in Table 1.

Table 1. Parameters of multispectral data used in this study (m for meters).

Satellite/Sensor GF-1 GF-2 GF-6 ZY3-01 ZY3-02

Study area ZZW, DFJ, TSG ZZW, DFJ, TSG ZZW, DFJ, TSG TSG ZZW, DFJ, TSG
Data collection time 15 January 2015 29 February 2016 23 November 2019 24 August 2015 18 December 2018

2 December 2021 15 August 2020 4 December 2021 4 December 2015 9 November 2021
Number of images 101 79 9 4 33
Number of bands 5 5 5 8 8

Multispectral band
resolution/m 8 3.2 8 5.8 5.8

Pansharpened band
resolution/m 2 0.8 2 2.1 2.1

After image fusion
resolution /m 2 0.8 2 2.1 2.1
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For the preprocessing of the images, the preprocessing workflows for GF-1, GF-2, GF-6,
ZY3-01, and ZY3-02 were generally the same. The processes included (1) orthorectification
of the panchromatic and multispectral images, (2) radiometric calibration, (3) atmospheric
correction, (4) image fusion and pansharpening, and (5) data cropping and subset extraction.
First, all of the images were orthorectified to the World Geodetic System 1984 (WGS 84)
reference system, with a root mean square geometric error of less than one pixel. The
changes in solar angle and Earth–sun distance was normalized by converting the digital
values to top-of-atmosphere reflectance for each image. Then, the radiometric calibration
tool of ENVI5.3 and the FLAASH atmospheric correction tool were used to process the
multispectral images. The calibration coefficients and atmospheric correction parameters
were obtained from the ENVI5.3 lookup table (GMTED2010). Finally, the pansharpening
algorithm [41] was used to fuse the orthorectified panchromatic and multispectral images.
Pansharpening is a radiation transformation that combines high-resolution panchromatic
images (or raster bands) with lower-resolution multiband raster datasets. Combining the
high spatial resolution information of panchromatic imagery with the low spatial resolution
information of multispectral imagery allows us to obtain fused images with both high
spatial and spectral resolution. The data fusion resolution was the same as the panchromatic
band spatial resolution. The fused images were resampled to a spatial resolution of 2 m (m
for meters). The processed images were then divided into separate image sets by year for
subsequent mangrove extraction. In this study, the five types of high-resolution satellite
images with a cloud cover of less than 15% in the Beibu Gulf from 2015 to 2021 were
selected [42]. A total of 226 images were selected for the extraction of the mangrove forests
in the Beibu Gulf.

2.3. Auxiliary Data
2.3.1. Potential Growth Areas of Mangroves

Using information about the mangrove habitat, mangroves are classified into a specific
ecological niche, which eliminates most areas where mangroves are not found [23]. In
this study, potential mangrove habitats were determined based on common mangrove
habitat characteristics. First, a 20 km buffer zone was set along the Beibu Gulf coastline.
Second, Guangxi has 12 species of true mangroves, with the tallest being smooth cordgrass
(Sonneratia apetala), which can grow up to 20 m high [43]. The areas where the DSM (Digital
Surface Model) value was less than 20 m were extracted from the buffer zone to obtain the
mangrove habitat. The DSM data were downloaded from http://www.eorc.jaxa.jp/ALOS/
en/aw3d30/data/index.html, accessed on 21 March 2023.

2.3.2. Reference Data Collection

The sample dataset of this study was mainly used to evaluate the effectiveness of the
proposed method for mangrove extraction. The sample discrimination was based on visual
interpretation of Google Earth high-resolution imagery and field investigations. The sample
dataset consisted of three parts: (1) For the first part, ArcGIS 10.8 was used to generate
random points in the mangrove and its adjacent areas. These points were determined to be
mangroves by multiple geographers and mangrove experts. Each sampling point’s category
attribute was manually determined based on high-resolution imagery from Google Earth,
and uncertain sampling points were removed. (2) The second part came from the area of
change in the mangrove patches, primarily focusing on areas where differences existed
between existing datasets for the same year. These areas were initially assessed by an expert
system and ultimately visually interpreted using high-resolution imagery from Google
Earth. (3) The third part of the sample points comes from the 2015 field investigation results.
The number and sources of the sampling points in each region are shown in Table 2.

http://www.eorc.jaxa.jp/ALOS/en/aw3d30/data/index.html
http://www.eorc.jaxa.jp/ALOS/en/aw3d30/data/index.html
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Table 2. Number of sample points in each area and their sources. (Note: GER stands for Google Earth
high-resolution image interpretation of random points; GEC stands for Google Earth high-resolution
image interpretation of area change over two consecutive years; and FSs stands for field surveys).

Study
Areas

Years

Number of Sample Points (Statistics/Validation)

SourceMangrove Non-Mangrove
Total

GER GEC FSs GER GEC FSs

ZZW

2015 412 50 / 106 72 / 640 GER + GEC

2018 434 14 / 83 100 / 631 GER + GEC

2019 355 37 / 67 41 / 500 GER + GEC

2020 372 59 / 87 83 / 601 GER + GEC

DFJ

2015 398 1885 18 99 3 / 706 GER + GEC + FSs

2018 332 186 / 98 4 / 620 GER + GEC

2019 361 188 / 89 32 / 670 GER + GEC

2020 424 156 / 101 15 / 696 GER + GEC

TSG

2015 468 11 34 98 80 / 691 GER + GEC + FSs

2018 342 6 / 97 54 / 499 GER + GEC

2019 341 14 / 74 136 / 565 GER + GEC

2020 375 15 / 101 71 / 562 GER + GEC

2.3.3. Existing Data Productions

In this study, we compared our research model’s results with five publicly available
mangrove datasets. To ensure the reliability of data comparison, we only selected the
baseline years of these datasets for comparison. These five datasets consist of one set at
2 m resolution (XCina, 2018) [23], two sets at 10 m resolution (TW, LREIS) [44,45] (2019,
2020), and two sets at 30 m resolution (GMW, CAS) (2015, 2018, 2019, 2020). The 10 m
resolution products were mainly extracted based on Sentinel images, and then underwent
field investigations and postprocessing, with an accuracy of over 90%. The 30 m resolution
products were mainly extracted based on Landsat images, and after postprocessing, the
results were published. The most representative products are the GMW data, which have
formed annual time-series data since 2015 [15].

3. Hybrid U-Net for Extracting Mangrove Forests and Evaluation Criteria
3.1. Overview of the Mangrove Extraction Process

The overview of the workflow for mangrove extraction and evaluation is outlined in
Figure 2 and mainly consists of four parts: (1) image preprocessing, (2) mangrove maxi-
mum growth area assessment, (3) U-Net mangrove extraction, and (4) accuracy assessment.
Image preprocessing: the satellite images were preprocessed to obtain a high-resolution
multisource image set with a spatial resolution of 2 m (m for meters) for 2015–2021. Man-
grove maximum growth area assessment: Based on the habitat characteristics and NDVI,
we acquired cloud-free images during the low-tide period for mangroves, representing
the maximum growth area of mangroves. Extracting the maximum mangrove growth
area, which is used for U-Net mangrove extraction, is crucial for the “full mapping” of the
semantic segmentation model. U-Net mangrove extraction: Accurate determination of the
maximum mangrove growth area contributes to achieving a “full mapping” relationship
between stable samples (2021) and the spatial scale of remote sensing images. On this basis,
image detection and segmentation were performed on the annual cloud-free mangrove
images. Multiple-source image segmentation results were extracted using a blended U-Net
model, which was used to derive mangrove maps for multiple years (2015–2020). Accuracy
assessment: the accuracy of the mangrove maps was verified based on validation sample
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sites and field survey results, and quantitative and qualitative analyses were performed via
comparing multi-person visual interpretations with existing data.
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3.2. Principle of the U-Net Model

The U-Net model is the most widely used model in semantic segmentation projects
and has also been extensively applied to remote sensing image classification [46]. The
input image first passes through the encoder to generate downsampling feature maps.
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Then, the decoder part implements upsampling of the feature maps to make them the
same size as the original image. U-Net is composed of stackable highway units, allowing
deeper networks to be trained using a limited number of samples [34]. To address the
problem of gradient degradation caused by excessively deep neural networks in deep
learning tasks, this study used ResNet-34 as the kernel function to train the deep learning
model to enhance the model’s feature representation capability [47,48]. To optimize the
update of network parameters, the Adam optimizer [49] was used. The specific equation,
Equation (1), is as follows:

θt = θt−1 − α ∗ m̂/
(√

v̂t + ε
)

(1)

In Equation (1), t represents the number of training iterations, α is the learning rate, m
is the exponential moving average of the gradient, and v is the exponential moving average
of the squared gradient. ε is usually a constant value of 1 × 10−8.

The model loss was calculated during training using the average cross-entropy loss
function, as shown in Equation (2):

loss = − 1
n∑n

i=1 yilogai + (1− yi)log(1− ai) (2)

where n represents the batch size and yi and ai are the predicted value and true value of
the i-th sample in each batch, respectively. The U-Net network model has better spatial
accuracy due to adding skip connections between the encoder and decoder layers.

3.3. Hybrid U-Net Based on the Habitat–Tide Semantic Segmentation Approach

Based on mangrove habitat characteristics and the collected low-tide data, a hybrid
strategy combining the U-Net model was proposed for mangrove extraction based on
the habitat data method. The hybrid U-Net model consists of three steps: (1) mangrove
habitat information, (2) low tide level acquisition, and (3) U-Net model mangrove extraction
(Figure 3).

The habitat extraction module identifies the potential growth areas of mangroves.
The low-tide data collection module extracts the maximum mangrove extent based on
the current data. The U-Net module for mangrove extraction constructs the relationship
between the maximum mangrove extent and multisource high-resolution remote sensing
imagery to build a mangrove extraction model. This model can be used for mangrove
extraction in other years within the same area. In the U-Net module for mangrove extraction,
the encoder and decoder parts are the same as those of the standard U-Net model. However,
the classifier part is enhanced via integrating the habitat information module and the low-
tide data collection module, improving the accuracy of the extraction process.

Step 1: Mangrove habitat information

According to the content in Section 2.3.1, mangroves grow on intertidal flats and the
buffer zone is designed as 20 km from the coastline. Areas with a digital surface model
(DSM) value less than 20 m are considered potential growth areas to reduce interference
from other coastal vegetation.

This step involves using the unique habitat of mangroves to identify potential man-
grove habitat areas and avoid interference from shoreline vegetation in the inversion results.
This is an optimization in terms of the model’s spatial aspects. The inputs for this step
include GF series and ZY series remote sensing images, DSM (digital surface model) data,
and coastline data. The output is the extent of the mangrove habitat.

Step 2: Low tide level acquisition

The minimum water level in the study area was based on the lowest tidal period of
the year [50]. For the normalized difference vegetation index (NDVI), the NDVI values
of non-water pixels (vegetation and tidal flats) are higher than those of water pixels, as
vegetation absorbs more strongly in the green band. Maximum value compositing of
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the NDVI for the preprocessed 2 m resolution images from 2021 can be used to extract
the minimum water surface [51]. This composite image not only enhances the difference
between vegetation and water but also removes the periodic flooding effect of seawater
on the mangrove forest, effectively separating the mangrove forest from the water. In this
study, 51 images were ultimately used to track the low-tide period (GF-1: 13; GF-2: 17;
GF-6: 4; ZY3-01: 5; ZY3-02: 12). We list the relevant information for the remote sensing data
in the Supplementary Materials.

This step involves using NDVIs and multisource high-resolution data to determine
the low-tide moments for mangroves, obtaining the maximum mangrove area. Based on
this, multilevel interpretation is carried out, and the interpretation results serve as inputs
to the U-Net model for training, achieving a “full mapping” with remote sensing imagery.
The training results can then be applied to mangrove extraction for other years. This is
an optimization in terms of the model’s temporal aspects. The inputs for the second part
include NDVIs constructed from GF series and ZY series remote sensing images. The
output is the maximum extent of the mangrove areas.

Step 3: U-Net model mangrove extraction

First, multilevel interactive verification of the maximum range of mangrove areas
(2021).Then, each detected mangrove patch was adjusted to obtain the best mangrove patch
samples. Finally, the mangrove patch samples were trained to obtain a mangrove extraction
model. The cloud-free low-tide images from other years (2015–2020) were used as inputs to
the mangrove extraction model to obtain the mangrove map for the corresponding year.

This study was compiled using the Python language based on the TensorFlow deep
learning framework. The hardware configuration of the operating platform includes a
Lenovo Ren-7000 i7-12700 (F)/NVIDIA Quadro RTX3070Ti 16G GPU. The slice size was set
to 256 × 256 pixels, the batch size was set to 32, the kernel function was ResNet-34, and the
other parameters were set to the default values of ResNet-34.
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3.4. Accuracy Assessment

We evaluated the classification accuracy of the proposed hybrid U-Net model using
three metrics: Kappa coefficient, overall accuracy (OA), and F1-scores [52]. The kappa
coefficient, OA, and F1-scores are all based on confusion matrix calculations, which provide
the number of correctly classified and misclassified samples [53]. Specifically, the Kappa
coefficient is often used to measure the consistency of test results and the effectiveness of
classification, while OA is the ratio of correctly classified categories to the total number of
categories [34]. The F1-score reflects the overall comprehensive index, independent of the
number of categories; it is a means of coordinating precision and recall. Precision is defined
as the ratio of true positive (TP) predictions to sample predictions of the same type of land
cover. It refers to the proportion of mangrove and non-mangrove types in the model results
that is the same as in the validation point results. Recall is defined as the ratio of target
type samples to total type samples. It refers to the proportion of model results defined as
mangroves and the validation points (wild survey results and visual interpretation results)
that are classified as mangroves [50].

OA =
∑2

i=1 aii

N
(3)

Kappa =
OA−∑2

i=1 ai + *a+i/N2

1−OA
, ai+ = ∑i aij, a+i =∑j aij (4)

precision =
TP

TP + FP′
, recall =

TP
TP + FN′

(5)

F1− scores =
2× (precision× recall)

precision + recall
(6)

In Equations (3) and (4), aii represents the number of samples correctly predicted
as type i, aij represents the number of samples of type i predicted as type j, and N is
the total number of samples. In Equation (5), FN represents the number of samples for
which the classification model predicts mangrove forests but the ground truth shows
non-mangrove forests.

3.5. Multilevel Interactive Verification

In this study, the multilevel interactive verification was divided into four parts: prelim-
inary interpretation, comparison of interpretation results, issue resolution and correction,
and final review and confirmation. Preliminary interpretation: We engaged multiple ex-
perts in geographic information or experts in mangrove studies. Based on their respective
professional knowledge and experience, they independently interpreted and identified
mangroves in the same remote sensing image, generating interpretation logs. These inter-
pretation logs include the basis for decisions, data sources, and key findings. Comparison
of interpretation results: Interpretation results from multiple individuals were compared
to identify stable mangrove areas and areas with discrepancies. Issue resolution and
correction: Referring to the existing dataset, identify areas with differences in mangrove
interpretation to determine whether they are mangroves. For areas that still could not
be definitively determined, in-depth analysis of the imagery, additional data searches,
or reference to ground validation data were conducted, and the final determination was
made by local mangrove experts. Final review and confirmation: The stable mangrove
areas obtained from the preliminary interpretation were overlaid with areas where there
were discrepancies as determined by experts. The final visual interpretation results were
ultimately confirmed.
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4. Results
4.1. Performance Evaluation of the Hybrid U-Net Model during the Training Period

The training results (2021 samples) based on the hybrid U-Net model in three typical
mangrove areas in the Beibu Gulf are shown in Figure 4. During the training period, the
output of the hybrid U-Net’s divided into two categories: mangrove and non-mangrove.
The application effect of the U-Net deep learning model was evaluated using classic
evaluation metrics such as accuracy, recall, and F1-score in the three study areas. As seen
in Table 3, the F1-scores of the three areas were all above 0.9, indicating that the hybrid
U-Net model theoretically performed well in precision and recall. Precision is an indicator
from the perspective of model prediction, and there was an average mangrove prediction
precision of 92.54% in the three areas. Recall is an indicator from the perspective of real
results, and there was an average mangrove prediction recall of 91.51% in the three areas.
Overall, the model performs similarly in the three areas, with slightly better results in
TSG than in ZZW and DFJ. The lowest F1-score for non-mangrove areas during training
in the three regions was 0.97. This demonstrates that very few mangrove patches were
misinterpreted as non-mangrove patches. This further indicates that the boundaries of
mangrove patches used for model training are quite accurate.
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Figure 4. U-Net loss curves based on 2021 samples: (a) loss curve at ZZW, (b) loss curve at DFJ,
(c) loss curve at TSG.

Table 3. Accuracy evaluation of hybrid U-Net model for various types (mangrove, non-mangrove).

Study Area Ground Truth Precision Recall F1-Score

ZZW
Mangrove 89.51% 90.04% 0.90

Non-Mangrove 97.12% 96.95% 0.97

DFJ
Mangrove 93.78% 89.99% 0.92

Non-Mangrove 98.63% 99.18% 0.99

TSG
Mangrove 94.34% 94.49% 0.94

Non-Mangrove 98.62% 98.58% 0.99

The hybrid U-Net model effectively inverted the mangroves in the three areas. The
training accuracy–verification curve of the hybrid U-Net is shown in Figure 4. The training
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accuracy curve was used to measure the performance of the model, and the loss curve
was used to further optimize the model. After approximately 7000 iterations in the three
typical areas, the model reached a convergence state, at which point the model weights
were determined. After model convergence, the loss of three regions is around 0.05.

To avoid overfitting, the early stopping strategy was employed during the model train-
ing process [54]. This strategy involves monitoring the training progress and automatically
stopping the training when the model has reached a point of convergence and the training
loss on the training dataset no longer decreases significantly. This allows the model to
be saved with the optimal parameter settings without continuing training until after the
specified number of epochs.

4.2. Evaluation of the Hybrid U-Net Model’s Mangrove Extraction Accuracy

The extraction results of the hybrid U-Net model can be seen in Figure 5 and Table 4
(the extraction results for DFJ and TSG are shown in the Supplementary Materials
(Figures S1 and S2)). The PA, UA, OA, and Kappa coefficients were selected as indica-
tors to validate the accuracy of the hybrid U-Net model in extracting the mangroves. The
average OA value of the mangrove distribution extraction in the typical area of the Beibu
Gulf was 93.29%. When comparing the validation results of the different regions and differ-
ent years (Table 4), the overall OA accuracy exceeded 89.84%, and the Kappa coefficient
exceeded 0.74. The lowest OA was 93.31% (kappa = 0.8) in the DFJ area, and the lowest OA
was 91.68% (kappa = 0.82) in the TSG area. The best extraction accuracy of the mangroves
in the DFJ area was in 2015 (OA = 96.58%, Kappa = 0.87), and the lowest accuracy was in
the ZZW area in 2020 (OA = 89.84%, Kappa = 0.77). Compared with the results for DFJ, the
extraction accuracy for ZZW and TSG in the four years averaged 94.74%. With the hybrid
U-Net model, there were very few errors in mangrove extraction (Figure 5), resulting in
high PA values for all the mangrove categories (DFJ reached a maximum value of 96.64% in
2015). The PA and UA values of the mangroves in the three typical areas were both greater
than 90.11%.

Table 4. The Hybrid U-Net results and the producer’s accuracy (PA), user’s accuracy (UA), overall
accuracy (OA), and Kappa coefficients (Kappa) of three typical mangrove forest areas in the Beibu
Gulf. (1) ZZW; (2) DFJ; (3) TSG.

Study
Areas Years Ground Truth PA UA OA Kappa

ZZW

2015
Mangrove 93.90% 98.93%

94.81% 0.88
Non-Mangrove 97.27% 85.58%

2018
Mangrove 94.12% 95.52%

92.79% 0.83
Non-Mangrove 89.71% 86.73%

2019
Mangrove 90.11% 96.79%

89.93% 0.74
Non-Mangrove 89.27% 71.52%

2020
Mangrove 91.31% 94.10%

89.84% 0.77
Non-Mangrove 86.29% 80.57%

DFJ

2015
Mangrove 96.64% 99.34%

96.58% 0.87
Non-Mangrove 96.23% 82.93%

2018
Mangrove 94.18% 99.23%

94.51% 0.82
Non-Mangrove 96.23% 76.12%

2019
Mangrove 93.58% 97.86%

93.31% 0.80
Non-Mangrove 90.98% 77.07%

2020
Mangrove 95.24% 98.14%

94.57% 0.82
Non-Mangrove 91.34% 80%
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Table 4. Cont.

Study
Areas Years Ground Truth PA UA OA Kappa

TSG

2015
Mangrove 91.44% 99.03%

92.88% 0.83
Non-Mangrove 97.27% 78.76%

2018
Mangrove 92.80% 99.71%

94.69% 0.88
Non-Mangrove 99.34% 84.83%

2019
Mangrove 93.67% 96.47%

93.85% 0.87
Non-Mangrove 94.17% 89.74%

2020
Mangrove 90.49% 97.50%

91.68% 0.82
Non-Mangrove 94.51% 80.75%
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Figure 5. The hybrid U-Net results for ZZW at the Beibu Gulf. (a,b) The satellite image of mangrove
area in 2021, (c) mangrove habitat information results, (d) low tide level acquisition results, (e) the
hybrid U-Net results for 2020, (f) the hybrid U-Net results for 2019, (g) the hybrid U-Net results for
2018, (h) the hybrid U-Net results for 2015.



Remote Sens. 2023, 15, 5271 14 of 22

4.3. Multilevel Interactive Verification of Mangrove Extraction

To further validate and confirm the reliability of the mangrove extraction results,
this study employed a multilevel interactive interpretation approach on remote sensing
imagery to extract mangrove information. The extracted results were then compared with
the findings of this study. In the context of multilevel interactive verification of mangrove
extraction, multiple experts collaborated to review and validate the extracted mangrove
maps (Figure 6). (A comparison of the results of hybrid U-Net extraction of mangroves
with multi-person interactive validation for DFJ and TSG is shown in the Supplementary
Materials (Figures S3 and S4)). The key steps involved in this interactive verification
process included data sharing, a collaboration platform, comparative analysis, discussion
and consensus, expert guidance, and iterative refinement. The verification process was
carried out independently to ensure unbiased results.
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4.4. Evaluation of the Hybrid U-Net Model with Existing Data Products

We compared the model results with the baseline years of the existing dataset sepa-
rately (Figures 7 and 8). Overall, the results of this study were more consistent with the
2/10 m resolution dataset, and in some areas, the results of this study were more reliable
compared with the existing dataset, especially in the extraction of sparse and low-growth
young forests and narrow mangrove belts along embankments (Figures 7 and 8). (The hy-
brid U-Net mangrove extraction results compared with existing data products for DFJ and
TSG are shown in the Supplementary Materials (Figures S5 and S6)). In our Supplementary
Materials, more details on the comparison are provided (Figure S7).
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Figure 7. Hybrid U-Net mangrove extraction results compared with existing data products. (a) The
satellite image of mangrove area at ZZW, (b) mangrove habitat information results, (c) low tide level
acquisition results, (d,g,j,m) the hybrid U-Net results in 2020, 2019, 2018, 2015, (f,i,l,o) the Global
Mangrove Watch (GMW) in 2020, 2019, 2018, 2015, (e) LREIS in 2020, (h) TW in 2019, (k) MCina in
2018, (n) CAS in 2015.

The 10/30 m data product did not provide sufficient detailed spatial information.
Factors such as the spatial resolution of remote sensing images, tidal inundation, and
information extraction strategies can affect the accuracy of mangrove extraction. Previous
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studies have shown that the area error measured with remote sensing images increases
gradually with improvements in spatial resolution [55]. Therefore, for narrow and frag-
mented mangrove areas, the extraction effect of medium-to-low-resolution remote sensing
images is poor.
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Figure 8. The hybrid U-Net results for mangrove area changes in the ZZW, DFJ, and TSG areas for
2015, 2018, 2019, 2020 with the base year sub-data products.

According to the base year sub-data products, the average area values of man-
groves in ZZW, DFJ, and TSG were 927.36 ha, 787.55 ha, and 941.58 ha, respectively
(Figures 7 and 8 and Table S1). Among them, ZZW and TSG showed a trend of first in-
creasing and then decreasing in mangrove area at the four time points, while the mangrove
area in DFJ showed a continuous increasing trend. From 2015 to 2020, the overall mangrove
area in ZZW increased by 147.79 ha (18.9%), and that in DFJ increased by 104.66 ha (13.94%),
while the mangrove area in TSG remained almost unchanged.

A comparison with 10/30 m data products in this study revealed significant differences
in the changes in mangrove area in TSG and ZZW for 30 m data products. The large
discrepancy of 693.96 ha in TSG from 2018 (30 m reference) may be because China has
many small mangrove patches, as well as narrow mangroves along levees, which were
not captured by the 30 m resolution product due to the lack of fine-scale information and
different pixel sizes. In contrast, this study’s results exhibit better performance in terms of
extracting more detailed mangrove patches. In addition, differences in some areas may be
due to different methods used for image acquisition and mangrove mapping in different
years. From the time series of different mangrove datasets in Table S1, it can be seen that
China’s mangrove area has remained stable since 2015, with fluctuations in some regions,
which is consistent with the results of [13]. The results of this study were generated using
2 m high-resolution images, with smooth edges of patches and complete structures of
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small patches. In contrast, the mangrove patches in the other five datasets showed serious
saw-toothed edge effects and insufficient accuracy for small patches.

The results of this study are closer to the 10 m product in terms of mangrove area.
Considering the pixel scale effect, the 2 m resolution result should be smaller than the 10 m
resolution, which is consistent with the results of this study. For the Pearl River Estuary,
where there are mainly large independent mangroves, the differences between the three
products were not significant. For TSG and DFJ, there are narrow mangrove belts along the
embankments and large independent mangroves. From a spatial perspective, the 10/30 m
data have significant omissions for such mangroves. Considering the influence of the scale
effect, although the overall changes in the mangrove area for DFJ among the three datasets
are not significant, the 2/10 m results are much better than the 30 m result in terms of
spatial information. For DFJ, the inversion of the western mangroves using 10/30 m data
is disastrous, while the 2 m data can clearly show the spatial distribution of the western
mangroves in DFJ.

5. Discussion
5.1. Stability of the Hybrid U-Net Network Performance

This article proposes an integrated spatial, temporal, and methodological (hybrid
U-Net model) optimization for mangrove extraction. In this study, the spatial resolution
of the mangroves extracted is 2 m, allowing for the capture of finer mangrove patches,
especially small and narrow ones. Mangroves are primarily found near estuaries, and
small and narrow mangrove patches are quite common. This study enhances the quality of
training samples based on mangrove habitat and tidal information, utilizing a semantic
segmentation model like U-Net that requires only one year of samples to map mangroves
for multiple years. Compared with other machine learning methods that require repeated
acquisition of stable samples, this approach enables rapid detection of mangrove changes.

The output of the hybrid U-Net network model has only two categories, mangrove and
non-mangrove, making it a binary classification model. Compared with other models, this
approach takes into account the potential growth areas of mangroves and the impact of tides
on mangrove extraction, and combines the advantages of semantic segmentation models
(reducing dependence on samples). This method is more suitable for large-scale mangrove
extraction tasks [56]. Additionally, the combination of GF and ZY series satellite sensors
compensates for the shortcomings of individual satellite image information, ensuring
high-resolution mapping at a 2 m spatial resolution.

The Hybrid U-Net network model has three unique advantages in fine-scale mangrove
mapping: (1) It excludes non-vegetation cover before mangrove extraction, avoiding the
impact of non-vegetation on sparse mangroves and saving post-processing work; (2) It
utilizes vegetation indices to determine the low tide moments, ensuring the accuracy of
extracting the maximum extent of mangroves; (3) The Hybrid U-Net model requires only
one year of samples for training and the training model can be applied to infer mangroves
for other years within the same area. This reduces the traditional deep learning models’
reliance on samples.

5.2. Advantages of High-Resolution Data Extraction for Mangrove Mapping

Currently, most of the published mangrove distribution datasets use medium-resolution
satellite data with a spatial resolution of 30 m or synthetic aperture radar data at the L-band
with a resolution of 25 m (Figure 9). In these medium-resolution images, the vegetation
texture and spatial details are missing, leading to limitations in accurately identifying man-
grove forests. In addition, small and irregularly shaped mangrove areas are difficult to
accurately identify and extract.
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Figure 9. Time-series distribution of existing mangrove data products (30 m spatial resolution man-
grove dataset: the Global Mangrove Watch (GMW [15]), Global Mangrove Distribution (GMD [57]),
PKF [58], GWL_FCS30 (GWL [59]), (MCina [40] (1978, 1990, 2000, 2013)), (CAS [13]); 10 m spatial
resolution mangrove dataset: Mangrove China_LASAC (LREIS [23]), Tidal Wetlands in East Asia
(TW [44]), ZCP [18,40]; 2 m spatial resolution mangrove dataset: (XCina [40] (2018))).

This study uses satellite remote sensing images with a resolution of 2 m from GF
and ZY series sensors for mangrove mapping. The finer spatial resolution allows for the
delineation of small and scattered mangrove patches and narrow strips along the coastline.
This is particularly important for mangrove mapping in China. There are numerous small
and narrow patches of mangroves in China. Young plants that were newly planted but not
forested were not included in existing dataset [23]. The use of high-spatial-resolution remote
sensing images enables the extraction of more detailed mangrove distributions at a finer
spatial scale and allows for rapid detection of subtle changes in the information. A detailed
understanding of the distribution of and changes in these mangroves is of great significance
for allowing local management authorities to carry out mangrove ecological protection and
restoration and to coordinate coastal economic development with ecological protection.

5.3. The Limitations of the Hybrid U-Net Network Model

In general, remote sensing-based surveys of mangrove forests only include areas with
a tree crown density of 20% or more [23]. Seedlings and mangrove forests with an area of
less than 4 m2 are currently unable to be extracted due to the limitations in sensor accuracy,
which may result in an underestimation of model results compared with actual conditions.

There are other types of vegetation growing on the tidal flats where mangrove forests
grow along the coast of the Beibu Gulf in Guangxi, China. These vegetation types are
easily confused with mangrove forests in image interpretation. The most common types of
vegetation are Spartina alterniflora and reeds (Figure 10) [51]. Many studies have provided
evidence that Spartina alterniflora can entirely supplant mangrove forests within a short
span of 1 to 5 years [60]. The latest research indicates that the invasion of Spartina alterniflora
threatens the survival and reproduction of mangroves, as Spartina alterniflora inhibits the
growth and expansion of mangroves [20,61]. There is spectral confusion between Spartina
alterniflora and mangroves, which may lead to an overestimation of mangrove areas by
the hybrid U-Net [62]. In future research, it will be possible to improve the accuracy of
mangrove mapping further by overlaying thematic maps of misclassified species.
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6. Conclusions

This paper presents a spatial–temporal method optimization approach (hybrid U-Net)
based on mangrove habitats, low tide, and semantic segmentation models to address
challenges in satellite remote sensing of mangrove wetlands, including spectral similarity
confusion, tidal uncertainty, and difficulties in obtaining stable samples. The paper demon-
strates the advantages of combining tidal water levels and mangrove habitat information
in mangrove extraction and mapping.

The hybrid U-Net model overcomes the dependency of traditional machine learning
algorithms on large sample datasets. The use of mangrove habitats and low-tide periods
helps reduce the interference of surrounding vegetation in the extraction of the mangroves.
This method was applied to extract mangroves in three typical areas of the Beibu Gulf in
2015, 2018, 2019, and 2020. This method is less sample-dependent and more accurate and
is more suitable for the rapid detection of subtle changes in large-scale mangroves. The
results of the hybrid U-Net model were reliable for extracting sparse, slow-growing young
mangroves and narrow mangrove strips along roadsides.

Future research will focus on using one or a set of indicators or rules to approximate
classification results, attempting to reduce the impact of spectral uncertainty on model
accuracy under different climatic conditions. This high-precision mangrove extraction
method will provide an important basis for refined calculations and assessments of man-
grove ecosystem changes, mangrove species classification, marine ecosystem management,
blue carbon restoration, and biodiversity protection in the future.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/rs15225271/s1. (Figure S1. The Hybrid U-Net result of DFJ at the
Beibu Gulf. (a, b) The satellite image of mangrove area in 2021, (c) Mangrove habitat information,
(d) Low tide level acquisition, (e) The Hybrid U-Net result in 2020, (f) The Hybrid U-Net result
in 2019, (g) The Hybrid U-Net result in 2018, (h) The Hybrid U-Net result in 2015, Figure S2. The
Hybrid U-Net result of TSG at the Beibu Gulf. (a, b) The satellite image of mangrove area in 2021,
(c) Mangrove habitat information, (d) Low tide level acquisition, (e) The Hybrid U-Net result in 2020,
(f) The Hybrid U-Net result in 2019, (g) The Hybrid U-Net result in 2018, (h) The Hybrid U-Net
result in 2015. Figure S3: Comparison of the results of hybrid U-Net extraction of mangroves with

https://www.mdpi.com/article/10.3390/rs15225271/s1
https://www.mdpi.com/article/10.3390/rs15225271/s1
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multi-person interactive validation at DFJ: (a, b) The satellite image of mangrove area at DFJ in 2021
October, (c, e, g, I) The Hybrid U-Net result in 2020, 2019, 2018, 2015. (d, f, h, j) Multiplayer interactive
validation in 2020, 2019, 2018, 2015. Figure S4. Comparison of the results of hybrid U-Net extraction
of mangroves with multi-person interactive validation at TSG: (a, b) The satellite image of mangrove
area at TSG in 2021 February, (c, e, g, I) The Hybrid U-Net result in 2020, 2019, 2018, 2015. (d, f,
h, j) Multiplayer interactive validation in 2020, 2019, 2018, 2015. Figure S5. Hybrid U-Net extract
mangrove results compare with existing data products. (a) The satellite image of mangrove area at
DFJ, (b) Mangrove habitat information, (c) Low tide level acquisition, (d, g, j, m) The Hybrid U-Net
result in 2020, 2019, 2018, 2015, (f, I, l, o) The Global Mangrove Watch (GMW) in 2020, 2019, 2018,
2015, (e) LREIS in 2020, (h) TW in 2019, (k) MCina in 2018, (n) CAS in 2015. Figure S6. Hybrid U-Net
extract mangrove results compare with existing data products. (a) The satellite image of mangrove
area at TSG, (b) Mangrove habitat information, (c) Low tide level acquisition, (d, g, j, m) The Hybrid
U-Net result in 2020, 2019, 2018, 2015, (f, I, l, o) The Global Mangrove Watch (GMW) in 2020, 2019,
2018, 2015, (e) LREIS in 2020, (h) TW in 2019, (k) MCina in 2018, (n) CAS in 2015. Figure S7. Hybrid
U-Net extract mangrove results compare with existing data products. (TSG details). (a) The GF-1
satellite image(2m) of mangrove area at TSG, (b) The GF-1 satellite image(2m) of mangrove area
at TSG (details), (c) The Sentinal-2 satellite image(10m) of mangrove area at TSG (details), (d) The
Landsat 8 OLI satellite image(30m) of mangrove area at TSG (details), (e, h, k, n) The Hybrid U-Net
result in 2020, 2019, 2018, 2015, (g, j, m, p), The Global Mangrove Watch (GMW) in 2020, 2019, 2018,
2015, (f) LREIS in 2020, (i) TW in 2019, (l) MCina in 2018, (o) CAS in 2015. Table S1. Areal changes
(ha) of mangrove forest with hybrid U-Net in the ZZW, DFJ, and TSG area for the 2015, 2018, 2019,
2020 with the base year sub-data products.)
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